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It is shown that in the case of an energy spectrum with a degeneracy point, which is typical of the 
valence band of a semiconductor such as Ge, there exist bound states of a heavy hole and a phonon near 
the optical-phonon energy. The spectrum of a polaron with the bare mass of a light hole contains 
additional spectrum branches that are dye entirely to the electron-phonon interaction. They condense as 
the optical-phonon energy is approached. 

PACS numbers: 71.38. + i 

1. INTRODUCTION H=H,+H,h+Hi,t. (1 

Bound states of a polaron, in the case of a simple 
parabolic band, exist in the tight-binding limit. ' An- 
alysis by ~ a t u l i s *  has shown that in the limit of weak 
binding the polaron produced by interaction with polar 
phonons has no bound states. The problem of polaron 
in the case of an energy spectrum with a degeneracy 
point which is characteristic of the valence band of 
semiconductors such a s  Ge or  InSb, was considered 
previously. 3-5 The renormalization of the spectrum of 
light and heavy holes was determined in the limit of 
w e d v 5  and intermediate couplings. 

It is shown in the present article that near the thresh- 
old energy Bw,, where wo is the frequency of the optical 
phonon, a radical restructuring of the energy spectrum 
takes place of the energy spectrum with bare light-hole 
mass m, a s  a result virtural transitions from a state 
with the light-hole mass to the state with the heav- 
mole mass m,. In addition, in the near-threshold 
region there appear additional spectrum branches whose 
existence is due entirely to the electron-phonon inter- 
action. These additional branches, in analogy with the 
interpretation offered by Levinson and ~ a s h b a , '  can be 
regarded a s  bound states of a heavy hole and a phonon. 
The difference between the threshold energy tiwo and the 
binding energy is of the order of the Born energy of 
the heavy hole 

The Hamiltonian that describes the spectrum of t& 
holes in the valence band has according to Ref. 4 the 
form 

Izz k2 
&= -A('' ( k )  + -A'*' ( k )  ), 

2m1 2m,. 

where k is the wave vector, Xr'(k) and h','(k) a r e  the 
operators of projection on the states of the light and 
heavy hole band. They a r e  expressed in terms of the 
4 x 4 matrices J,, J,, and J, of the angular momentum 
with eigen values ~ = 3 / 2  in the following manner: 

A"'(k) =' / , [k-Z(kJ)a-' / , l ,  A"' ( k )  -1-ACh' ( k ) .  (3 

(We put hereafter ti= 1). In the Hamiltonian of the 
system of optical phonons 

where b: and b, a r e  the optical-phonon creation and 
annihilation operators, we disregard effects connected 
with phonon dispersion. The interaction of the holes 
with the optical phonons is described by the Frzhlich 
Hamiltonian 

Ili,-(2nuoe2/Vx*)" ~ + ( b . e ~ ~ ' + b ~ + e - ' ~ ~ ) .  
P 

(5) 
where V is the volume of the crystal. 

EA=mhe'/2 (Ax') ', In the absence of interaction, the single-particle 
Green's function is given by the 4 x 4 matrix 

where the effective dielectric constant is x* = (l/x, 
- l/no)-', X, and no a re  the high- and low-energy di- G ( e ,  k)=G"'(e, k)+G"'(e, k ) ,  G"'(E, k)=(~-k~/2m~+iO)-'A(~(k),  
electric constants. The energy levels of the bound GIM (8, k )  = (e-kz12m,+i0)-1A~m ( k )  . (6) 
states condense in proportion to l/n6 (n is the number We a r e  interested inthe spectrum in the near-thresh- 
of the level) as the threshold energy f i w o  is approached- old region, when the polaron energy is wo. Because 

of the small mass ratio rn,/m,<< 1 the light hole with 

2. EQUATIONS FOR THE POLARON SPECTRUM energy w0 - c<< 00 has a s k i '  energy deficit for the 

NEAR THRESHOLD production of an optical phonon with transition into a 
heavy hole. Therefore the dangerous cross sections 

We solve the polaron problem in the case of a valence inthe mass operatorM(c, k) a re  connected precisely 
band with degeneracy point in the spherical approxi- with this virtual transition 
mation. The Hamiltonian of the system is the sum of 

e200 d'q 
the Hamiltonians Ho of the free holes, Hph of the optical m e ,  k) - JT [ e - a 0  - - (k -q ) ' ] - '  nlhl (k-q) ~ ( q ;  8, k ) .  
phonons, and H,, of the interaction of the holes with the 2mh 

phonons (7) 
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Here r(q; E ,  k) is the vertex. 

