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We investigate the influence of the limited radial dimensions of a plasma on beam-plasma interaction in 
the absence of a magnetic field. It is shown theoretically and experimentally that in the presence of a 
static transverse electric field, which causes transverse oscillations of the plasma, the limited radial 
dimensions of the system greatly influence the dispersion of the excited electronic oscillations if two 
conditions are satisfied: k,r,< 1 and o <vT/ro,  where k, is the longitudinal wave number and r, is the 
inhomogeneity dimension (the radius of the plasma), v, is the thermal velocity of the plasma electrons, 
and o is the oscillation frequency. The observed effect, that the frequency is lower than the electron 
Langmuir frequency, is due to the decrease of the transverse conductivity of the plasma as a result of the 
indicated oscillations.. 

PACS numbers: 52.40.Mj 

One of the fundamental problems in beam-plasma 
interaction is the influence of the limited radial dim- 
ensions of the system on the dispersion of the excited 
oscillations. In the one-dimensional case, which is 
realized in a strong magnetic field (a,<< 51,, where SZe 
and 51, a r e  the plasma and cyclotron frequencies of 
the electrons), it was shown theoretically and exper- 
imentally that the radial restriction leads to a sub- 
stantial decrease of the frequencies and increments of 
the oscillations, and critical values of the parameters 
it stops the instabi1ity.l' As to systems without a mag- 
netic field, the situation remained unclear until the 
very latest time. On the one hand, a rigorous theor- 
etical analysis with account of both the fact that the 
oscillations are not potential5 and of the inhomogeneity 
of the system3 has led inevitably to the conclusion that at 
al l  I Z , ~ ,  (k, is the longitudinal wave number and ro is 
the characteristic dimension of the inhomogeneity o r  
the radius of the plasma) the increments and frequen- 
cies of the volume oscillations a r e  equal to the cor- 
responding values in an unbounded homogeneous sys- 
tem with particle concentrations close to the cor- 
responding concentrations on the axis of the considered 
system. 

of the transverse static electric fields which confine 
the plasma particles within the beam, and show that 
under certain conditions these fields, in analogy with 
longitudinal magnetic field, lead to a substantial de- 
pendence of the dispersion of the excited oscillations 
on the characteristic dimension of the inhomogeneity 
(radius) of the system. The experimental data obtained 
in the present paper in an investigation of the collective 
interaction of a beam of positive ions with plasma elec- 
trons have confirmed the main conclusions of theory. 

THEORY OF BEAM-PLASMA INTERACTION WITH 
ALLOWANCE FOR TRANSVERSE OSCILLATIONS OF 
THE PLASMA ELECTRONS IN AN ELECTROSTATIC 
WELL 

We consider an axially symmetrical system in which 
a cold beam of charged particles passes with velocity 
V, along the Z axis through a plasma with electron 
temperature T,. The potential of the plasma varies 
along the radius like 

cp, ( r )  =-T2/ero1 

and i s  the potential well for the electrons. 

On the other hand there exist experimental indica- An investigation of the wave processes in the plasma 
tions that in some conditions and in the absence of an will be carried out in a quasistatic approximation (E 
external magnetic field the decrease of r, can lead to a = -VP) on the basis of linearized equations-the Vlasov 
decrease of the frequencies and increments of the ex- equation for the electrons captured in the radial po- 
cited volume  oscillation^.^^ This contradiction is re-  tential well, the hydrodynamic equations for the beam 
solved in the present paper, in which we construct a particles, and the Poisson equation. For  simplicity 
theory of beam-plasma interaction with account taken we consider only axially symmetrical perturbations, 
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and assume the upperturbed beam density no, to be hom- 
ogeneous. Then the equation is describing the system 
can be written in the form 

In Eqs. (1) and (2), we have carried out Fourier trans- 
formations in t and z ,  while f and q are  the Fourier 
components of the distribution function of the electrons 
and of the self-consistent potential, and i2, is the plas- 
ma frequency of the beam. 

The stationary distribution function of the plasma 
electrons is chosen in the form of a Maxwell-Boltzmann 
function 

In this case the profile of the electron density takes the 
form 

(similar equations without the beam were used in Ref. 
8 in an investigation of the anomalous skin effect in a 
plasma pinch.) 

