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The boundary condition for the Gizburg-Landau equation at the interface between a superconductor 
and a normal metal is obtained for a superconductor with a short mean free path. The expression for the 
critical current of the SNS junction is investigated at arbitrary ratios of the parameters characterizing the 
superconductor and the normal metal. 
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1. INTRODUCTION valid also in the case  of jumplike changes of the param- 
e te r s  v and D. The Green's function p on both sides of 

The boundary conditions for  the order parameter A on the discontinuity satisfies the continuity relations 
the interface between a superconductor and a normal 
metal were considered by a number of If p + = p - ,  ( v ~ 2 )  += ( v ~ g )  -. (2) 
the normal metal is a superconductor with a transition 
temperature T,, close to T, , ,  then in the temperature 
region 1 T,, - T I  << T the Ginzburg-Landau equation for  
the order parameter A is valid in both the superconduc- 
tor  and in the normal metal. For dirty superconduc- 
tors, the boundary conditions for A in this case were 
obtained by de Gennes. If the normal metal is not a 
superconductor o r  its transition temperature is not 
close to T, then to calculate the critical current of the 
junction and to find the exact boundary conditions for A 
in the superconductor i t  is necessary to find the 
Green's function in the normal metal. We confine our- 
selves below to an examination of the most interesting 
case-a superconductor with small electron mean f ree  
path . 

At a low transparency of the interface, the critical 
current of the SNS junction was obtained in Ref. 4. For  
superconductors with small electron mean f ree  paths, 
the critical current of the SNS junction and the boundary 
condition for the order parameter A in the supercon- 
ductor do not depend on the transparency of the bound- 
ary, if the transparency is not too small.3 In this case 
i t  is possible to express all the physical quantities in 
terms of a solution of a system of algebraic equations 
whose coefficients depend only on two dimensionless 
parameters, one of which is the ratio T,,/T. If T,, 
= 0, then the system of equations becomes much sim- 
pler. 

Relations (2) were obtained in Refs 2 and 9. 

The order parameter A and the current density j a r e  
expressed in t e rms  of the Green's function @ by means 
of the formulas 

where d, = a / d r  * 2ieA, and A is the electron-phonon 
interaction constant. From the system (I), (3) we get 

The kernel G(x,x,) of the integral equation (4) coin- 
cides with the corresponding expression of the de Gen- 
nes' paper2 

where 

2101 v ,  ( D l / D I )  '-vz 

2. GREEN'S FUNCTION FOR SNS JUNCTION pi,. = (,)"=, a = 
vI (D , /D1)%+vZ ' 

(6) 

To describe the SNS system we use the equations for  The subscripts 1 and 2 pertain respectively to the su- 
the Green's functions, integrated with respect to the perconductor and the normal metal. 
energy variable For  superconductors with small 
electron mean f ree  paths, this system reduces to a It is easy to verify that if both T,, and T,, a r e  close 

differential equation.,.8 To derive the boundary to T, then the exact solution of the integral equation (4) 

conditions, the approximation linear in A is sufficient. near the boundary is of the form 
- - 

In the line& approximation, the equation for the A (z>O) =A++z(aA/az)  +, A (zcO) =A-+Z (aA/az )  -. (7) 
Green's function p is of the form 

The coefficients A ,  and (a~ /ax) ,  satisfy in this case the 
{ - ( 2 v ) - l f  (.D:) + I . I } ~ = A ,  (1) relations 

A+-A-, (vDaA/az)  +- (vDaA/az)  -. where v =  mp/2n2 and D =vZ,/3 a r e  the state density on (8) 

the Fermi surface and the coefficient of diffusion, both By virtue of the conditions (71, the Ginzburg-Landau 
of which depend on the coordinates. Equation (1) is equation, which is valid for all x, can be written in the 
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Here 

where 5 is the Riemann zeta function. 

We proceed now to consider the case when the normal 
metal is either not a superconductor, o r  else its trans- 
ition temperature is not close to T. We assume also 
that the thickness d of the normal-metal layer islarge 
compared with the correlation length ki', the value of 
which will be determined below. 