If we confine ourselves to the zeroth approximation 
for the vertex, i. e., we put r= 1, then 

For the light-hole spectrum in the near-threshold 
region, when k" ( 2 m , ~ ~ ) ' / ~ ,  we can neglect k compared 
with q if o0 - E >> m,oo/m,. In this case the renor- 
malized energy of the light hole is determined from the 
equation 

e-k'12rnl+e'coo(2mh) "/4x*(coo-e)"=O. 

(9) 
Equation (9) has one real root in the region E <  wo. 

Figure 1 shows a plot of x =  (y - &)(o0 - k2/2m,)" 
against B = 1/4 oi Eh(oo - k2/2m,)'9. As follows from 
(91, the small parameter of the expansion in our prob- 
lem is the ratio E,/~w,,, and therefore the renormali- 
zation becomes significant a t  wo - E s ~ : ~ ~ o ! ~ ~ .  Equa- 
tion (9) for the polaron dispersion law is valid up to 
energies wo - E > Eh. At energies wo - E s Eh the re- 
normalization of r becomes essential, and i t  is just 
in this region that bound states of a heavy hole and a 
phonon exist. 

3. EQUATION FOR THE VERTEX 

The integral equation for r is shown in Fig. 2. It is 
of the form 

Here A'" is a sum of a diagram with two external pho- 
non lines and two internal heavy-hole Green's functions 
(incoming and outgoing), which contain in the cross 
section no less than two phonon lines. In (10) we have 
again retained only the graphs that contain dangerous 
cross sections. The quantity A ' ~ '  does not contain them 
and in the approximation of lowest order in the inter- 
action we have at m,/m,<< 1 

Neglecting in (10) the value of k compared with q, a 
procedure that will be shown to be valid a t  k<< mhe2/ 

FIG. 1. plot of x =(wo-  c ) ( w o -  k2/2m,P1 against 
B = i ~ , , ( w ~ -  k 2 / 2 m , h 3 ~ 2 0 .  

E-Ont k-q 6, k 6 - q ,  k-g 6-wn, k q , k  

FIG. 2 

x*, we simplify (10) to 

The wave vector k enters in the simplified equation only 
a s  a parameter, and I' is independent of k in this ap- 
proximation. 

We now obtain the eigenvalues of the integral homo- 
geneous equation corresponding to the inhomogeneous 
equation (11) 

(12) 
we represent J I  a s  a sum of functions, each of which is 
a wave packet made up of the wave functions of the light 
and heavy holes 

$(q) =qVcoo-e+qz12m~) [cplA) (q)+cpC1) (q) 1, 
9)") (q) =q-'(coo-e+q'/2mh)-'A(w(q) )(q), 

T'" (9) =q-z(coo-e+q'12mA) -'A(') (q) $(q). 

Multiplying (12) from the right by ~ ( " ( q )  and ~ " ' ( q k  
we obtain equations for cp"? and cp ": 

ez 

) (q) = - .\(Ir) (q) d'q,~"' (q+q.)q'" 
(2x)'x' 

(144  

From (14a) and (14b) i t  follows that the eigenvalues of 
the problem a r e  determined from the solution of Eq. 
(14a). We can then obtain cp" ' (q) from (14b). Equa- 
tion (14a) can be transformed into a differential equa- 
tion, and then expansion in the wave functions of a par- 
ticle with spin 3/2 (Ref. 7) can be used to separate the 
angular dependence of cp Q'(q) and obtain a system of 
ordinary differential equations for the radial functions. 
In the present article, however, we obtain with the aid 
of a variational principle the smallest eigenvalue, and 
then show how the spectrum of the highly excited states 
behaves. We a r e  interested in wave functions of the 
forms 

dA1 (q)=f (q)G1(q)xh (15) 

where f (q )  is a scalar function that depends only on the 
modulus of q, X, is a Wird-rank spinor, and i t  is con- 
venient to choose the quantization axis z along k. The 
states with the wave function (15) a r e  fourfold degen- 
erate. 