We use henceforth dimensionless variables and para- 
meters: 

We change over in (1) and (2) to new variables-the 
integrals of the unperturbed motion 

ru,==0, v.=0/r, (4) 

Introducing the functions Fu defined by the formula 
f = fo(Fa+ @) and integrating the Vlasov equation with 
respect to r, we obtain (a = * corresponds to v, P 0 )  

P ( r )  -Fa (r , )  exp (iarp (r, r I )  ) 

(r') 
exp (iarp (r, r l )  ), +hr J (e+mo(rr) -Oa/rra)* 

(5 1 

where 

dl" 
g ( r ,  r') = n  (a-k.v,) T (r ,  r l )=  (m-kZvI) 

, (e-021r"2+Qo (r") )" 

The integration constants Fu(r , )  a re  obtained from the 

boundary conditions for the distribution function. As 
follows from (4), the velocity v, vanishes a t  the points 

At  these points the particle velocity v,  reverses sign 
and the boundary conditions can be written in the form 

From (5) we get with the aid of conditions (9) 

It follows then from (5) and (10) that 
m 

0 
F++F-- - I drr 0 (r') 

sin rp(ro, rr) (e+m0(r1) -02/r'2)'h 

- sin n(o-k,v . )  IT (r, r') Ising(ro, r I )  1. (11) 

We expand the integrand in (11) in series, using the 
relations 

' 1 2N 9 ( r  r') 
cos r p  (r,  r') = - - sin ~n cos nn coe n --- n, 

1-0 
I( N1-n2 g (rt$ ro) 

As a result, after substituting (11) in (6) and integrating 
with respect to v ,  we obtain for the potential an equa- 
tion that is exact within the framework of our model: 

[ 
T(ro,  re )  -T(r ,r , )  x cosnn cos n 

T ( r t ,  ro)  

where 

The analysis that follows will be made under the as- 
sumptions 1) w/k,>> 1 and 2) wT(r,, yo)= 0/2<< 1. The 
first  condition means that we confine ourselves to the 
case of greatest practical interest, when the Landau 
damping on the electrons is negligible, and consequently 
the instability growth rate is largest. The second con- 
dition means that the frequency of the excited oscilla- 
tions is lower than the frequency of the oscillations of 
the electrons in the static well. It is precisely under 
these conditions that we can expect a substantial de- 
crease  of the transverse conductivity of the plasma. 
It follows also from the foregoing assumptions that k, 
<< 1. Under the indicated conditions, the main contrib- 
ution to (13) is made by the term of the sum with n= 0. 

We apply to (13) the Hankel transformation - - 
(D (k,) = J r l ,  (k,r) @ ( r )  dr, cD ( r )  = J k,l0 (kLr) cD (k,) dk,. 

I 0 

69 1 Sov. Phys. JETP 50(4), Oct. 1979 Katsubo et a/. 69 1 



After simple transformations we obtain the equation 

We find the condition for the solvability of this homo- 
geneous equation. Integrating (11) with respect to &, 
with weight 

and expanding the modified Bessel function in power 
series, we arrive at the relation 

Since kc<< 1, the main contribution to the sum over m 
will be given by the term with m = 0. As a result we 
obtain the dispersion equation 

where 

- k ,  exp (-kLX/2) 
vt(k.)=k.' j d k ,  

k,'+k,' 
0 

Ei(z) is the integral exponential function. The disper- 
sion equation (16) corresponds to density perturbations 
n,(r)-exp(-P), which are the largest-scale perturba- 
tions possible in this system. Changing to dimensional 
quantities, we get 

v l ( k ~ ~ ) - k ~ r ~ ' ~  ln 

AS seen from the obtained dispersion equation, under 
our assumptions the frequency of the plasma electron 
oscillations excited by the beam is lower than the 
Langmuir frequency by a factor 1/U. The dependence 
of the decrease factor U on kz,, shown in Fig. 5 below, 
is of the same form as in the presence of a strong mag- 
netic field.' In either case, the decrease of the oscilla- 
tion frequencies due to the small transverse conductiv- 
ity of the plasma. However, whereas in the latter case 
this is due to the magnetization of the electrons, in the 
system considered here it is due to rapid oscillations 
of the electrons in the static potential well. 

It should be noted that a similar dispersion in a 
bounded plasma without a magnetic field at kc?-,<< 1 is  
possessed also by a surface wave. This wave, how- 
ever, differs in principle from a volume wave and can 
be easily identified experimentally. As shown in Ref. 

9, it can be excited in the investigated system des- 
cribed below only in the direction opposite to the direc- 
tion of motion of the beam, has an enitrely different 
radial structure, and at kcro>> 1 its frequency is  smaller 
by an approximate factor 2''' than the frequency of 
the volume oscillations excited by the beam. The de- 
crease of its frequency at &,r,< 1 is due to another 
physical mechanism-the emergence of the electric-field 
force lines to the outside of the plasma. 

