
which are  then excited lead to an exchange between 
trapped and free electrons until In: - n:t, I i s  decreased 
to a value satisfying condition (5.25). The characteris- 
tic time for this process is sw;:. Finally, we note that 
if we use model Boltzmann distribution functions for the 
trapped particles with an arbitrary temperature and 
neglect the contribution from the resonance ions, Eqs. 
(5.241, (5.19) lead to expressions which are  equivalent 
to those obtained by Schamel. 

"In the Ott-Sudan Eq. (4.13) the electrons, on the other hand. 
give the main contribution, at least when T,/T~ 24. 

')If we used (5.30) to evaluate A and B, which is  equivalent to 
taking only terms ocv2 into account in (5.13) and (5.14), we 
would f indA= B, i.e., Ilr,= 0. 

"It makes no sense to take higher-order terms into account as  
they were dropped when we derived the perturbed KdV Eq. 
(3.10). 
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Nonlinear modulation of the dielectric constant of a crystal by a sound wave is considered theoretically. 
An expression quadratic in the sound-wave amplitude is obtained for the amplitude of the change of the 
dielectric constant of the crystal, this expression is analyzed for various optical frequency bands. It is 
shown that the effect of nonlinear modulation of the dielectric constant of a crystal by a sound wave is 
particularly pronounced in the resonant case f w z E ,  for dielectrics, or eIse at h z E ,  + F for 
degenerate semiconductors, when relatively low sound power is needed for the onset of nonlinear effects 
(here o is the frequency of the light wave, E, is the width of the forbidden band of the crystal 
F = rn,eF/p. where m,, p, and eF are respectively the effective mass of the conduction electrons, the 
reduced effective mass of the conduction and valence electrons, and the Fermi energy of the conduction 
electrons). 

PACS numbers: 78.20.Hp, 77.20. + y 

The diffraction of light by sound (the acousto-optical 
(AO) interaction) has by now been the subject of a 
large number of studies, owing to the extensive prad i -  
cal use of this phenomenon in physical research and in 
modern technology (see the reviews1*'). In all the the- 
oretical studies of the A0 interaction i t  is assumed that 
one of its basic mechanisms i s  the change of the dielec- 
tric constant of the crystal upon propagation of the 
sound wave. It is customarily proposed that in view of 
the smallness of the relative deformation of the crystal 
by the passage of the sound, i ts dielectric constant &,, 
in the presence of the sound wave can be expressed in 
the following form (see, e.g., Refs. 1-31 

where E y k  is the dielectric constant of the crystal in the 

absence of sound, u,,, is the crystal strain tensor in 
the sound wave, and p , , ,  is the crystal photoelasticity 
tensor (summation over repeated indices is understood 
from now on). Terms of higher order in u,, are a s  a 
rule neglected in (1). 

It should be noted, however, that in some cases a 
sound wave of even relatively small power i s  capable 
producing in the dielectric constant of the crystal a 
modulation that i s  essentially nonlinear in the parame- 
ter  u,,. In fact, in the simplest case at Ew < E ,  there 
is no absorption of light in the crystal (neglecting the 
absorption "tail"). On the other hand, in the presence 
of a sound wave modulation of the quantity E, sets in, 
and a situation becomes possible wherein the relation 
i iw > E, - AE, i s  satisfied in a region of a decreased 
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gap width (AE, i s  the amplitude of the modulation of the 
gap width), i.e., in such a region the light will be ab- 
sorbed. It i s  clear that under these conditions the 
sound essentially modulates the absorption coefficient 
of the light nonlinearly (the same situation holds also 
for the real part of &, ,). Assume now that we cannot 
confine ourselves in the expansion of E,, to terms linear 
in u,,, and it is necessary generally speaking to use the 
entire series." Nonlinear modulation of &, , by sound 
will lead, for example, to a situation wherein a no- 
ticeable A0 interaction over the length of the crystal 
becomes possible in the case of a monochromatic sound 
wave in the Bragg diffraction regime at different light 
incidence angles, and even in the case of low efficiency 
the diffraction will depend essentially nonlinearly on 
the sound power. 

