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We give a simple derivation of the perturbed Boussinesq and Korteweg-de Vries equations which take 
into account the effects of the interaction between ion-sound waves and resonance particles. We obtain 
for the perturbation terms explicit expressions which describe the resonance interaction of solitons with 
plasma particles in cases which are of real interest from the point of view of laboratory and numerical 
experiments. We obtain the equations which describe the change in the soliton panuneters due to their 
interaction with resonance particles in a fonn which is suitable for comparisons with experiments. 
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1. INTRODUCTION 

From the time of the publication of Ott and Sudan's 
paper' there have appeared a rather large number of 
papers devoted to theoretical and experimental studies 
of the interaction between ion-sound solitons and reso- 
nance particles in a plasma (see, e.g., Refs. 2 to 7 and 
the literature cited there). However, when one com- 
pares the theoretical results with experiments or dif - 
ferent theoretical papers with one another, one disco- 
vers a number of contradictions and paradoxes which 
are caused often by not very clear statements about the 
applicability domains of the various approaches and 
sometimes simply by errors.  It becomes necessary in 
that connection to construct a relatively simple theory 
which considers from a single point of view different 
limiting cases, makes precise their domain of appli- 
cability, and contains a number of new results which 
allow an experimental check. The present paper is a 
step in that direction. 

The paper is constructed as  follows. We give in Sec. 
3 a simple derivation of the Boussinesq equationss 
which are supplemented by terms which taken into ac- 

solitons. As a result we obtain equations describing the 
change in the amplitude of the solitons and the Ugrowth 
of soliton tailsn due to the resonance interaction with 
particles. 

2. BASIC EQUATIONS 

We shall start  from the equations 

where fi and fe are the ion and 'electron distribution 
functions and cp is the electric field potential. We as- 
sume in what follows that the conditions 

k ~ ~ i ,  T.BT, (2.4) 

are  fulfilled, where T, and Ti are  the temperatures of 
the two components, k is the wavenumber or, in the 
case of non-periodic waves, a character inverse wave- 
length, and D i s  the Debye radius. 

count the resonance interaction between waves and par- In the linear approximation we get from (2.1) to (2.4) 
ticles. From them there follows, in particular, the 
perturbed Korteweg-de Vries (K~v) equation with a 

the well known dispersion relations which in the first 

right-hand side describing the resonance interaction. 
approximation in (kD)a and T,/T, give, in particular, 

In form it i s  the same a s  the equation obtained earlier3*4 Re o=cok-gk3, (2.5) 
by the more cumbersome reduced perturbation method. c0= (T.lmi) "(1+3TJ2T.), g = l / , ~ & z = ~ , J / h , , ~  . (2.6) 
In Sec. 4 we evaluate the term which describes the res- 
onance interaction in various limiting cases. In parti- 
cular, we find for short times after the switching on of 
the field (t << T, where T, is the characteristic resonance 
interaction time which as  to order of magnitude equals 
the time it  takes a resonance particle to traverse a 
characteristic wavelength) the Ott-Sudan equation.' 
However, it turns out that for solitons 7, is small com- 
pared to the characteristic time during which the reso- 
nance interaction acts upon them. We therefore after 
that consider the case t >> T, and for that case we obtain 
the appropriate equations which are the basis of the 
further study. We apply in Sec. 5 the perturbation the- 
ory developed earlier*" using the perturbation terms 
evaluated in Sec. 4 to a study of the evolution of the 

We shall call c, the modified ion-sound speed (in con- 
trast to the normal one c,= (~ , / r n , ) l /~ ) ,  and B the dis- 
persion parameter. We assume in what follows that 

(6n = n -no) and we shall stick to the following principle: 
after the transition to quantities of order unity, i.e., 
6if=~;~6n, ~ = C ; ' / ~ X ,  and so  on, we retain in the equa- 
tions only terms containing & and E, to first degree, 
neglecting higher order terms @:, &El, &,T,/T,, and so 
on). The characteristic scale for the velocity of the 
non-linear waves will then be of order c,. Since by vir- 
tue of (2.4) 

vt<co<v., vt, .= (2Ti. dm,.  a )  ", . 
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we can to a good accuracy separate hydrodynamics ef- 
fects (including dispersive effects) which a re  deter- 
mined by the motion of the bulk of the particles with 
velocities of the order of thermal velocities from ef- 
fects due to the interaction of the waves with resonance 
particles which have velocities rather close to the wave 
velocity. The degree of closeness will be made more 
precise in what follows. 