EXPERIMENTAL INVESTIGATION OF THE 
DISPERSION OF THE ELECTRON OSCILLATIONS 
EXCITED BY AN ION BEAM. DISCUSSION OF RESULTS 

The experiments were performed on the setup whose 
diagram is  shown in Fig. 1. A 20-mA beam of protons 
of energy 30 keV was extracted from the "duoplasma- 
tron" 1 by the field of the extractor 2, and was shaped 
by a magnetic lens 3 into a long weakly diverging beam 
4 that passed through an ion guide of length up to 500 
cm and diameter 35 cm to collector 5. The concen- 
tration of the beam ions was usually lo7 ~ m - ~ .  The 
beam diameter could be varied by an iris diaphragm 
6 located at the entrance of the beam into the ion guide. 
The plasma was produced by impact ionization be- 
tween the beam ions and the air molecules. When the 
pressure was varied in the range 1 X 10-5-10'3 Torr 
the ratio of the electron concentration to the beam- 
particle concentration varied in the range from 1 to 
100. The radius of the plasma was approximately 
equal to the radius of the beam:' a fact that does not 
agree with the assumption in the theory that the beam 
is unbounded. However, since this paper deals in 
fact only with the dispersion of the plasma oscillations, 
this disparity does not play an essential role. 

As shown previously,10811 in such a plasma there is 
always a static potential well for the electrons; the 
depth of the well is determined by the Coulomb con- 
ditions of the beam ions with these electrons. The ex- 
perimentally obtained1' radial distributions of the po- 
tential within the limits of the beam were close to 
rp = Aq(1 -r2/r;), as  is assumed in the theory. 

Under the conditions of excitation of electron os- 
cillations (P= 6 x  1Od-6 X 10" Torr) the depth eArp of 
the potential well in the beam does not depend strongly 
on the gas pressure or on the radial dimension of the 
beam, " and does not exceed 5 eV. When the plasma is 
produced only electrons with energy less than eAcp are 
accumulated in the system, while the faster electrons 
leave immediately and make no substantial contribu- 
tion to the space charge. If the accumulated electrons 
are in thermal equilibrium, then in accordance with 
the foregoing their average thermal velocity remains 

FIG. 1. Experimental setup: 1-ion source, 2-extractor, 
3-magnetic lens, 4-beam, 5-target, 6-iris diaphragm. 
7-probes. 
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practically unchanged under the experimental condi- 
tions, and does not exceed v,- ( 2 e ~ ~ / r n ) ~ ' ~  - 1.4 10' 
cm/sec, so  that V,>v,. 

The excited electron oscillations were registered with 
capacitive  probe^.^ The same probes were used to 
measure the frequencies of the short-wave ion oscilla- 
tions transverse to the beam ( k Z e > l ,  de is the elec- 
tron Debye radius), whose maximum amplitudes cor- 
responded to the plasma ion Langrnuir frequency at 
the given distance along the r a d i ~ s . ' ~ " ~  This localiza- 
tion of the ion oscillations was used to calculate, from 
the measured ion Langmuir frequency., the concentra- 
tion of n,, the ions on the system axis. Using next the 
quasineutrality relation 

we could calculate the axial concentration of the elec- 
trons. In those regimes when the ion oscillations were 
not excited, the density of the ions on the axis was cal- 
culated from a formula introduced from the condition 
for the balance of the production and free spreading of 
the ions under the influence of the electric field1': 

where a, is the cross section for the production of plas- 
ma waves, n, is the concentration of air molecules 
and v i  = ( e ~ ~ / ) 7 2  ,)ll"s the average velocity of the 
spreading ions. 

As a confirmation of the applicability of Eq. (18), Fig. 
2 shows plots of n,, measured with the procedure des- 
cribed above against the radius of the system for two 
values of the pressure. It is seen that in accordance 
with expression (18) n,, increases in proportion to r, 
and to the gas pressure, and the measured and cal- 
culated values of n,, are  equal if a, z: l x cm2. 

The measurements have shown that the amplitude of 
the oscillations of the potential is maximal on the beam 
axis, and the phase remains unchanged along the en- 
tire diameter of the system. Thus, the largest-scale 
mode of volume oscillations is excited in the plasma, 
and it was this mode which was investigated theoreti- 
cally. 

The dispersion characteristics of the oscillations 
were obtained by directly measuring the dependences 
of the frequencies of the excited oscillations on the 
radial dimension of the system. Figure 3 shows the 
indicated dependences, obtained for different gas pres- 

Z 
FIG. 2 .  Dependence of 
the plasma ion concentra- 
tion on the system radius. 
0 - P =  1 . 2 ~  10'~ Torr, 

f E o l z J q 5 6  e -  P =  1.7 x lC+Torr. 