From formulas (4) and (5) we obtain 

where - 0 

c (o) - $&A (XI e-~+,  B (o) = &A (x) ~ w .  (11) 
0 -- 

The system (10) can be solved by the Wiener-Hopf 
method. The solution is then expressed in terms of 
the still unknown h c t i o n s  C(w) and B(w): 

(12) 
here 

K(n, n,) = (n+'/,) ((n,+'/,) [ (n,+'/t)'h+ (n+'lz) "I}-', 
i -' dt 

z0(n) - exp {- - ~-lnt~('/~+(n+%)t~)-$('/a) I 1. 
n i+t' 

+(x)  is the psi function and In y = 0.577 is the Euler con- 
stant. 

We have introduced in (12) new quantities Z and Y, 
which a re  connected with C(w) and B(o) by the relations 

B(@) -Y(n)l~(n)/h(o), C(o) =Z(n)l,(n)/pl(o), 
(14) 

o-2nT(n+'IS). 

We note that the linear system of algebraic equations 
(12) depends only on two parameters: or and the ratio 
T,,/T. The quantity C is the integration constant. 

At distances large compared with ( ~ , / 2 f l ) ' / ~ ,  the 
order parameter ~ ( x )  in the superconductor is equal 

Inside the normal metal the Green's function P i s  the 
sum of damped exponential exp(k,x), where the quanti- 
t ies k, a r e  obtained from the equation 

At large distances there is left the exponential with the 
smallest value of k,: 

where x = (k23,/4r T)'12, g(x) is the psi function, and 

If the thickness d of the layer of the normal metal is 
large compared with kil, then we can neglect the mutu- 
al  iniluence of the boundaries, and the Green's function 
/3 is a sum of two terms, each of which connected only 
with "its own" boundary: 

where k (p/2 is the phase of the order parameter of the 
superconductors, fif(k,) and ~ ( k , )  a r e  amplitudes de- 
fined by formula (l8), in which it is necessary to sub- 
stitute the parameters of the "right" o r  "left" super- 
conductor, respectively. 

From (3) and (20) we obtain an expression for the 
current flowing through the normal-metal layer: 

In the particular case when the electron-phonon in- 
teraction A, - 0, we obtain from (12), (18), and (21) 

The order parameter ~ ( x )  is determined by Eq. (15). 

The system (12) can be quite easily solved with a 
computer. The results of the numerical calculation for 
the quantities B*l, A*', P / c ,  y, and x are  listed in 
Tables I and 11. The quantities P and y are  defined as 
follows: 

where C is an integration constant obtained by solving 
the Ginzburg-Landau equation in the superconductor, 
The coefficients A *' and B*' determine the behavior of 
the functions F/C and y at values of the parameter or 
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TABLE I. e ter  values a = * 1. At a = -1 the solution of the system 
(12) is of the form 

The coefficients Z and Y a r e  then 

Z ( n )  =c. ~ ' ~ [ n ~ ~ ( n )  (n+l/,) *I-', Y (n)  =o. (27) 

It follows from (12) and (27) that at small values of 
(1 + a) << 1 we have 

close to * 1 [Eqs. (28) and (31)]. 
In the other limiting case a t  a = 1 The current density j is expressed in t e rms  of the 

function F in accordance with the formula 

j=ev, sin rp oxp( -kNd)Fr~' /2k , .  (24) a = 1 is an eigenvalue of the system (12). The solution 
of the homogeneous system is of .the form The quantity y determines the boundary condition for 

the Ginzburg-Landau equation: Z ( n )  4 / 1 0  ( n ) ,  ZConj(n) =[I . (n )  (n+'/2)Ys~-1, (29) 

where Zm, (n) is the solution of the system conjugate 
to (12). It follows therefore that at small values of the 
parameter (1 - a) << 1 we have 

where n is the direction of the inward normal to the 
superconductor. 

The system (12) admits of an exact solution at param- From the system (10) in the vicinity of the points cu 
= k 1 we obtain after simple calculations 

~ ( - 1 ) = 2 5  [ ~ ( ' / a ) - ~ ( ' / z - ~ ~ )  I / ~ x ~ [ $ ' ( ' / ~ - x ?  I'i1, 

A"'=4B"' [I#('/.) ] /X[+ ' ( ' /~ -X' )  I"', 
TABLE II. 