Bearing this in mind we define the 'mass* velocity 
and 'mass* density of the system through the expres- 
sions 

where f here indicates that the integration is over the 
non-resonance region of velocity space (in the linear 
approximation this corresponds to an integration in the 
sense of the principal value). 

Bearing in mind the conditions stated above we get 
from (2.1) by standard methods the following hydrody- 
namic equations : 

We now turn to the kinetic equation for the electrons. 
Bearing in mind that the characteristic scale of their 
acceleration in the given potential cp(r, t )  is larger than 
the ion acceleration by a factor rni/me we can in (2.2) 
when analyzing the motion of the non-resonance elec- 
trons neglect the time derivative and this leads to 
fe(v, r )  = fe($2j! + ecp/me), where f,(#) determines the 
electron distribution function when there is no field. 
We shall assume that the latter is Maxwellian. In that 
case 

where no i s  the equilibrium density. 

The Poisson equation (2.3) can now be written in the 
form 

V2'p"4nena[exp(ccp/T.) -nlnal+4ne f (f.-fi)dv, (2.12) 
( 7 )  

where (r) indicates integration over the resonance re- 
gion of velocity space which is excluded from the quan- 
tities n and n, by virtue of the definitions (2.8) and 
(2.11). 

3. PERTURBED BOUSSINESO AND KORTEWEGde 
VRlES EQUATIONS 

We introduce the notation: 

We then have from (2.12) 

One verifies that S S & (see (2.7)). Following the 
above formulated principle we must here retain only 

those terms which after the transition to quantities of 
order unity do not contain powers of E and E, higher than 
the first one. As a result we get 

Taking Vcp from (3.4) and substituting it into (2.9) we 
get 

We shall call this equation the perturbed Boussinesq 
equation (the wrturbation i s  given by the last term on 
the right-hand side). Without the last two terms on 
the right -hand side i t  corresponds to the hydrodynamic 
equation without dispersion with an adiabatic index y =  1. 
The second term on the right-hand side describes the 
ion-sound dispersion and the third one corresponds to 
the interaction of a wave with the resonance particles. 

In the linear approximation (3.51, (2.10) lead to the 
well known expressions for the frequency and growth 
rate of ion-sound waves [in particular, to (2.5)]. For 
the evaluation of the integral (3.2) we must then solve 
the linearized Eqs. (2. I), (2.2) with cp -exp(ikx - iwt) 
and substitute into (3.2) those parts of the functions fe  

and f, which are  proportional to 6(w - k .v). 

To obtain the generalized KdV equation corresponding 
to the set (3.5), (2.10) it is necessary to restrict our- 
selves to the one-dimensional flow of the type of a 
quasi-simple wave (see Ref. 8, Sec. 151, i.e., look for 
a solution of that set in the form 

where n(V) i s  the same function as  for a simple wave 
propagating in the positive direction and z) is a quantity 
of the order of the two last terms in (3.5). We find the 
function n(V) by substituting (3.6) into the set (3.5), 
(2.10) where we put P =  0, S= 0. As a result we get 

Substituting (3.6) into (3.5) and using the fact that with 
the accuracy used for z) we can put J I ,  = c0&, we have 

a+ n* aav c: as) 
- a, .- (PT+TZ * 

Equation (3.9) is the required perturbed KdV equation 
where the right-hand side describes the interaction be- 
tween the ion-sound waves and the resonance particles 
in the plasma. This equation was first obtained by 
other means in Refs. 3 and 4. 