In the present paper, under the assumption that the 
main contribution to the polarizability of the crystal is 
made by the electron polarizability, we consider the 
terms quadratic in u,, of the expansion of &,, in the pa- 
rameter u,,. It will be shown that in some cases (in 
particular, in resonant diffraction of light by sound) 
these terms (as well a s  terms of higher order in u,,) 
can become substantial also at relatively low sound 
power. 

The presence of terms quadratic in u,, in &,, (we shall 
designate the sum of the terms by ~ ' 53  leads to the 
appearance, in the term linear in A'&,, approximation, 
of induced currents at frequencies o i 251 (61 is the fre- 
quency of the sound. This causes in turn the appear- 
ance of corresponding diffraction orders, whose inten- 
sity can become noticeable at sufficiently large length 
of the A0 interaction if the spatial synchronism condi- 
tion is satisfied between the zeroth order of diffraction 
and one of the il -st diffraction orders (with frequencies 
wi252) (see Ref. 2 on this subject). We shall hence- 
forth pay principal attention to just this part of &,, 
[which we designate A'&, ,(w i ~ L L ) ] ,  since it causes the 
appearance of these diffraction orders. ' 

To calculate the corresponding quantities A2&,,(w* 261), 
we used the following connection between the density of 
the stimulated induced current jdaR at the frequencies 
w i2hl and the electric field E of the electromagnetic 
wave at the frequency w: 

i (o*2Q) 
j:*= (r,  t )  --- 

411 
Azeik(o*2Q)E,(o);  

here 

- ez 
jz=- -A ( re ,  t ) 8 ( r - r e ) ,  

mc 

A(re, t)  is the vector potential of the electromagnetic 
wave at the frequency w, and is assumed to be propor- 
tional to the exponential exp(-iwt); &,, arethe terms of 
the single-particle electron density matrix and are pro- 
portional respectively to exp[-i(o + 251)t] andexp[*2i61t]; 
fie= (ti/i)a/are; 6(r -re) is a delta function; re is  the 
spatial coordinate which enters in the wave function of 
the electron; e and m are the charge and mass of the 

free electron, and c is the speed of light in vacuum. 

To find the quantities Ijl,a it is necessary to solve the 
equation for the density matrix b, in the form 

Here i,,, is the integral term of (3) and descr iks  the 
collisions of 'the electrons with the scatterers; H,, i s  the 
Hamiltonian of the unperturbed system of electrons (in 
the absence _of the electromagnetic wave and the sound 
wave), and V i s  the Hamiltonian of the perturbation, 
which can be written in our case in the form 

In this approximation, the last four terms describe the 
electron-phonon interaction in the appro~i~mation li?ear 
in_the amplitude of the sound wave, i.e., f = f,,Z,, , f, 
= f,,E;,, where Zi,, and Ti; are the amplitudes of the 
strain tensor of the fundamental harmonic (with fre- 
quency 61) and of the harmonic and frequency 2 ~ ,  which 
is produced a s  a result of the nonlinear propagation ~f 
the sound wave through the crystal. To simplify the 
calculation we confine ours_elves henceforth to the sim- 
plest approximation of the I,,,, assuming that it is pos- 
sible to introduce a constant electron relaxation time T. 
In this case the expression for I,,, can be written in the 
form 

where 6, is the equilibrium density matrix of the elec- 
trons and corresponds to their local concentration (see 
e.g., Ref. 8). 

