
A variant  of nucleation theory, based on the ZV ideas, 
was developed by Langer,lo who made concrete assump- 
tions concerning the form of the coefficients in expres- 

(60) sions of the type (47). These assumptions, which do not 
influence the form of the universal exponential factor, 
yield for  the pre-exponential factor  expressions that 
differ from those obtained in the present  paper. 

When moving along the line s =const, the scale-in- 
variant argument of the exponential remains unchanged. 
The change of t, is determined by the scale non-invari- 
ant factor in the preexponential multiplier. In the case  
of a system with nonconserving parameter ,  this is the 
factor r:Jp* ( ( I@*  1 -  1 T 17, the renormalized kinetic co- 
efficient is r: - 17 1 &r), and then 

In  the case  of a conserved transition parameter  the 
kinetic coefficient rF is not renormalized, and c* - I T  ( Y -'"; this yields 

In the strong-fluctuation region, the average lifetime of 
the metastable state has a definite scale dimensionality 
that depends onthe conservation propert ies of the relax- 
ing system, and the cri t ical  exponent t,,, is determined 
by formulas (61) and (62). 
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The equations of the dynamics of an electron-ion system in a nontransition metal with a simple 
anisotropic lattice are derived on the basis of the electron and ion Hamiltonian and with account taken 
of the scattering of the electrons by the impurities. In the quasiclassical long-wave approximation the 
equations reduce to the elasticity equations for the lattice and to the kinetic equation for the electrons. 
Microscopic expressions are derived in terms of the pseudopotential of the deformation-potenrial tensor 
and the bare elastic moduli of the lattice. It is shown that under adiabatic and neutrality conditions the 
long-wave oscillations in the metal can be described by the Frohlich Hamiltonian. 

PACS numbers: 62.20.D~ 

1. INTRODUCTION 

Two essentially different approaches a r e  presently 
used for the theoretical description of those electronic 
properties of metals which a r e  connected with deforma- 
tions of the crys ta l  lat t ice,  One of them, most widely 
used in the theory of metals, i s  in essence phenomeno- 
logical. I t  is based, on the one hand, on the notion that 
electrons a r e  quasiparticles with a complicated disper- 
sion that applies to the particular crystal  lattice. 

On the other hand, this  approach postulates the exis- 
tence in the metal of "bare" phonons that do not interact 
with the electrons, and of corresponding "bare" elast ic  
moduli of the metal A,,,. The interaction of the elec- 
t rons  with the phonons is the result  of the change of the 
electron energy under the influence of the lattice de- 
formation. Th i s  interaction is described with the aid of 
a deformation potential first introduced by Akhiezer? 
I n  a strong magnetic field, an induction interaction 
exists  besides the deformation i n t e r a c t i ~ n . ~ ~ '  The  the- 
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ory  of the joint motion of the conduction electrons in the 
crys ta l  lattice, obtained from these concepts, was de- 
veloped in the absence and in the presence of a magnetic 
field by many ~ o r k e r s . ~ ' ' ~  The  system of equations 
that describe the motion, in the lattice, of electrons 
that interact with one another was f i r s t  written out by 
Silin," and the theory was subsequently developed in the 
papers of KontorovichU and Skobov and Kaner.14 The  
use of these equations for  the investigation of quantum 
and spin waves in metals and in a magnetic field is con- 
tained in the papers of Zyryanov, Okulov, and Silin.'7-1e 
The very length of the l is t  of references indicates that 
over more than 20 years  the phenomenological theory 
served a s  the basic tool for the investigation of a great  
variety of properties of metals. 

I t  should be noted, however, that the equations of this 
theory were never derived "from f i r s t  principles." 
Within the framework of the phenomenological theory it 
is impossible to explain the microscopic nature of the 
concepts of bare elastic moduli and a bare deformation 
potential. Fo r  this  reason, such a theory does not per- 
mit a theoretical calculation of these quantities and 
does not make it possible to establish their  dependence 
on external conditions, particularly on the magnetic 
field. In addition, the region of applicability of the 
phenomenological equations is limited to large wave- 
lengths. 

The  second, microscopic approach known in metal 
theory s t a r t s  from the concept of the metal as an ag- 
gregate of ions, located at  the si tes  of a crystal  lattice, 
and mobile electrons. The electrons interact with the 
ions both via electromagnetic forces and via scattering 
from the ion shells. This  method dates back historical- 
ly to the f i r s t  papers of ~ l o c d '  and Sommerfeld and 
Bethe." The electron-ion model of a metal proposed 
by them was subsequently actively i n~es t iga t ed . ' ~ -~ l  
The  interest in the electron-ion model was subse- 
quently decreased because of the appearance of the 
phenomenological theory. 

The  research within the framework of the electron- 
ion theory was continued by Brovman and ~agan*." in 
connection with the problem of the microscopic calcula- 
tion of the singularities of the phonon spectrum of met- 
als. A consistent study of this  question on the basis  of 
the phenomenological theory is impossible. The main 
reason is that i t  is impossible to separate consistently 
in the metal the noninteracting phonons and electrons. 
The point is that it is automatically implied that elec- 
t rons take part  in the formation of a l l  bare phonon~. '~ 
The artificial introduction of bare  phonons makes the 
phenomenological theory (more accurately, the FrShlich 
model) inapplicable in a number of cases,  particularly 
in a quantizing magnetic field." Difficulties a r i s e  when 
this  theory is used to describe the properties of conduc- 
t o r s  with l e s s  than three dimensions. 