Using Eqs. (3.4) and (3.6) to (3.8) we can express V 
in terms of n or @ and obtain similar equations for 
these two quantities. For  instances, 

where S[@] i s  a functional of @ and is determined in 
principle by the solution of the kinetic Eqs. (2. I), (2.2) 
for a given profile of @ and by Eq. (3.2). 
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4. EVALUATION OF S[@] 

In this section we obtain asymptotic expressions for 
S[@] for a number of limiting cases, assuming that @ 
has the form of a quasi-stationary wave, i.e., 

where Vph i s  the phase velocity of the wave, dVph/dt 
- & << 1. Let 6 be the characteristic spatial dimension 
of the wave and let the time of variation of the parame- 
ters  of the potential @ be appreciably larger than 6/Vp,. 
We can then change to a local system of reference mov- 
ing with the velocity Vph and assume that in the adiabatic 
approximation the profile of the wave does not change. 
We shall denote the velocity of the resonance particles 
in that system by v and the coordinate by 5 .  We intro- 
duce the 'energy" which in the adiabatic approximation 
is an integral of motion, i.e., dE/dt -&, 

The kinetic Eqs. (2.1) and (2.2) become in the frame 
of reference considered (neglecting terms -&) 

where f = f,, fe (we drop the indices i and e where they 
are inessential) and 

v,(E, f ) = * ( 2 [ E - U ( t )  11%. (4.4) 

Here and henceforth the upper and lower signs refer 
to particles moving, respectively, in the positive and 
negative directions. If @, i s  a characteristic wave am- 
plitude we can define the widths of the resonance r e -  
gions in the ion and electron velocity spaces by 

The resonance interaction time T, is defined a s  the 
time it takes a resonance particle to traverse a distance 
6 in the wave system, i.e., 

s,,=8 (2&) -", T,.= (m./mr) "7,~. (4.6) 

We assume now that the wave field was switched on at 
time t = 0 and we rewrite (3.2) in the form 

Changing to integration over the energy, we get 

L'. 'iE 
N'= t C 1  (2IE-U(f)I)' [ fo(v* (E,  So*) ) -fo(v*(E, E)) I 

(*) W O )  

We assume here that Uo= maxU(E,) while E, denotes the 
effective energy width of the resonance region E,, -2@,, 
Ere -2(rn,/me)@, (the basic results obtained below are 
independent of E,). In deriving Eq. (4.8) we used the 
Liouville theorem 

where fo(v) i s  the unperturbed distribution function and 

<:= < i ( < , E , t )  i s  the initial coordinate of a particle 
which at time t is at the point 5 and has a velocity 
v*(E, 5). 

Expression (4.8) i s  general. It can, for instance, be 
applied both to periodic and to solitary waves. In this 
paper we restrict ourselves to the latter. In the case 
where the solitary wave i s  a potential well it is conven- 
ient for us to change the notation, bearing in mind that 
Uo= minu([) < 0 and maxU(5) = 0. In that case we must 
replace in (4.8) U, by zero and the first  integral will 
refer to trapped particles and the second one to un- 
trapped particles (see figure). 

We evaluate Eq. (4.7) for two limiting cases: t << T, 

and t >> T,, where T, is defined in (4.6). 

a)  Short time interval (t << 7,). In that case we may 
assume that 

We shall also assume that in the resonance region, with 
good accuracy, 

f . (v)  - fo (v , )  + ( v - v , ) f ~ ' ( v ~ ) ,  (4.10) 

where v, corresponds to exact resonance (in the refer- 
ence frame considered v,= 0, in the frame in which the 
plasma is at rest v,= v,,). In that case 

We have here taken into account the fact that at t << T, 

the main contribution to F([) comes from the high en- 
ergy region (E >> U,), and have expanded the integrand 
in (4.11) in powers of U/E. Using the relation 

' d ~  =- df' 
J--u(E*(~E)"~)-~ j -U(%'), 

E  t*(*.)Ct El-% 

we find that for t << T, 

If now t << T,, (and, according to (4.6), r,,<< r,,) we 
can write the quantity ( 4.7) in the form 

FIG. 1. Free and reflected particles in the field of a potential 
hump (a), free and trapped particles in the field of a potential 
well (b). For ion-sound solitons case a is realized for ions 
(u= U i =  9), case b for electrons (U= Ue= - (m,/me)9). 
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This expression i s  the same as  the one obtained by Ott 
and Sudan' from other considerations. Our approach 
shows that the domain of i ts applicability i s  restricted 
by the condition t << (m,/mi)112r,i which i s  a very rigid 
one as  will become clear from what follows. 

b) "Longn time interval (t >> 7,). It i s  in that case 
convenient to split the unperturbed distribution function 
(in the wave frame) into an even and an odd part: 

f ~ ( v ) = ' / z [ f ~ ( v ) - f o ( - u )  I ,  fi(v)='/zIfo(v)+fo(-v)]. (4.14) 

Similarly we put 

N'--NIr+N,', N,'=N'{f,), N1'=N'(f2). (4.15) 

The functionals ff u,,} are defined here by Eq. (4.8) 
with f, (n = 1,2) replacing fo. 