Next, when solving (3), we use the method of succes- 
sive approximations. To calculate the quantity 1\2&,,(w 
461) it i s  necessary to find the terms and p, of re- 
spectively zeroth and first order in the electron-proton 
interaction operator and of second order in the electron- 
phonon interaction operator. Assuming that the elec- 
tromagnetic wave is purely transverse (the correspond- 
ing generalization entails no difficulty), we obtain the 
following equation for the density matrix Ij,: 

where is a certain stationary operator, linear in u,, 
(without its time dependence) under the assumptions 
made here. We assume that the intraband matrix ele- 
ments of the operator & are constant in the electron 
momentum-space region of importance to the integra- 
tion. We assume further that the collisions of the 
electrons with scatterers produce practically no change 
in the local concentration of the electrons in each of 
the energy bands. We then obtain the following solu- 
tions of Eq. (6) in first and second orders of perturba- 
tion theory in the operator &: 

- (8) 
Here 
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p is the wave vector of the electrons in the energy band, 
E, and f ,(p) are the energy of the electrons with wave 
vector p and their distribution function in the absence of 
sound; q is the wave vector of the sound wave; (A is the 
matrix element of the operator f in the considered band; 
s = A / T ;  V i s  the volume of the crystal (the asterisk de- 
notes the complex-conjugation operation). In the de- 
rivation of expressions (7) and (8) we neglected the in- 
tervand matrix elements of the operator j. 

It is seen from (7) and (8) that in the considered ap- 
proximations in dielectrics, as  well a s  in conducting 
crystals in the collisionless regime ql>> 1 (where I is 
the characteristic mean free path of the electrons that 
make the substantial contribution to the considered ef- 
fect) we have =boy where fi,, i s  the equilibrium density 
matrix in the absence of perturbation. 

Using expressions (7) and (8) for the density matrix 
b,, we solve Eq. (3) by successive approximations and 
obtain an expression for Dl,,, and then the induced cur- 
rent jwfan, and finally, using relation (2), we derive an 
expression for the quantity A2&,,(w i251). We assume 
in the calculation that W T  >> 1. The general expression 
for A2&,,(o + 251) i s  quite cumbersome, and we there - 
fore write down here its simplest form, which i s  ob- 
tained when fi, :fro: 

4%"f "Ql-"') ( 
A2e,,(o-2Q) =- 

[fo(3)-fo(4) lei, 
nzo (0-251) V A?(-9) A,3(-262)A,5(o") 

The numbers 1-4 denote here the electronic states of 
the unperturbed system, which a re  characterized in the 
crystal by the quasimomentum tip and by the band in- 
dex n; 

k i s  the wave vector of the electromagnetic wave in the 
medium, and k, = k - 29. 

For the quantity Aa&,,(w +251) we obtain an analogous 
expr_ession with the substitutions 51, q - -51, --q and 
f -f +. 

Neglecting the exponentials in the matrix elements 
(9) and changing from (1Ip12) to the metrix elements 
of the coordinate r, we rewrite expression (9), after 
some algebraic transformations, and s( 1 A:(-s~) I, / h:(w) 
in the following from (see also Ref. 9 on this subject): 

[lo (1)-lo (4) lco +,  [fo(3) -fo(4) lei* 
&&{ A;(-R)A,~(-~Q)A:(~) L~( -Q)  A;(-ZQ)A:(.~) 

(10) 
Here X denotes the preceding expression with the fol- 
lowing changes : 

and the quantities c,, and b,, contain in place of the 
operator @ the operator P, while the corresponding ex- 
ponential~ a re  absent. Expression (10) is particularly 
convenient in estimates of the quantity d ~ ~ , ( w  i 2 h Z )  for 
the case of dielectrics at Ew <<El. 