Besides the study of singularities of the phonon spec- 
trum of metals, the microscopic theory was used to  in- 
vestigate the thermal and electric resistances of met- 
a l ~ . ~ ~  The theory was also successfully used in the 
problem of lattice stability These investigations 
cover in the main, for the time being, the region of ap- 

plication of the microscopic approach in the theory of 
normal metals. With one exception,34 this  method has 
not been used s o  far  to investigate the propert ies of 
metals in a magnetic field. 

Thus, use is made a t  present of two actually unrelated 
approaches that s tem from substantially different ideas 
concerning the electron-ion system of the metal. The 
phenomenological apgroach is widely used by meets in a 
number of aspects  with objections, due to  the lack of a 
rigorous foundation for  the procedure for  separating the 
bare phonons and electrons. On the other hand, the ex- 
isting microscopic theory, owing to  i t s  relative com- 
plexity, has apparently not yet been sufficiently well 
developed to permit  i t s  application t o  a s  large a group 
of problems a s  the phenomenological theory. 

The  purpose of the present paper is to overcome the 
disparity between these two approaches. T o  compare 
them it is necessary to  derive for the electrons and ions 
of the metal equations of motion of the same type a s  the 
equations of the phenomenological theory, by start ing 
from the Hamiltonian of the microscopic theory. In this  
way it would become possible to determine the micro- 
scopic gist and obtain constructive expressions for the 
bare elast ic  moduli of the metal and for  the deformation 
potential. 

In Sec. 2 is derived the Hamiltonian of the electron- 
ion system of the metal. The  quantization is over the 
Bloch states of the electrons in the periodic field of the 
crystal. In Sec. 3 we introduce a dissipative mechan- 
ism, which we choose to be the collisions of the elec- 
t rons with the impurities; Heisenberg equations of mo- 
tion averaged over the positions of the impurities a r e  
derived for  an arbitrary cperator. In Sec. 4, in the gas  
approximation, the equations of the dynamics of the 
metal a r e  obtained for an arb i t ra ry  wavelength of fre- 
quency. I t  is important that for  the Bloch electrons 
even the gas approximation makes i t  possible to take in- 
t o  account a short-range interaction of the Fermi-liquid 
type between the electrons. Finally, in the last  section, 
a limiting transition is made to the quasiclassical situa- 
tion, and long-wave approximations a r e  obtained of the 
same type a s  the known equations of the phenomenolog- 
ical theory; the relation of the obtained results  to the 
standard theory is discussed. 

2. HAMlLTONlAN OF THE ELECTRONS AND IONS IN 
THE CRYSTAL 

In  accordance with the principal premises  of the mi- 
croscopic theory, we assume that the considered transi- 
tion metal consists of lattice ions and mobile electrons. 
Vortical electromagnetic motion will be disregarded for  
only one reason, to shorten the discussion. We assume 
that in the ground state of the metal the ions a r e  located 
a t  the s i tes  of an anisotropic Bravais  lattice containing 
one ion per  unit cell. Le t  there  be inavolume V, a to ta l  
of N ions with charge -2, with e < Oand Z an integer. 
The total number of electrons i s  ZN, and the charge of 
one electron is e. 

The  Hamiltonian H of such a system is of the form 
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Here r, and p, a r e  the radius vector and the momentum 
of the mobile electron numbered a, with mass  m, and 
charge e; R, and Pi a r e  the coordinates and momentum 
of the ion numbered i ,  with mass  M and charge -Ze;  
g(R, - R,) is the part  of the energy of the direct  interac- 
tion of the ions, connected with the repulsion of the ion 
shells; @(r, - R,)  is the energy of the interaction of the 
electron with the ion (pseudopotential). Planck's con- 
stant is assumed equal t o  unity throughout. 

We a r e  interested next only in smal l  oscillations of 
the ions about the stable equilibrium position. Con- 
nected with these smal l  oscillations a r e  smal l  changes 
of the electron density. The constant external magnetic 
field is assumed in the derivation to  be zero; i t  will be 
taken into account in the final equations. 

The  purpose being t o  derive linearized equations of 
motion, we expand the Hamiltonian (2.1) in a s e r i e s  in 
the small  displacements 6Ri =R,  - R,, of the ions from 
the equilibrium positions R,,, and write, accurate t o  
t e rms  quadratic in 6R: 

where the force matrix 6,) is due to the expansion of 
the energy of the direct  ion-ion interaction; the l inear 
te rm of this expansion is equal to ze ro  because of the 
symmetry of the lattice.33 The  employed expansion is 
based on an analysis, carr ied out by Brovman and 
Kagang3 of the ground state of the metal. 