We assume now that U(5) has the shape of a solitary 
positive pulse (maxU(5) = Uo > 0, U(*-) = 0; see curve a 
in the figure). We consider q. The contribution from 
the free particles (i.e., E > Uo) is vanishingly small in 
that case. Indeed, at t >> T, we can put for such parti- 
cles 

so  that 

The quantity N; thus contains only a contribution from 
the reflected particles and can be written in the form 

Let now 5 c t,, where U(5,) = Uo (curve a in the 
figure). In that case only those particles can have posi- 
tive velocities at the point t which have not been re- 
flected. For such particles we can for t >> r, put in 
(4.18) 5;= -a, i.e., 

Particles with negative velocities at the point 5 must 
necessarily be reflected at sufficiently large t, i.e., we 
can write 

where E(E) is the point of reflection, i.e., U(((E)) =E. 
Putting ti= -m in (4.21) and using the fact that 
v,(E, 5@)) = 0, we get 

I - (k ,  E)---j1((2E)")--flf{2[E-U(E)]}"). 

As a result for t < 5, (4.18) becomes 

Similar considerations for 5 > F, lead to the conclusion 
that N35) in that case differs from (4.22) by its sign. 
The general result for a potential hump has thus the 
form 

2'h v' dEfi ( (2E) Ih) 

N ' r ' ~ ' = - c  A ) E - ~ ~ ~ )  1 .  sign (E-E,). 

We now assume that U(5) has the form of a potential 
well (curve b in the figure) and t >> 7,. In that case Eqs. 
(4.16) and (4.17) remain the same for free particles a s  
these particles do not contribute to N;, as  before, As 
regards the trapped particles which are  multiply re-  
flected from the walls of the well, for them f,(~,, (E, E:) 
is a fast-oscillating function of 5 (the period of the os- 
cillations tends to zero with ~ , / t ) .  It is clear that in 
that case one must replace the quantity f,(v,(E, 6;)) by 
its average which equals zero. The contribution from 
the trapped particles is thus also equal to zero. Hence, 
in the case of a well 

N: (e) =o, t>zr. (4.24) 

Finally, using (4.8), (4.14), and (4.15) we get the fol- 
lowing expression for q(5) (for a potential hump) 

,,,,_ T j  ~ X ( ( ~ ) ' ~ ) - ~ Z ~ [ ~ ( E - U ) I " )  dE. 
no (E-U) " 

K. 

One checks easily that N"' is nothing but the negative 
change in the density of non-resonance particles. 

In the case of a potential well we have 

Here ntr i s  the average density of the particles trapped 
in the potential well and N"' is determined by the same 
Eq. (4.25b). We shall use Eqs. (4.25) below. 

We emphasize the substantial difference between N; 
and $. If U i s  an even function of 5 - 6, (for instance, 
for a soliton), N;(t) is an odd function and $([) an even 
one. This fact plays an important role in what follows 
leading to the fact that q ( 5 )  does not play a role in a 
number of important effects in the evolution of solitons. 
We note also that % vanishes if we use Eq. (4.10) a s  
only even powers of v contribute to x. 

In concluding this section we transform Eq. (4.23) 
into a more convenient form, using the unperturbed 
distribution function in the laboratory frame of refer- 
ence and introducing dimensionless variables. We put 

where F(o)  is a dimensionless function and v, the ther- 
mal velocity. Changing to the dimensionless variables 

v- ( ~ U J U ~ ~ ) ' ~ ,  p=VpJ~r ,  (4.27) 
x t e ) - u s / u o ,  (4.28) 

we have for ions in the field of a potential hump 

Ni i x  = - v+ (l-y dw (pi + vt (wg+ x)*la) 
0 

- Fi (pi - vi (w' + x)'I')I sign (E - b). (4.29) 

For sufficiently small vi the expression in the square 
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brackets can be expanded in a series which, restricting 
ourselves to the first term, gives 

~ , ~ ~ = - v , ~ / ( p ~ )  { ( I - ~ )  "tX ln [ ' + ( ~ ~ ~ ) " ] } ~ i ~ n ( ~ - ~ ) .  