The quantity of A2&,,(w T 251), given by expression (9), 
i s  due to an induced nonlinear action of the sound wave 
of the fundamental harmonic on the electron system, 
as  a result of which an electromagnetic wave of fre- 
quency w, when propagating through the crystal, in- 
duces even in the approximation linear Aaqk(w ~251) a 
stimulated current jwWn at the frequency w ia, which 
in final analysis (when the appropriate conditions are  
satisfied) can lead to the appearance of noticeable dif- 
fraction orders at the frequencies w r251. In addition to 
the indicated terms of expression (91, a contribution to 
jw"" i s  made also by terms due to the presence of the 
second harmonic of the sound wave at the frequency 251 
[we shall denote their sum by A'E,,(uij)]. We shall not 
present here the expression for A1qk(u$), since it is in 
fact the ordinary expression, linear in the parameter 
u$, for the amplitude of the change of the quantity E,, 

under the influence of the second harmonic of the sound 
wave. We use in the estimates instead the already 
available results on A'&,, (see Refs. 2,4-7,9,10). 
We note here that in the case when the higher harmon- 
ics  in the sound wave are  small, the quantity 1 A'E,,(U;~) I 
is much less than I Ak,,(un,) I ,  which is obtained in the 
approximation linear in u, [see 

We consider next some particular cases of expression 
(9) for different frequency bands of the electromagnetic 
wave. 

1. The case of low frequencies w, when tiw<<E, (E, 
is the width of the forbidden band of the crystal). In 
this case the expression for 

c-an be written in the following form (accurate to terms 
of order ~ l / w ) :  

4n2 lo  (m') i-'+QurlZ4i+QiAmjtmiiiifTiIm ei(zPt-'qr), (1 1 ) be.=- (-p 1 
where (m*);: i s  the tensor of the effective mass of the 
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free carriers, n2" is the amplitude of the electron-con- 
centration wave at the frequency 2A2, due to the nonli- 
near response of the electron system to the perturbation 
produced by the fundamental harmonic of the sound wave 
and to the linear response to the perturbation produced 
by the second harmonic of the sound wave; the quanti- 
ties Q ,,,,, and Q,,, are determined in the main by the 
electrons of the filled bands of the dielectric (with ac- 
count taken of the filling of a certain number of levels 
in the conduction band and the possible Dresence of 
holes in the valence band of the semiconductor). 

The main contribution of the first term of (11) to Aq, 
is due to the nonlinear modulation of the concentration 
of the free carriers by the sound in the crystal for the 
low-frequency collisionless case (i.e., at Ew << E, and 
WT>> 1). For semiconductors, in the case when the 
sound power reaches a value such that I cp 1 - (E) and con- 
centration nonlinearity sets in (here I cp is the energy 
of the electron in the field of the sound wave and (&} i s  
the average energy of the electron in the crystal), the 
value of 2" becomes of the order of the equilibrium 
electron concentration no (see, e.g., Refs. 12 and 13), 
and the contribution of the first term of (11) to A&,, can 
be substantial precisely at low frequencies w, in anal- 
ogy to the situation for the quantity A%,,(u,), where at 
low frequencies w the contribution of the electron con- 
centration wave no to A'E,,(u,,) can become predominant 
(see, e.g., Ref. 2)." 

As for the second and third terms of (111, starting 
from Eq. (10) and from the expression for Q,,  (see 
Ref. 9) we can easily obtain at Ew << E, the following 
estimate for a dielectric: 

1 QiawrnZimI 1 Q t ~ l  1 ( f ,m)Eim/Egl .  (12) 
Thus, in order to  obtain the value A,, - A%, ,(u,) in a 
dielectric at Aw <<E, we must use a powerful sound 
wave that disturbs noticeably the electron system in the 
crystal when (fl,)ulm -E,, or  else generates noticeable 
higher harmonics as  a result, for example, of lattice 
nonlinearity in the course of sound propagation. At 
weaker sound waves, a substantial value of 4, can be 
otrtained in the present case for semiconductors on ac- 
count of the first term of (11) under conditions of non- 
linear modulation of the concentration of the free car- 
r iers  by the sound wave, when the higher harmonics in 
the propagation of the sound wave can still be  small^'*" 

2. The resonant case, when Aw -En. It will be as- 
sumed here that the power of the sound wave is insuf- 
ficient to generate higher harmonics, and then we cer- 
tainly have 

and we shall consider henceforth the resonant proper- 
ties of &,,, due to the terms A2c,,(wr 2~2). One of the 
characteristic resonant terms I,,, contained in (9), is 
of the form 

4nez 2 
I,,'-- 

fa  @;+,) - f a  (E:+%.-k) 
B;-p,-k, - n u c i s  ' m'o(o-2Q) ' (2n) 

where Ic,p) and I V , ~ )  are  the states of the electron with 
quasimomentum Ep in the conduction and valence bands, 
respectively. 