We express the obtained equation (2.2) in t e rms  of ele- 
mentary excitations that exist in the metal-conduction 
electrons and lattice vibratons. Accurate to t e r m s  
q u a r a t i c  in the amplitude of the vibrations we have 

The f irst  line of this  formula contains the energies of 
the Bloch electrons and of the lattice vibrations of the 
ion lattice. Here  a:p and asp a r e  the F e r m i  creation and 
annihilation operators fo r  an electron with quasirnomen- 
tum p and energy cSP in the band with number s, in a 
s tate a Bloch wave function ~ " ~ ~ # , ~ ( r ) .  The energy c3 
and the function $,&r) are connected by the eigenvalue 

equation 

u (r) = z @ ( r -RJ ,  

with ( ~ ~ ~ ( r )  normalized by the condition 

We do not take into account here  the electron spin. We 
denote next by b,+, and b,, the Bose creation and annihil- 
ation operators of a lattice vibration with quasiwave 
vector q, frequency w,,, and polarization vector e,(q) 
in the branch with number o = 1, 2, o r  3. The  frequency 
and the wave vector satisfy the equations8 

where 

Summation over the dummy indices is implied in these 
relations. B i s  the reciprocal-lattice vector, wip i s  the 
plasma frequency of the ions, A @ )  is the Fourier  com- 
ponent of the direct  ion-ion interaation: 

4nZze2 
A(k)--- 

k" +g(k) .  (2.8) 

By u,, we denote in (2.3) the amplitude of the Fourier  
displacement of the ions: 

6R6 -z u,s.(q) exp (iqh), uqo- (ZMN~P,) -'h(b..+bfto). (2.9) 
PO 

The second line of (2.3) contains the energy of the 
electron-lattice interaction. The matrix element ~ c ( p )  
is defined by the formulas 

and can be represented in the form 

where 

=i(e..,+q-e.P)nl & w:,,+,(P) ( - ~ v O  w.,(P) +bii ' (~) .  (2.12) 

In turn 

where 4) is the Four ier  component of the pseudopo- 
tential, and we have introduced the amplitude w,,, 
=exp(-ipr)$~,~ of the Bloch wave function, normalized 
by the condit~on 

n j dpw:~.w.,=~.~.; (2.14) 

the vector p var ies  within the l imits  of one unit cel l  of 
the crystal  lattice. 

The  quantity M ; S ( ~ )  in (2.11) is the matrix element of 
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a plane wave in the Bloch functions: 

the quantity M;s(~) is used to express the fluctuations 
of the electron density p,: 

We note that vSdS(p) is a periodic function, with the 
period of the reciprocal lattice, of the variables p and 
q, whereas M?&) is periodic in p but has a nonperi- 
odic dependence on k. 

The quantity [SS(p) describes the influence of the mi- 
croscopic fields produced by the lattice deformation on 
the electron-ion interaction. At s = s' the roles of the 
f i r s t  and second t e rms  in (2.12) a r e  the same. On the 
other hand, if s #sl, then the f i r s t  te rm describes that 
part  of the microscopic field in the metal which is re-  
sponsible for  the effects of electron dragging by the lat- 
tice. 

The third line of (2.3) contains the energy of the di- 
rect  interelectron interaction. The  matrix element 
v ~ ~ ~ ~ ~ ~ ~ ( P ' , P ,  q) is equal t o  

where 

K;::"' ( q )  = 4nez ( q + ~ )  - ' M : : ~ ( ~ + B )  M:"" ( - q - B ) .  (2.1 8 )  

The las t  t e rm in the Hamiltonian (2.3) describes the 
contribution of the pseudopotential t o  the direct  interac- 
tion between the ions; this t e rm in (2.3) s t ems  from the 
last  t e rm in (2.2). The angle brackets denote the matrix 
element in the Bloch wave functions. 

The Hamiltonian (2.3) takes complete account of a l l  
the umklapp processes. The  summations over a l l  the 
momentum variables a r e  carried out independently, 
within the limits of the f i r s t  Brillouin zone, and each 
te rm of the sum is a periodic function of these variables 
with the period of the reciprocal lattice. 

3. INTRODUCTION OF THE DISSIPATIVE 
MECHANISM 

Our purpose is to obtain for  the system with the Ham- 
iltonian (2.3) dynamic equations that constitue the analog 
of the equations of the phenomenological theory. These 
include the equations of the theory of elasticity of the 
lattice with allowance for the electromagnetic forces 
and for the electrons contained in the lattice, the 
kinetic equation for  the electrons, and the equations of 
the electromagnetic field. The following circumstances 
must be  borne in mind in the derivation. 

At metallic densities, the interaction between the con- 
duction electrons is not weak. Therefore, as is well 
known, an important role i s  played in the metal by 
Fermi-liquid effects. A consistent derivation of al l  the 
required equations with account taken of the Fermi- 
liquid interaction is possible only by using a diagram 
technique. This,  however, would lead to unjustifiably 

cumbersome derivations without contributing anything 
essential to the understanding of the processes  that oc- 
cur.  In fact, the connection between the kinetic equa- 
tion for the electrons, written in the gas  approximation, 
with the s imi lar  equation with account taken of the 
Fermi-liquid interaction is well Equally well 
known, from the Landau theory:' is the influence of the 
Fe rmi  liquid on the propagation of elast ic  oscillations 
in it. Therefore,  t o  avoid unnecessary complications, 
we confine ourselves t o  a derivation of the equations of 
the dynamics of the metal in the gas approximation. I t  
is important that, for Bloch electrons, even this ap- 
proximation makes i t  possible t o  take into account the 
short-range interaction of the electrons and to obtain 
the Landau correlation function in the Born approxima- 
tion. 