(4.30) 
One must then take into account that the definitions 
(4.27) lead to 

If F,(u) i s  an analytical function of u 2  (for instance, 
~axwellian),  the validity of the expansion of F, in pow- 
e rs  of V, in (4.30) then has the form v, << 1/p,, i.e., 

We see that this is, in general, a rather rigid condition. 
As to N;, in the same field, i t  i s  a potential well for the 
electrons so that according to (4.24) Mle = 0 (t >> T,~). 

5. EVOLUTION OF AN ION-SOUND SOLITON 
FOLLOWING ITS INTERACTION WITH RESONANCE 
PARTICLES 

We assume that at t = 0 the ion-sound wave had the 
shape of a soliton satisfying Eq. (3.10) without the 
right -hand side : 

@,-@o secha[ (2-zo)/6], (5.1) 

6= (cO/o9l) ( 6 ~ 2 / @ ~ )  'la. (5.2) 
For t > 0 the solution of Eq. (3.10) with a small right- 
hand side can then be written in the form*" 

where Q, has the form (5.1) with a slowly changing am- 
plitude %,(t) and a width connected with cp, by the same 
relation as  for an unperturbed soliton, i.e., (5.2); 
$(x, t )  describes the distortion of the shape of the soliton 
caused by the perturbation. 

After the obvious transformations of Eq. (3.5) of Ref. 
9, we obtain for the amplitude of the perturbed soliton 
the formula: 

d@. - --c I h  ,on 2 jas;:.] -sechz zdz. 
dt  12 -* 

and the position of its center (Ref. 10, Eq. (2.46)) 

Here S i s  defined in (4.7) and z = (x -xo)/6. 

The general expression for the variation of the shape 
of the soliton $(x, t )  was given in an earlier paper." 
Here we limit ourselves to its asymptotic behavior: 

It i s  clear from (5.6) that as  z - -9 the expression for 
$(z, t )  has a finite limit $(z = -.e) = $-, 

This expression determines the so-called tail which i s  
formed behind the soliton a s  a result of the action of the 
perturbation. Already at a distance of four to five 
times the length of the soliton the tail becomes indepen- 
dent of the soliton and the velocity of its elements i s  
practically equal to zero, while its length grows pro- 
portionally to the path traversed by the soliton from the 
moment the perturbation was switched on. Since the 
amplitude of the tail is, a s  can be seen from (5.8), 
determined by the soliton amplitude +, at the moment 
of emission and a s  the latter changes slowly with time 
according to Eq. ( 5.41, JI, changes correspondingly 
slowly in space. See Refs. 10 to 12 for more details 
about soliton tails. 

We find from (5.4) that the characteristic time during 
which the soliton parameters change appreciably due to 
the action of the perturbation-the perturbation time 
Tp-is a s  to order of magnitude given by the relation 

In order that perturbation theory i s  applicable it is 
necessary that this time is large compared to the soli- 
ton time T,:~*" 

(7, i s  the time the unperturbed soliton traverses a dis- 
tance 6 in the frame of reference moving with velocity 
c,). The ratio &= T,/T~ is the basic small parameter of 
the perturbation theory. It then turns out that the do- 
main of applicability of the perturbation theory i s  in 
time limited by the condition1' t << T~(T~/T,). 

In this connection one should note that the character- 
istic time for the interaction of a soliton with resonance 
particles i s  apprecialy shorter than T,. Indeed, ac- 
cording to (4.6) 

(@,/G - 6n/n0 is the basic parameter guaranteeing the 
validity of the unperturbed KdV equation). Hence it 
follows, in particular, that the Ott Sudan Eq. (4.131, 
which a s  we showed above is valid for t << T,,, does not, 
strictly speaking, have a domain of applicability in the 
problem considered, as even after a time T, the per- . 
turbation does not manage to manifest itself. 