With the aid of the relation 
Sp A'" (q,)A'") (q,)A'" (qs) =Vt[ (qie)'Iq1"q~' 

+(aqJ)'lq,'q~+(qsql)'Iq~ql"l -'I4 
(16) 
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we obtain an equation for f(q)  d - ,  d - I - =  (.$) (rg -2). dr 
d 

1 ,  d i d  
(17) -pz=- f ( r z + 4 ) - - ( r Z + i ) .  (24) 

It follows from these equations that the right- and left- 
The smallest eigenvalue Q of Eq. (17) will be ob- hand sides of (23) a r e  acted upon by the same operator 

tained by a variational principle, choosing the trial r d / d r + 4 .  As a result we get 
function in the form 

- 3ez d d d -- r - - 3  .--1 L*+ r T + l  $q . (25) where qo is the variational parameter. We obtain for 32,'1-{( dr ) b d r  ) r  dr ( a  ) ' 1  
go the equation 

Applying to the right and left sides of (25) the operator 
O o - e = - -  (19) ~ d / d r  + 4 we obtain a fifth-order equation for the function 

iJ2v1 
Minimizing with respect to go we get ( r r . 4 )  d ( r z - a ) ( ' $ )  d ( ~ ~ - c + & )  $ q , = T - p s q l .  3ez d , 

4% dr 
2 n 

ao-e,,= - (- - I ) z ~ , . = ~ . ~ ~ A .  
5n 2 (20) (26) 

Using (22) we can lower once more the degree of (26) 

d d 1 d 
4. EXCITED-STATE SPECTRUM ( r I + 4 )  ( r d l - ? )  [ u o - e - = ( r z - 2 )  . 

For the function pi(q) = q 2 f ( q )  the equation (17) can be ( r ,  d ")I R.- ?;;R~=o. 3e2 (2 7 )  
transformed into a differential equation in coordinate 
space 

The spectrum of the highly excited states can be de- 

3ea i termined by a quasiclassical method. The wave func- 
pt 

(ao-e+ - ) p q t  2mn ( r )  - G[$Tv, (r)--c4:?qt(r)  tions of these states have a large range in space, so 

1 i that to determine their spectrum we must know the 
-9 T $ p l  (7) + 7 $ q ,  ( r )  1. (21) behavior of the potential a t  large distances. At large 

r we can simplify (27) to 

where is the momentum operator. The function cEl 3e2 
cpi(r) depends only on the absolute value of r. There- F("o-&-&f) R . - ~ R ~ = O .  (28) 

fore 
A quasiclassical solution of this equation is thefunc- 

d 2 d  d l Z  1 d d  tion $=-(z+T)z=-(r+-- )  = - 7 z ( r z + l ) .  

..-ex, [ - j qc (r , )drt  1 sin [ j drfq.(rf)  + a ]  , 
(22) 0 0 . . 

Equation (21) is an ordinary differential equation of where 
seventh order for the function d p l ( r ) / d r ,  since i t  does 
not contain the non-differentiated function p l ( r ) .  I t  can qr-2-"[ (3/2ahr3) "-mh(a,-e)  I", 
be transformed however into a fourth-order equation 

(29b) 

for the function q1=2-"[ (3/2aas) '"+mh(oo-e) I*, ( 2 9 ~ )  

d  
Ro=r - $ql .  

dr 

To this end we use first  the relation 

i d  I 
T ( z + T ) f i = ( $ + ~ ) ~ ~ z .  