The  second remark  is connected with the fact that a 
complete comparison with the results  of the phenomeno- 
logical theory is possible only when account is taken of 
the dissipative collisional mechanisms. No such mec- 
hanisms a r e  contained a s  yet in the Hamiltonian (2.3) in 
the form needed by us, although of course Eq. (2.3) 
does take into account the collisons of the electrons 
with the phonons, etc. The point is that the system with 
the Hamiltonian (2.3) is regarded a s  closed, and dyna- 

. mic equations containing no collision t e r m s  will be 
written for  it .  T o  take these t e r m s  explicitly into ac- 
count in the equations, we introduce, by way of the dis- 
sipative mechanism, the collisions of the electrons with 
the impurities. 

Assume that the metal contains only substitutional im- 
purities, randomly located on some of the lattice si tes ,  
which we shall designate by R,,. The  concentration c of 
the impurities will be assumed to be small  enough to  be 
able t o  use an approximation linear in the concentration. 
The energy of the interaction of the electron with the 
impurities will be designated by Q(r - R,). We assume 
this interaction to be sufficiently weak and ca r ry  out the 
calculations in the Born approximation. I t  can be shown 
that in the general case  of 9 that a r e  not smal l  the final 
formulas will contain in place of the Born scattering 
amplitude the true amplitude, and the result  expressed 
in t e rms  of the collision integral will turn out t o  be 
valid also in the general case. We shall  also neglect in 
the derivation the interband transition of the electrons 
colliding with the impurities. Finally, we shall not stop 
t o  take into account here  the contribution of the local 
oscillations t o  the scattering of the electrons by the im- 
puritiesPO assuming that the impurities a r e  such that no 
local and quasilocal oscillations occur. Thus, we as- 
sume that a t  each instant of time the impurity occupies 
the same position a s  the basic lattice ion would occupy 
a t  the s i te  in which the impurity is located. 

The Hamiltonian Y o f  the interaction of the electrons 
with the impurities 

taken accurate t o  t e rms  quadratic in the amplitude of 
the oscillations, will be written, omitting the index that 
labels the conduction band, in the form 
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where Q, = QL1) + Q:') and 

Here 

%(k) is the Fourier  component of the potential of the in- 
teraction of the electron with the impurity, and we have 
introduced the structure factor of the impurities 

which is a function of the random configuration of the 
impurities. 

The te rm with Q L ~ )  in (3.2) describes the elast ic  scat- 
tering of the electrons by impurities, while the t e rm 
with QP) describes the inelastic scattering of the elec- 
t rons by the impurities with emission o r  absorption of 
phonons. Jus t  a s  before, the summations in (3.3) a r e  
carried out within the limits of the f i r s t  Brillouin zone. 
Thus, the total Hamiltonian of the system is repre-  
sented by the sum H + Y o f  expressions and (3.2) and is 
a function of the random parameters R,,. 

All the equations of the dynamics of the electron-ion 
systems of the metal can be obtained now in a unified 
manner a s  the Heisenberg equations of motion for the 
corresponding operators, averaged over the positions 
of the impurities. Averaging over the positions of the 
impurities will be designated by a superior  bar: 

where each variable R,, runs  through al l  the lattice 
si tes  in each sum. 

We take an arbitrary operator F, pertaining to  the 
system, and average the Heisenberg equation over the 
impurity positions 

dFJdt=i[H+li", FJ. (3.7) 

We represent  the operator F in the form F = F + A F ,  
where AF is a random increment t o  the mean value F. 
We change over in (3.7) to the interaction representa- 
tion, choosing a s  the "unperturbed" Hamiltonian the op- 
e ra tor  H: 

T ( t )  =e'at7e-EHt, Y ( t )  =e-'"tFe'Ut, Y ( t )  = F ( t )  +y ( t ) ,  (3.8) 

and average the equation for ~ ( t )  

I t  suffices to write down the equation y ( t )  accurate t o  
t e r m s  linear in A?? 

We substitute the solution of this  equation, with the ini- 

t ia l  condition y ( - m )  =0, in (3.9) and then return to the 
initial operator F. Th i s  yields an  equation for the aver- 
aged operator F (we shall now omit the superior  bar): 

where the collision te rm (8~/at),,  is 

t ~ [ - - t  t - t  I ,  E++O. (3.12) 
-m 

The operator in (3.1 1)  leads to additive renormaliza- 
tion of the pseudopotential, which we shall disregard 
from now on. 

Substituting in (3.11) the expression (3.2) for Y, we 
calculate the corre la tor  

C '  
s ( k , ) s ( k , ) =  -6r,,-L., s ( k ) = S ( k ) - S ( k ) ,  S(k)=c6t.o, (3.13) v 

and write down the final expression for  the collision 
term: 

Choosing F to be the operators contained in the Ham- 
iltonian (2.3), we construct in the next section, with the 
aid of (3.11) and (3.14). a l l  the necessary equations of 
the dynamics of the metal. 