In the case of a dielectric, the term under considera- 
tion is the principal resonant term at Aw =&, [there are 
also analogous terms with matrix elements (f) over the 
valence band), while for a degenerate semiconductor 
there are  added resonant terms due, a s  will be shown 
later, to modulation of the Fermi energy of the free 
electrons by the sound wave. We shall not write out 
here all the resonant terms in explicit form [this can be 
easily done by using, for example, expression (911, and 
present immediately the result of integration of these 
terms for the case of an n-type degenerate semicon- 
ductor, neglecting the presence of holes in the valence 
band, under the assumption that the matrix elements 
are  constant in the electron momentum-space region 
that is essential for the integration, and also assuming 
the electron spectra in the bands to be parabolic and 
neglecting the wave vector of the light and the sound. 

Under the foregoing assumptions, the expression for 
A2c,',, when only the resonant terms are  retained in (9), 
takes the form 

(14) 
where 

(p, is the Fermi wave vector of the electrons); 

[in the expression for ~ ( w ) ,  the function f = tan-% is 
defined in the upper half -plane]. In the derivation of 
(14) it was assumed that 

where km is the wave vector of the band boundary, and 
it  was also assumed that ql>> 1 or5' ql<< 1 (I = @,r/m,), 

In the case of dielectrics, only the last term, in which 
y (w )=  ? r i ~ ' ' ~ ,  is left in expression (14). 

It should be noted that, under the assumptions made, 
expression (14) is valid also in the immediate vicinity 
of the resonances for the case of dielectrics (i.e., as 

I A 1 - O), provided the following condition is satisfied 

h t q ~ / 2 p a m a x  (s ,  Ms) 
. -. , 

[here go= max(q, k)], and in the case of degenerate 
semiconductors (i.e., as 1 A 1 - F) it is valid if the fol- 
lowing conditions are  satisfied 

(T is the temperature of the electrons in energy units), 
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when we can neglect both the quantities q and k and the 
thermal spread of the electron distribution function in 
the calculation of A'&;,. If these conditions are  not 
satisfied, then expression (14) i s  valid only far from 
the resonances, when 

while in the region of the resonance a more rigorous 
calculation of must be made on the basis of a gen- 
eral expression [e.g., (911 with account taken of the 
fact that q and k are  finite quantities, and also of the 
thermal spread of the distribution function ( a more 
rigorous calculation of A'&[, is necessary also at ql -1). 
The estimates show that in this case that the maximum 
values of A'&;, in the region of the resonances are  
reached as  a rule within the limits of the validity of 
(14). But in those cases when the finite character of 
q ,  k, and T must be taken into account, the correspond- 
ing maximum values of A2e[, usually decrease. We 
shall therefore use as  our basis expression (14) for 
A'&{,, which describes the characteristic resonant sin- 
gularities of this quantity and a s  a rule gives the high- 
est estimates of the considered effect. 

We consider now on the basis of (14) the characteris- 
tic resonant singularities of the quantitgr A'%. 

a) 1 A 1 - 0. In this case the principal resonant term 
of (14) at I A w  - E, ( > max(s, RS2) is of the form 

where 

(b) 1 A 1 - F .  The analogous expression for de;, is 
here the following: 

If (14) is valid in the immediate vicinity of the reso- 
nance, then max(A2q',+) in the region of the resonances 
can be obtained from (15) and (16) in the following man- 
ner: a s  1 A 1 - 0 we obtain max(A26[J from expression 
(15) by replacing 1 Aw - E, I by max(s , E n ) ,  and a s  I A 1 - F by the corresponding replacement of I A - F ( by 
max(s,nz,T/p). Thus, at I A1 - F  the thermal spread of 
the distribution function decreases the value of rnax(~'&;,) 
if nz,T/p > s. 