a,= x*/m,e2. The turning point ro for the solution 
(29a) is the point a t  which q7(ro) = 0, i. e., 

ro- (3/2fflhZah)lh (ag-8)  -"'. (30) 

The eigenvalues can be obtained from the Bohr quan- 
where p2 is an arbitrary function, to lower the order tization condition 
of Eq. (21) 

d i  
+$ (23) where n is an integer. Substituting (29b) in (31) we 

get 

The order of the equation can be lowered once more 
by using the equations 
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where r(z) is the Euler function. Thus, in the limit 
m,/mh<< 1 the vertex I' has an infinite number of poles 
between co and wo. The poles condense in proportion 
to l/nB a s  wo is approached 

5. ADDITIONAL BRANCHES OF M E  LIGHT-HOLE 
SPECTRUM NEAR THRESHOLD 

As already mentioned, because of the spherical sym- 
metry of the problem there exists an operator F = L 
+ J, where L is the orbital-momentum operator, which 
commutes with the Hamiltonian of Eqs. (13) and (14). 
The position of the pole of the vertex cpen depends on F 
and on the quantum number n that numbers the levels 
at  the given F. The eigenvalues zpn a r e  degenerate in 
the projection M of the vector F. ' In Secs. 3 and 4 we 
have investigated the spectrum a t  3/2, when the wave 
functions have positive parity (with 1 = 0 and 1 = 2). At 
q >> k the expression for the mass operator contains the 
projection of the vertex on the states of the heavy-hole 
band 

Fhr (-q; e ,  k )  -Am' (q)I'(-q; e ,  k). 

The quantity eh) can be expressed in terms of the 
eigenfunctions of Eq. (14) 

Here a and i3 a r e  the spinor indices. 

If we expand the functions cpy',, in the eigenvalues of 
the operator F (Ref. 7) and substitute (33) in (71, then 
at  q >> k, after integration over the angles of q, there 
will be left in the sum (33) only even functions cor- 
responding to F = 3/2. Substituting (33) in (7) and in- 
tegrating with respect to the angles of q, we obtain the 
dispersion equation for the polaron spectrum 

(34) 
A plot of the right-hand side of (34) against c is shown 
in Fig. 3. The curve has singularities at c = C Q , ~ , ~ .  
These singularities a re  located in the region co -( E 
< wo. In the region E < c0 the curve decreases mono- 
tonically. The law governing its decrease is described 
by the last term of (9) at  wo - E, >> E,. The left-hand 
side of (34) a s  a function of E is a straight line. I ts 
successive intersections with the sections of the curve 
between two singularities of the right-hand side of (34) 
yields the polaron energy. 

To determine the polaron energy in the case of addi- 
tional spectrum branches we can replace c in the left- 
hand side by wo, since wo >> E,, and wo - c- En. The 
polaron energy is determined by Eq. (34) at  kc< mhe2/ 
x*. For the branches with large n the region of values 

FIG. 3. Plot of the right-hand side of (34) against E. 

of k in which our soltion is valid narrows down to 
kc< mhe2/x*n3. Additional spectrum branches exist also 
for a polaron with bare mass of a light hole, but they 
exist only in that wave-vector region in which the kin- 
etic energy k2/2mh can be neglected. 

One of the possible semiconducting compounds in 
which bound states of a heavy hole and a phonon can be 
observed is CdTe, in which w,, = 10.6, x, = 7.1, 
wo =2l.  3 meV and m, = 1.5 mo (Ref. 9), where mo is 
the mass of the free electron. Using (20), we obtain 
the estimate w, = g = 1.8 meV. 

The dimensionless parameter used for the expansion 
needed to obtain our solution is ~,/4w, = 1/2 in the case 
of CdTe. Therefore our estimates for CdTe a r e  only 
approximate. However, the main criterion that points 
to the possible existence of bound states of a heavy 
hole and a phonon is small, m,/mh- 0.1. 

The authors thank M. I. D' yakonov, V. I. Perel', 
and &. I. Rashba for a useful discussion. 
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