4. EQUATIONS OF THE DYNAMICS OF THE 
ELECTRON-ION SYSTEM OF A METAL 

Setting up the equations of motion entails the calcula- 
tion of the collision t e r m s  in accordance with the rule 
(3.14). The corresponding operations a r e  cumbersome 
and will not be described here. We present  the results  
of the calculation of the linearized collision te rms,  neg- 
lecting in the kernel  of the collision integral the influ- 
ence of the inelasticity of the collisions, which leads to 
corrections of the order  of (m,/M Yl2  *C 1. 

Differentiating the displacement operator  uqp in ac- 
cord with (3.11), we get 

We have denoted by ti,, the operator 

iq.--io,.(2~~o,.)-"(b,.- b-:.) (4.2) 

of the velocity of the f ree  ion lattice, which we disting- 
uish from the derivative 8uq,/at. The  calculation of the 
collision t e rm by formula (3.14) yields (we leave out the 
index of the band in the collision integral) 

v--Oe,/ap. 

Here  f (€4 =fp is the equilibrium F e r m i  distribution 
function of the electrons with energy Ep, which i s  de- 
termined f rom the relation 

e'alap+e-'"t==exp ( i tpt)Zp+ (4.4) 

and corresponds to the pole of the single-electron 
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Green's function for  a system with Hamiltonian (2.3). 
In  the quasiclassical situation Ep can be obtained direct- 
ly from the equations of motion. By I~[C~,,] we denote 
the collision integral of the electrons with impurities, 
acting on any function qp in accordance with the rule 

2nc 
Ip,[cppl =-z l U v , ( k )  l ' G ( ~ . - ? ~ . - t )  (rpp-cpv-,). (4.5) 

k 

Differentiating (4.1) once more with respect  to time, 
we obtain the analog of the equation of the lattice elas- 
ticity theory 

In the calculation of the f i r s t  te rm of the second line of 
(4.6) i t  suffices to differentiate the vector u,, in  (4.3) 
in accordance with (4.1), discarding in the lat ter  the 
collision term, which contains the large ion mass  in 
the denominator. F o r  the next-to-last t e rm in the 
right-hand side of (4.6), calculation by formula (3.14) 
yields 

where 

Equation (4.6) contains the electron operator a:tp-qaq, 
which is the quantum analog of the Four ier  component 
of the classical distribution function of the electrons 
over the momenta and coordinates. The deviation of the 
linearized equation of motion for the operator a,+np-qasp 
is carried out by means of the same formulas (3.11) 
and (3.14). At s = st we obtain the analog of the kinetic 
equation for the electrons 

a 
a&-qosp - i - esp) a:p-qasp - i v*& ( p )  uqo ( f i p  - fsp-q) 

0 

Putting s ' + s ,  we obtain the equation of the interband 
transitions: 

Thus, the complete system of equations of dynamics 
of the metal includes the equation of motion of the lat- 
tice (4.6), the kinetic equation for  the electrons (4.8), 

and the equation of the interband transitions (4.9). T h e  
total current  j in the metal i s  determined by the sum j 
= j(e) + j C i ) ,  where 

In the employed formalism the operator a ~ p - q a , p  with 
q #0 corresponds to  the complete increment f, to the un- 
perturbed distribution function f (cp, p )  (with unper- 
turbed energy, chemical potential, etc.). 

5. QUASICLASSICAL EQUATIONS OF LONG-WAVE 
OSCILLATIONS IN A METAL. COMPARISON WITH 
THE PHENOMENOLOGICAL THEORY 

The long-wave approximation equations can be ob- 
tained from the general equations (4.6), (4.8), and (4.9) 
by expanding the coefficients of these equations in a 
s e r i e s  in the small  q accurate t o  t e rms  of second order  
inclusive. In addition, we go in a l l  the equations to the 
quasiclassical limit, letting the Planck constant go to 
zero. T o  this end we introduce the 'Wigner function" 
xs(p, r) for  the conduction electrons: 

where the angle brackets  denote averaging over the 
state of the statistical equilibrium of the system with 
the Hamiltonian (2.3). The equation for  x,@, q)  is ob- 
tained from (4.8) with the aid of the shift p-p+q/2,  fol- 
lowed by averaging of this equation. The classical  dis- 
tribution function of the electrons is the quasiclassical 
limit of the 'Wigner function" (for Bloch electrons, 
xs(p, r)*does not have the properties of a Wigner func- 
tion, although i t  coincides outwardly with th is  function 
for  f ree  electrons). 