Using (1 5), (16), and the corresponding expressions 
obtained in the analogous approximations for A'&;, (see 
Ref. 7), we get for the relation 

the following estimates: 

a) I A 1 - 0 for a dielectric 

h-h I. (17) "Irnax(lAl.hn.r) ' 

(b) 1 A 1 - F for a degenerate semiconductor 

Thus, to obtain a maximum value of I A% I of the 
order of 1 ~~&,,(u, ) 1 ,  the sound in the resonant case 
must have a power such that, for example, in the case 
of dielectrics, 

Comparing the required value of Zi,, in the resonant 
case (u;,) with the required value of a,, for Kw << E8 
(a&,), when I A'$, I - I A'&, ,(u,,,) I ,  we see that for dielec- 
trics 

The similar estimate for degenerate semiconductors 
under conditions of essentially nonlinear modulation of 
the concentration of the free carriers,  and at a notice- 
able contribution of the free carriers to the dielectric 
constant of the crystal, takes the form 

(here cp i s  the Fermi energy of the conduction elec- 
trons). 

Thus, the nonlinear modulation of the dielectric con- 
stant of the crystal by a sound wave manifests itself 
most strongly in the resonant case, when much lower 
sound power is necessary to attain an essentially non- 
linear modulation of &,, by the sound wave than in the 
nonresonant case. 

To obtain an estimate, we consider the interaction via 
the strain potential:' when (f) - Aiku, ,. At a sound 
power W - 5-10 W/cm2, a_ sound velocity v, - lo6 cm/sec, 
and 4 , -10  eV we have (f) -lo-' eV, i.e., at s a  10-'eV 
(which corresponds, for example, to a momentum re- 
laxation time 7 5  sec), sound having this power 
produces in the resonant case an essentially nonlinear 
modulation of the dielectric constant c,, of the crystal. 

The concrete case of small I q 1 considered above [see 
(14)-(16)] admits of a simple interpretation i f  0 can al- 
so be neglected. In this approximation, the action of 
the sound on the electron system i s  in fact analogous to 
a perturbation that i s  homogeneous in space and in 
time, and in the resonant region the quantities A%,',(u,) 
and A'&{, are  expansions of the dielectric constant &,, of 
the crystal in series in the parameters 

where AE, and A F  are  the changes of E, aad F due to 
the modulation of the width of the forbidden band and of 
the concentration of the free carriers by the sound wave 
propagating through the crystal. 

Consequently, in this approximation the expressions 
for A1q',+(ud) and take the form 
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It is clear from (19) and (20) that in this approxima- 
tion the resonant singularities of A'&:, are connected 
with the singularities of the derivatives a&?, /a~,  and 
a&,\/aF, and the nonlinear modulation of the quantity 
E,, by the sound wave is produced at sound powers such 
that when the parameters E, and F are altered by the 
sound wave a noticeable change takes place also in 
these derivatives. It should be noted that these simple 
considerations do not hold when it is necessary to take 
into account the finite character of q and EG; in this 
case it is necessary to use a more general expression 
for A'E~,(~ i2n) ,  for example expression (9). 

It should also be noted that at 5 - 1 the calculation of 
the quantities A%,,, A'&,,, etc. by perturbation theory 
becomes substantially more complicated, for in this 
case we cannot neglect the contribution of the higher 
orders of perturbation theory. Generally speaking in 
this case the quantities A'&,,, A'&, ,, A'&,,, . . are of the 
same order, but all are usually small at I (f) 1 <<E, com- 
pared with &/,( w), i.e., the sound produces in this case 
a small but an essentially nonlinear modulation of E, ,  . 