We must thus use the expressions for t >> T, which we 
found above. Hence it follows, in particular, that the 
contributions from the electrons to (5.4), (5.8) vanish. 
Indeed, the ion-sound soliton is a potential well for the 
electrons (U,= -(m,/m,)%) so that according to (4.24) 
q,= 0, q[@,] =i$,[@,]. However, q , [ @ , ( z ) ]  is an even 
function of z and, hence, does not contribute to the cor- 
responding integral." Correspondingly it  i s  convenient 
to change in (5.4) to (5.8) to the variables (4.27), (4.28) 
and to take into account that Uo = Go, v,= u, (i.e., v =  v,, 
!r = p i ) .  Equations (5.4) and (5.8) then become 
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where 

Here N;[X] i s  defined in (4.29) and ~ ( z )  = sech2z i s  the 
dimensionless soliton profile. 

For small soliton amplitudes when condition (4.32) is 
satisfied we can restrict ourselves to the first two 
terms in the expansion of (5.13) and (5.14) in powers of 
v which leads to2' 

If for the sake of simplicity we neglect the last 
(small) term in (5.15) we obtain the following law for 
the evolution of the soliton amplitude, which is valid 
when p,v, << 1: 

v,(t )  =vt(0)  [ l -v i (0 )a t ] - ' ,  a = o P t p ~ i ' ( p i ) / 2 Y X  (5.17) 

When F'(,u) < 0 the wave is damped with a characteristic 
time T, = [v,(O) I a I ]-I. When F;(p) > 0 there occurs an 
explosive type instability (besides, Eq. (5.17) loses its 
validity when v, > l/p,). Equation (5.17) has been ob- 
tained by other means (from energy conservation con- 
s iderat ion~).~ 

It i s  interesting to note that i f  we had used Ott and 
Sudan's Eq. (4.13) for s[@] we would have obtained for 
v,(t) the same form as  (5.17) but with another a: 

The difference in the values of a! is qualitatively impor- 
tant here, as  for pi 2 4 the dominant role in (5.18) is 
played by the term with F,. This term may be positive 
when there is a current present and this would lead to 
an instability, provided this equation were valid. 

In actual (laboratory and numerical) experiments it is 
difficult to realize condition (4.32) under which Eqs. 
(5.15) to (5.17) are valid. We give results which are 
obtained in the case of large soliton amplitudes when 
v , ~ ,  >> 1, but, of course, 2@,/4= ( v , / ~ ~ ) ~  << 1. Assum- 
ing to fix our ideas that the distribution function i s  
Maxwellian, i.e., F(o)= r112exp(-ul) we get in this case 

We turn finally to the change in the soliton velocity 
due to its resonance interaction with particles. Using 
(5.51, (4.7) and also the fact that X ( Z )  i s  odd and % ( z )  
even we get after simple transformations 

ch z-z sh z 
ch'z ' (5.19) 

where S2 =%, -qe. 
Starting from Eqs. (4.25) and assuming that the un- 

perturbed distribution functions are Maxwellian we get 
after some calculations 

S,[0]=(1-20/Vp,z)-'iz-e~p ((D/c, ' )+R.[Q]-Re[@] 

+N,,"r[O]-LVz,"r[O]. (5.20) 

Here R,[@] and Re[@] determine the contributions from 
the resonance ions and electrons: 

V,, = c, + @,/3c0 is the unperturbed soliton speed, nr[@] 
the trapped electron density, n:: the "equilibrium" 
trapped electron density, i.e., the density which would 
occur, if the trapped.electrons were described by a 
Boltzman distribution with temperature T,. We gave 
Eq. (5.21) under the condition @,/4 >> q/< (i.e., %vi 
> 1). 

Finally, the difference between the last two terms in 
(5.20) is, according to the definition (4.25b) nothing but 
the difference between the relative densities of the non- 
resonance electrons and ions. Using the Poisson equa- 
tion for the unperturbed soliton profile we can write 

Substituting (5.23) into (5.20) we get an expression 
which does not contain the arbitrariness connected with 
the choice of E, in (4.25). 