F o r  the transition to  the long-wave approximation in 
(4.6), (4.8), and (4.9) i t  i s  necessary to  calculate, a t  
small  values of q, each of the quantities that en ter  in 
these equations. From (2.6) and (2.7) we obtain a s  q - 0 

1 
oq.'e.'(cl) = a i p z ~ k e o k ( q ) +  - - $ k e > ( q )  qlqn, d Mn 

(5.2) 

(01 a= 
y,,,=n2 C- aB, 3B.b 

[ A  (B) BIB,] +nzg(0)  8116~~. (5.3) 
11+0 

From the definition (2.15) we obtain directly 
1 

M;" ( q )  = 8.. .+iq,<sfpla,lsp) - - q k q , < s r p ~ a , a l ~ s p )  2 + . . . , (5.4) 

where Q is an operator  defined by the equation1" 

a 
r = i - + a .  

a p  

The matrix elements of the electron-ion interaction 
v;:(p) is determined a s  q-0 by Eq. (2.11), in which we 
now have a t  s = s' 

E,,.'(P) =t9kLiha(P). (5.5) 

The symmetrical  tensor ~d,(p)  is given by 
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the quantity b =&(O) has the meaning of the energy of 
electron repulsion by the ion shell (6 >O). In o rde r  of 
magnitude, b is equal to the F e r m i  energy of the elec- 
t rons in the metal. 

On the other hand if s' # s, then a s  q - 0 we have 

where 

T o  obtain the equation of motion of the lattice, we 
eliminate from (4.6) the variables connected with the 
interband transitions of the electrons. T o  this  end it i~ 
necessary to  solve the equation of the interband transi- 
tions (4.9), substitute the solution in Eq. (4.6), and cal- 
culate the resultant sums  over the band indices. I t  is 
useful in this case  to employ the sum rule obtained by 
Luttinger and ~ o h n p '  which we write in the form 

With the aid of this rule we obtain (neglecting the in- 
fluence of the F e r m i  liquid interaction on the interband 
transitions): 

where 

The  quantity (6&,,),,,, describes the contribution of the 
electrons to the elasticity of the metal, due to  the 
change of the electron energy on account of the inter- 
band transitions induced by the lattice deformation. In 
the approximation assumed here, this  quantity is ob- 
tained in second order  perturbation theory: 

The  fourth and fifth t e r m s  in the right-hand side of 
(5.10) describe the forces exerted on the lattice by the 
electrons dragged by the lattice. The  f i r s t  of them is 
due to the presence in the deformed lattice of the elec- 
t r i c  field 

while the second i s  the inertia force exerted by the ac- 
celerated dragged electrons. 

In the calculations here  and below we assume that the 
energy spectrum of the electrons does not have degen- 
e racy  points, i.e., the difference c,,,- E,, , s + st, is not 
anomalously smal l  at any value of p, and we a r e  dealing 
with frequencies that a r e  low compared with the char- 
acterist ic  value of th is  difference (this assumption does 
not exclude the possibility of overlap of the energy 
bands). Under these conditions the motion of the con- 
duction electrons, in thiit part  which is connected with 
the interband transitions, will follow adiabatically the 
motion of the lattice. 

Next, using (4.8) and going in the limit to smal l  q, we 
obtain the kinetic equation for  the electrons: 

The function 

in (5.14) describes a short-range interaction of Bloch 
electrons of the Fermi-liquid type. I t s  appearance even 
in the Born approximation is due to the fact that the di- 
rect  Coulomb interelectron repulsion leads t o  a nonzero 
Born scattering amplitude of the Bloch electrons through 
z e r o  angle. 

Fo r  comparison with the phenomenological theory it 
is necessary to separate in explicit form, from Eqs. 
(5.10) and (5.141, the longitudinal electr ic  field and to 
change over to the coordinate form of these equations. 
I n  addition, we introduce in (5.10) in place of the quanti- 
t ies  y,,,, the symmetrized coefficientkl 

L u r n = ~ < r n ~ + ~ h ~ i i - ~ ~ ~ i ~ .  (5.16) 

The  tensor XI,,, corresponds t o  the ba re  elast ic  moduli 
of the phenomenological theory. We write down the ob- 
tained system of equations. T h e  equation of motion of 
the lattice: 

The  kinetic equation for the electrons: 

In the collision integral we introduce the notation 
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and the longitudinal electr ic  field in the metal is deter- 
mined from the relations 

E=-Vcp, div E=4nep(r) +4neZn div u. 

The observed electron and ion densities a r e  respective- 

p"' (r) =-n div u. 

We note that in (5.17)-(5.20) the summation over s is 
carried out in fact only over those energy bands through 
which the Fe rmi  level passes. 

The  kinetic equation (5.18) has a known structure. 
The appearance of i t s  third and fourth t e rms  can be in- 
terpreted a s  the fact that in a deformed lattice the elec- 
tron energy changes and becomes equal t o  

I t  i s  this quantity that should be taken a s  EsR in the col- 
lision integral. The second t e rm in the right-hand side 
of (5.21) gives the known change of the electron energy 
under the influence of the lattice deformation. The ten- 
s o r  L;,(P) corresponds to the quantity L,,(P) introduced 
by Lang and Pavlov,"' and the tensor which was design- 
ated by them a s  (p l  V;,Ip) turns out to equal 

a 
( P I V ~ ~ I ~ ) = - ~ ~ ~ ~ - ~ ~ M ~ " ( B ) ~ [ B ~ @  (B)]. 