FIG. 3. Dependence of the 
frequency of the electron 
oscillations on the system 
radius: m-P=6*10'5 Torr, 
0- P= 8 . 1 0 ' ~  Torr, 0 - P  
= l . 8 * 1 0 - ~  Torr, e - P  
= 3 . 2 * 1 0 - ~  Torr, A - P  
= 5 . 4 * 1 0 - ~  Torr. 

sures. The measured o r  calculated values of the 
plasma concentration were used to plot w(Qe and k,r, 
for all the curves of Fig. 3. In fact all the points fitted 
a single CUNe (Fig. 4), which is indeed the experi- 
mentally measured dependence of the coefficient U of 
the frequency decrease on k,r,. 

It follows from the theory that a substantial depen- 
dence of the dispersion of the oscillations on kgo  should 
be observed when the following two conditions are 
satisfied: 

Inasmuch a s  in these experiments the beam velocity did 
not greatly exceed the thermal velocity of the elec- 
trons, the two conditions are actually equivalent. In 
accordance with the conclusion of the theory, a notice- 
able decrease of the ratio w/62, with decreasing k,r, 
becomes observable at kg%- 1 (Fig. 4). At k,r, << 1 the 
experimentally measured values of w/SZe are close in 
order of magnitude to the theoretical values of U (Fig. 
5). At k,r0>> 1, as  expected, the experimentally mea- 
sured values of w/Oe do not depend in this case on the 
plasma radius. The very fact itself that w/ae does not 
reach unity is due primarily to the inhomogeneity of 
the plasma. The frequency of the electron plasma at 
oscillations corresponds in this case not through the 
maximum electron concentration, but to a certain 
value averaged over the radius.' 

FIG. 4. Experimental dependence of the coefficient of fre- 
quency decrease on k,r,,: e - P = 3 . 2 * 1 0 ' ~  ~ o r r ,  0 - P  
= 8 .  lom5 Torr, 0 - P =  1 . 8 .  loe4 Torr, A -  ~ = 5 . 4 ~ 1 0 "  Torr, 
m - P  = 6 . 0 4 1 0 ' ~  Torr. 
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FIG. 5. Dependence of the 
frequency-decrease coeffi- 
cient U= w / a ,  on the sys- 
tem radius at small k,ro. 
1-theory, 2-experiment. 

The agreement between the experimental data and 
the theoretical calculation allows us to conclude that 
when plasma electron oscillations a re  excited by a 
beam of positive ions the electron oscillations in the 
potential well lead to a dependence of the dispersion 
of the oscillations on the radial dimension of the sys- 
tem. 

The observed effect can play a substantial role also 
in other beam systems. Thus, in a plasma produced 
by a beam of negative ions or  electrons, a t  sufficiently 
high pressure 

there is likewise produced a static potential well  for 
the electrons. In the case of a negative-ion beam, the 
conditions for the onset of the frequency decrease will 
in fact be the same a s  in the case of the corresponding 
beam of positive ions.7 On the other hand, in a plas- 
ma produced by an electron beam, we practically al- 
ways have vT/Vo<< l, and therefore the fact that the 
radial dimensions are limited will come into play at 
sufficiently small  k,ro (k,ro < v ,/Vo << 1). For  this rea- 
son the effect can be observed only at very low den - 
sities and small radii of the electron beam. 

It i s  of interest to note that the radial limitation of 
the system can affect also the excitation of ion os- 
cillations. This is possible in a plasma produced by a 
beam of negatively charged particles at n,<n, , 
= iTt/voo,r0, when there are practically no electrons 
in the system, and the ions oscillate in a potential well 
made up by the undercompensated space charge of the 
beam. This effect was possibly observed experimen- 
tally in a plasma produced by a beam of negative ions.14 
Actually, in this case the oscillation frequency be- 
came lower than the ion Langmuir frequency at n, 
<n, ,, when a potential well existed in the system for 
the plasma ions, and the condition w <vT,/ro w a s  
satisfied. 

We have thus observed in the present study a new 
effect-the influence of the plasma-particle oscillations 
in radial static electric field on the dispersion of the 
oscillations in the absence of a magnetic field. We 
have shown that when the conditions k,ro< 1 and w 
<v,/ro are satisfied, these oscillations lead to a de- 
crease of the transverse conductivity of the plasma, 
and this in turn causes a decrease of the frequency of 
the excited oscillations. The observed effect can play 
an important role not only in a beam plasma, but also 
in a plasma produced by an independent method, if the 
corresponding electric fields are present in the latter. 
Lowering the frequencies of the plasma oscillations 
causes a decrease in the growth rates, and this can 
lead, in systems of finite length, to stabilization of 
beam instability. 
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