At values of the parameter A, < 0 we have 

where T,, is the temperature of the transition of the 
normal metal into the superconducting state. 

At T,,/T = 0, the expression for the coefficient y, de- 
termined by formulas (30) and (31), goes over into the 
expression obtained in  Ref. 9. 

It follows from (28) and (30) that when the diffusion 
coefficient D, in the superconductor increases, the 
boundary condition (25) changes and goes over from A 
=O t o ~ ' = O .  

At intermediate values of the parameter a, the 
quantities y and F, which determine the boundary con- 
dition of the critical current of the SNS junction, a r e  
given in Table 11. 

We note that in the region of small values of the pa- 
rameter T,,/T the transition to the limiting state corr-  
esponding to Tc,= 0 is effected in accord withthepa- 
rameter r = ln(T/~,,). Only at r >> 1 do the express- 
ions for the functions y and F assume their limiting 

-- - 

Note. The upper lines represent F/C, the lower 7 .  
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values corresponding to T,,/T = 0. Therefore in the 
vicinity of the point T,,/T = 0 there is observed an 
abrupt change of the parameters y and F when T,, de- 
viates little from zero. 

In conclusion, the authors thank A. I. Larkin for use- 
ful remarks. 
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The possibility of the existence of quantum defects in metals is studied. Because of collisions with 
electrons, the quantum defects in a normal metal are localized at temperatures which exceed their band 
width. The ranges of concentration and temperature at which the quantum defects in a superconductor 
are local id  have been found. It is shown that the electrondefecton interaction leads to an increase in 
the gap in the electron excitation spectrum. 

PACS numbers: 74.90. + n, 71.50. + t 

It has been suggested by A. F. Andreev and I. M. 
Lifshitz that hydrogen can be a quantum impurity in 
certain metals. A large number of papers has been 
devoted to quantum defects in ~ e '  (see the review of 
Ref. 2 and elsewhere), but quantum defects in  metals 
have been little studied. 

In the f i rs t  part  of the present work, the interaction 
of quantum defects with electrons and with one another 
is considered, and the region of their existence isfound. 
In the second part, the effect of quantum defects on the 
superconducting characteristics is studied, and i t  is 
shown that the interaction with quantum defects leads 
to an increase in the gap in the spectrum of electronic 
excitations of the superconductor. 

QUANTUM DEFECTS IN METALS 

The atoms of hydrogen occupy voids in the metal 
matrix. As a consequence of quantum tunneling, the 
impurity level diffuses into the energy band. Similarly 
to electrons in a metal, the defection is characterized 
by a quasimomentum p and a dispersion law cp(p). In 
the case of low hydrogen concentration, the elementary 
excitation is the hydrogen atom-impuriton, but the 
results  a r e  applicable with some reservations to vac- 
ancies in the hydrogen sublattice, when their number 
is small, and the metal + hydrogen combination is nearly 
stoichiometric. Both the vacancion and the impuriton 
a r e  quantum defects, to which the analysis is in fact 
devoted. 

The Hamiltonian of a system d defectons has  the 

form 

Ho describes the system of noninteracting defectons, 
d'(p) and d(p) a r e  the second-quantization operators 
of the defectons, Hi,, includes the interaction of the 
defectons with phonons, with electrons, and with one 
another. 

I t  has been shown in Refs. 1-3 that a t  temperatures 
T much lower than the Debye temperature 8, but far  
exceeding the bandwidth of the defections c0, the mean 
f ree  path of the defectons between collisions with pho- 
nons 1, behaves a s  U ( ~ , / ~ T ) ~ ,  where a is the inter- 
atomic distance. We shall be interested in tempera- 
tures T -C T,, where T, is the temperature of the super- 
conducting transition. For  these temperatures, I,  >> a 
and the defecton-phonon interaction can be neglected. 

The interaction of the defectons with electrons was 
considered in Ref. 3, but the electrons were assumed 
to be nondegenerate in that case. In metals, the elec- 
trons a r e  strongly degenerate and these results  a r e  
not applicable. The Hamiltonian of the electron- 
defecton interaction is equal to 

b'(p) and b(p) a r e  the second-quantization operators of 
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