B*Q 

I t  was shown in the same paper" that the customarily 
assumed expression for the deformation potential hi,(p) 
is connected with the tensor LJ,(P) by the relation 

k , / ( p )  =Li,'(p) -mov."v,'. (5.23) 

The  last  te rm in (5.21) describes the change of the 
electron energy on account of the Fermi-liquid interac- 
tion.= We shall not take into account t e rms  of this kind 
and omit t e rms  containing K,@, p'). 

The  elasticity-theory equation (5.17) can be rewritten 
in an equivalent form that does not contain explicitly the 
collision t e rms  and the electr ic  field. T o  reduce (5.17) 
t o  such a form, we exclude from it the collision inte- 
gra l  with the aid of the kinetic equation (5.18): 

The  total current  j in the metal is equal in the quasi- 
classical case to 1") + j (@, where 

The las t  te rm in (5.25) is the current  due to  dragging of 
the electrons by the lattice.""' T o  calculate this  cur- 
rent we used the interband transition equation (4.9) and 
the expression (5.7) for  the matrix elements ($(P) 

which a r e  off-diagonal in the band index. 

If a constant and homogeneous magnetic field i s  pres-  
ent in the metal, i t  is necessary to  add to  the left-hand 
side of the  kinetic equation (5.18) the t e r m  

a e a 
$ ~ v . ~ ~ ~ - ~ . ( ~ , r ) + ; - [ - ~ , ~ ( p ) ~ + ( p - m ~ v ~ ) ~  XE 

a~ ap ax, I 12 
(5.26) 

and now take l! t o  mean the total electr ic  field, includ- 
ing its solenoidal part.  The  connection between the cur-  
rent  j and the field E is determined by Maxwell's equa- 
tions. In the equation of motion of the lattice (5.24) i t  
is necessary to  add to  the right-hand side the force j 
X H/c that ac t s  on a unit volume of the metal in the 
magnetic field."30 

We consider now the low-frequency oscillations in a 
situation wherein the adiabaticity conditions a r e  satis- 
fied, and calculate the adiabatic elastic moduli of the 
metal under the assumption that the conduction elec- 
t rons  a r e  situated in one energy band. T o  this end we 
solve the dispersion equation that follows from rela- 
tions (5.17) and (5.18), neglecting the collisions and the 
solenoidal fields (H =O). The  solution can be repre-  
sented in the form of the equation of elasticity theory, 
from which the electronic variables have been excluded: 

Here v (cp)  is the state density of the Bloch electrons on 
the Fe rmi  surface, and the angle brackets denote aver- 
aging over the Fe rmi  surface: 

The  f i r s t  three  t e rms  in the right-hand side of (5.27) 
give the electronic renormalization of the adiabatic 
elastic moduli, corresponding to  the' resu l t s  of Brovman 
and Kagan." F o r  the isotropic situation, these t e rms  
were obtained by Kaner and the author.34 The  second 
line contains a renormalization of the type usually ob- 
tained in the phenomenological theory. 

The  f i r s t  two t e rms  in the f i r s t  line of (5.27) describe 
the contribution made to the elastic moduli by the longi- 
tudinal electr ic  field in the metal; this field can be ob- 
tained from the kinetic equation (5.17) and turns out to 
be 

The  quantity ecp corresponds to the renormalization 
used in phenomenological theory for  the chemical poten- 
t ial  and taken with a minus sign. Relation (5.29) can be 
therefore regarded a s  an expression for the electroneu- 
trality condition &p =0, where &p is the uncompensated 
charge density in the metal. 

The  electroneutrality condition for low-frequency adi- 
abatic oscillations in a metal can be taken into account 
directly in the Hamiltonian (2.3). T o  this end we take 
the long-wave par t  of the operator  (2.3), expanding the 
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coefficients in the sums in smal l  q and retaining t e rms  
of order  not higher than second. Next, using (4.91, we 
eliminate the variables connected with the interband 
transitions. Finally, using the Bogolyubov canonical 

.transformation from the operators b,,  and b; ,  t o  the 
new Bose operators b,, and b: ,, we reduce the long- 
wave part  of the operator (2.3) to the form 

1 
-$- LL,L  (p )  ~ ~ 6 , , a : ~ ~ a ~  T C K  (P. p':a;-qapap+.+gap 

,'I PP'P 
(5.30) 

1 /irreZn . - 4ze + -Fv ~ j - l q ~ , , ,  + ~ p * ) i -  n n i q . j l  + ey,) + * (u). 
' q2 

where Afu) i s  connected with the work done by the 
dragging forces on the electrons when the lattice is de- 
formed. Here 

and the frequency G,,, and the polarization vector i,(q) 
a r e  determined from the equation (5.2), in which we 
must se t  the plasma ion frequency w,, equal to zero,  
and replace the coefficients y:i',, by A,,,,. Imposition of 
the electroneutrality condition in the form 6p = O  causes 
the te rm in the third line of (5.30), which represents  the 
electrostatic energy of the uncompensated charge of the 
metal, in the form $Jpcpdv, to vanish, a s  well a s  the 
te rm ~ ( u ) .  The remaining t e rms  in the f i r s t  two lines 
of (5.30) yield the Frohlich Hamiltonian supplemented 
by a short-range Fermi-liquid-type interaction of the 
Bloch electrons. 