We now expand the first and second terms in (5.20) 
in powers of @,/G restricting ourselves to terms of 
second order. 3' In that case 

We did here take into account the fact that the expres- 
sion in brackets vanishes by virtue of the equation for 
the soliton (a, = @,sech2z ). Thus, S,[@] is expressed 
solely in terms of the contribution from the trapped 
particles, a s  one should expect. It is then at once 
clear that the quantity R,[*,] is exponentially small 
when T,/T,<< 1. As to R,[@,] we must assume that that 
quantity is sufficiently small so that the last term on 
the right-hand side of (5.19) would be small compared 
to the second term, i.e., 

n."-no." ch z-z sh z @ ' 
dz<-?-. 

ch' z CO' 
(5.25) 

-* 

If this condition i s  not satisfied, i t  is no longer pos- 
sible to consider the resonance interaction between the 
soliton and the electrons to be a small perturbation; i t  
makes a contribution comparable to the non-linear and 
the dispersion terms in Eq. (3.10). A detailed con- 
sideration shows, however, that when (5.25) i s  not sat- 
isfied, there occurs an instability. The oscillations 

700 Sw. Phyr JETP 50(4), Oct. 1979 V. I. Karpman 700 



which are  then excited lead to an exchange between 
trapped and free electrons until In: - n:t, I i s  decreased 
to a value satisfying condition (5.25). The characteris- 
tic time for this process is sw;:. Finally, we note that 
if we use model Boltzmann distribution functions for the 
trapped particles with an arbitrary temperature and 
neglect the contribution from the resonance ions, Eqs. 
(5.241, (5.19) lead to expressions which are  equivalent 
to those obtained by Schamel. 

"In the Ott-Sudan Eq. (4.13) the electrons, on the other hand. 
give the main contribution, at least when T,/T~ 24. 

')If we used (5.30) to evaluate A and B, which is  equivalent to 
taking only terms ocv2 into account in (5.13) and (5.14), we 
would f indA= B, i.e., Ilr,= 0. 

"It makes no sense to take higher-order terms into account as  
they were dropped when we derived the perturbed KdV Eq. 
(3.10). 
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Contribution to the theory of nonlinear photoelasticity of 
solids 
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Zh. Ebp. Teor. Fiz. 77, 13961406 (October 1979) 

Nonlinear modulation of the dielectric constant of a crystal by a sound wave is considered theoretically. 
An expression quadratic in the sound-wave amplitude is obtained for the amplitude of the change of the 
dielectric constant of the crystal, this expression is analyzed for various optical frequency bands. It is 
shown that the effect of nonlinear modulation of the dielectric constant of a crystal by a sound wave is 
particularly pronounced in the resonant case f w z E ,  for dielectrics, or eIse at h z E ,  + F for 
degenerate semiconductors, when relatively low sound power is needed for the onset of nonlinear effects 
(here o is the frequency of the light wave, E, is the width of the forbidden band of the crystal 
F = rn,eF/p. where m,, p, and eF are respectively the effective mass of the conduction electrons, the 
reduced effective mass of the conduction and valence electrons, and the Fermi energy of the conduction 
electrons). 

PACS numbers: 78.20.Hp, 77.20. + y 

The diffraction of light by sound (the acousto-optical 
(AO) interaction) has by now been the subject of a 
large number of studies, owing to the extensive prad i -  
cal use of this phenomenon in physical research and in 
modern technology (see the reviews1*'). In all the the- 
oretical studies of the A0 interaction i t  is assumed that 
one of its basic mechanisms i s  the change of the dielec- 
tric constant of the crystal upon propagation of the 
sound wave. It is customarily proposed that in view of 
the smallness of the relative deformation of the crystal 
by the passage of the sound, i ts dielectric constant &,, 
in the presence of the sound wave can be expressed in 
the following form (see, e.g., Refs. 1-31 

where E y k  is the dielectric constant of the crystal in the 

absence of sound, u,,, is the crystal strain tensor in 
the sound wave, and p , , ,  is the crystal photoelasticity 
tensor (summation over repeated indices is understood 
from now on). Terms of higher order in u,, are a s  a 
rule neglected in (1). 

It should be noted, however, that in some cases a 
sound wave of even relatively small power i s  capable 
producing in the dielectric constant of the crystal a 
modulation that i s  essentially nonlinear in the parame- 
ter  u,,. In fact, in the simplest case at Ew < E ,  there 
is no absorption of light in the crystal (neglecting the 
absorption "tail"). On the other hand, in the presence 
of a sound wave modulation of the quantity E, sets in, 
and a situation becomes possible wherein the relation 
i iw > E, - AE, i s  satisfied in a region of a decreased 
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