We see thus from the foregoing that at 5 - 1, in the 
resonant case, the modulation of the dielectric constant 
of the crystal by the sound is essentially nonlinear. 
When light is diffracted by the sound that produces the 
nonlinear modulation of E,,, the intensity of the diffrac- 
tion orders will have a nonlinear dependence on the 
sound power also at low diffraction effectiveness, while 
the effective A0 interaction over the length of the crys- 
tal in the Bragg diffraction regime in the case of mono- 
chromatic sound is possible at different incidence 
angles Oinc of the light on the sample, for example, at 
sinOinc=nqc/2w, where n = il, d, . . . , for the case of 
isotropic diffraction." 

The possibility of nonlinear modulation of 6, ,  by a 
sound wave in the resonant case is indeed ensured by 
the fact that 8 << w (actually 8 10-5w) i.e., at of reso- 
nance with the frequency w, resonance occurs in fact 
also with the frequencies w i Q, w * 28, . . . . This con- 
stitutes the essential difference between the effect con- 
sidered here and the effect, e.g., of the onset of non- 
linear susceptibilities in the field of the electromag- 
netic wave of frequency w itself (see Ref. 16 and 171, 
where resonance at this frequency, for example Ew 
-E,, is not accompanied generally speaking by reso- 
nance with the light frequencies 2w, 3w, ... As a re- 
sult even under resonance conditions at real optical 
powers the nonlinear susceptibilities decrease rapidly 
in magnitude for the frequencies 2w, 3w,. . . However, 
an effect similar to that considered in the present paper 
is apparently possible under definite condition also if 
the dielectric constant is electro-optically modulated 
by an electromagnetic wave of frequency w, << w in the 
case when resonant conditions similar to those con- 
sidered above obtain for the frequency w. 

" ~ u c h  attention has been paid recently to resonant diffraction 
of light by sound, which takes place when IS w -A E b e r e  A E 
is the characteristic energy difference between the electron 
levels of the crystal). This is caused by the interesting 
singularities that the A0 interaction has in this frequency 

region (see Refs. 2 and 4-7). 

')The quantity ~ ~ c , ,  has also a component that is constant in 
time and in space and is quadratic in ui, i. e., in this a p  
proximation the sound wave produces also a constant incre- 
ment to E:,. This effect, however, will not be considered 
in detail in the present paper. 

"In semiconductors the higher harmonics a re  generated a s  a 
rule because of electronic nonlinearity, whereas the genera- 
tion of the higher harmonics in dielectrics calls for higher 
sound powers. " 

" ~ i ~ h t  diffraction by electron '6walls" that a re  bunched by 
sufficiently strong sound were considered in Ref. 14. 

5)~alculation has shown that under these assumptions expres- 
sion (14) is valid only at  qt << 1 (in the calculation of A~&:, 
it is necessary here to use the general expression for 
A ~ & ~ , ( W  i 2Q)obtained with relations (7) and (8) taken into 
account. 

6 ) ~ n  the presence of a sufficiently high concentration of free, 
carr iers  a s  in dielectrics, the principal electron-phonon 
interaction mechanism contributing to A~E;, is interaction 
via the strain potential, which generally speaking cannot be 
simultaneously screened out in the valence and in the con- 
duction bands7 (a similar effect takes place in multivalley 
semic~nductors'~). 

?)1f the monochromatic sound modulates c I k  linearly, then 
effective A0 interaction over the length d of the interaction 
of the sound with the light is really possible for isotropic 
Bragg diffraction at  light-incidence angles sin Oh, = i q c h w ,  
but in the case when sinOi,-nqchw, n=i2 ,  +3. . . it is easy 
to show that for effective A0 interaction it is necessary to 
have interaction lengths with the sound larger by a factor 
Q I ~ I - '  [here Q =q2d/k >> 1 is the parameter of the Bragg dif- 
fraction (see Refs. 1 and 2)]. 
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