Thus, the Frohlich Hamiltonian was obtained a s  the 
long-wave part  of the exact operator (2.3) assuming 
adiabaticity of the electron motion and by imposing the 
neutrality condition in the form 6p = 0. The  fact that i t  
is precisely on these assumptions that the Friihlich 
model is based was noted by Kaner and the author.34 

As  for the relation of Eqs.  (5.17) and (5.18) to the 
phenomenological theory, this  question was analyzed by 
Gurevich, Lang, and P a v l o ~ . ~ ~ ~ ~  We shall therefore not 
dwell on this question here. 

The author is sincerely grateful t o  I. M. Lifshitz and 
6. A. Kaner for a helpful discussion of the questions 
considered in the paper. 

Note added in proof ( lo  September 1979). I t  must be 
emphasized that a l l  the obtained equations and the quan- 
tities in them pertain t o  the laboratory reference frame; 
this is indicated by the very method of their  derivation. 
A characteristic feature of these equations is the ex- 
plicit presence of t e rms  that describe the dragging of 
the electrons by the lattice. I. M. Lifshitz has  called 
the author's attention to  the fact that for a cor rec t  in- 
terpretation of the obtained relations i t  is necessary to  
take into account the %on-freedom" of the electrons in 
the metal, which manifests itself in the fact that the 
conduction electron retains for a finite time interval 
the memory of the concrete ion of the lattice, and then 
moves to the next ion. The  lack of freedom of the elec- 
t rons in the metal is a direct  consequence of the band 

structure of their  energy spectrum and is the main 
cause of the dragging of the electrons by the lattice. In 
particular, on account of the dragging effect there  
a r i s e s  an additional contribution from the motion of the 
lattice t o  the electron velocity, equal t o  

AD,'= (6,k-moa2~,,/ap,apr) irk. 
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Measurements were made of the lifetimes rf of free carriers and the relaxation time 7, of the 
submillimeter impurity photoconductivity when carriers are captured by attracting shallow donors and 
acceptom in Ge. It is n o d  that in samples with capture-center concentration N,Z 10"cm-' the 
relaxation time 7, greatly exceeds rf in the temperature range 4.2-12 K. The measured values of 7,- are 
compared with the calculation of cascade recombination by the classical model. To evaluate the data on 
T,, the distinguishing features of this model are considered for the nonstationary case. The substantial 
difference betweea the values of rf and T, is attributed to re-emission of the carriers from the excited 
states of the shallow impurities. 

PAC§ numbers: 72.20.Jv, 72.40. + w, 71.55.D~ 

1. INTRODUCTION 

One of the important mechanisms of recombination of 
free carriers by attracting Coulomb centers in semi- 
conductors is cascade capture with participation of the 
excited impurity states; the theory of this mechanism 
was developed by a number of The calcula- 
tions were made only for the stationary case, and the 
possible differences between the characteristic times 
in stationary and nonstationary conditions were not dis- 
cussed. Generally speaking, however, such differences 
can exist. In fact, according to Abakumov et al.' the 
recombination of the carriers proceeds via their diffu- 
sion in energy space over highly excited states of the 
impurity centers in the region of negative energies up 
to a binding level with energy \ E I = kT, and the proba- 
bility of the thermal ejection from highly excited states 
( E  I <kT into the free band is large compared with the 
probability that the carriers will drop down via cascade 
of excited states to the ground state. Thus, high ex- 
cited states of the impurities exchange carriers in 
practice only with the free band, and consequently, can 
play the role of sticking levels. The number of such 
states under definite conditions can be quite large. 

Usually the sticking centers and recombination cen- 
ters are  separated in space, and direct exchange of 
carriers between them does not take place. In the case 
of cascade recombination on shallow impurity centers 

this i s  not so, so that the sticking levels discussed by 
us belong to the recombination centers themselves. 
The presence of sticking levels should manifest itself 
primarily in the values of the characteristic times 
measured by stationary and nonstationary methods. In 
an experimental verification of the calculations per- 
formed in Refs. 1-4, the lifetimes were determined by 
different methods. The published experimental data on 
carrier recombination on impurity centers in semi- 
conductors a re  on the whole in agreement with the cal- 
culations of Abakumov et al.' Attention is called, how- 
ever, to the large scatter of the data obtained by differ- 
ent The measured lifetimes differ both in 
the values and in the temperature dependence. 

On the one hand this is  partially due to the inadequacy 
of the procedures in a number of cases when the relax- 
ation time 7, of the excess carrier density is  identified 
with the stationary lifetime of the carriers without val- 
id grounds, or when the measured 7, is in fact deter- 
mined not from the carrier recombination but, for ex- 
ample, from the dielectric relaxation of the space 
charge in the semiconductor. On the other hand, the 
mechanism of cascade recombination is  not always de- 
cisive in the capture, even in the case of Coulomb at- 
tracting centers. For deep impurities, a large role can 
be played by recombination with participation of optical 
phon~ns .~  At high concentrations of the centers, this 
mechanism can be substantial also for shallow impuri- 
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