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The nonstationary kinetic equation is solved under conditions of pulsed high-frequency gas breakdown 
with account taken of the real cross sections of the elementary processes in helium. The distribution 
function of the electrons in energy at various instants of time is obtained. The time dependences of the 
electron density and of the avalanche development constant are calculated, and the time required for the 
distribution function to assume a stationary value is determined. 

PACS numbers: 52.80.Pi, 51.50. + v 

1. In the course of gas breakdown, time variation oc- tions of the Fokker-Planck type and solved the kinetic 
curs not only in the density of the electron particles, equation under conditions when the principle role in the 
but also in the very distribution function of the particles elastic collisions is played by excitation of the rotation- 
in energy. Usually, however, one solves the stationary a l  and vibrational levels of the molecules. The colli- 
kinetic equation (see, e.g., Refs. 1-4), and the initial sion term was written in differential form, and the total 
transient stage is neglected. It is of interest (particu- number of electrons remains constant in  time. 
larly for short pulses, when the electron density has 

3. However, in the course of the breakdown i t  is nec- 
not yet increased by many orders) to examine in detail essary to take into account the ionization collision term 
the evolution of the distribution function. To this end 

and the possibility of particle  multiplication^ The latter 
we solve in the present paper the nonstationary Boltz- can become decisive in the case of relamtion in strong 
mann equation with the real cross sectionsGS of the el- fields, when the avalanche development constant y is of 
ementary processes in helium. the order of o r  larger than 6v (Ref. 4): 

2. Turning to the literature, we note that the nonsta- 
GY=8.1<v.l>+I,=(vJe>+I,(v~le). 

tionary kinetic equation was solved earlier by a number (3) 

of workers.'-' Here 6d =2m/M @4 is the mass of the gas atom), v,~ 

~Gdis'  used the infinitely strong sink approximation and vi a r e  the frequencies of the elastic and ionizing 

at an energy equal to the excitation potential I,,. This collisions of the electrons with the gas atoms, and I, is 

is permissible only in relatively weak fields, when the the ionization potential. The angle brackets denote av- 
eraging over the distribution function. following inequality is rigorously satisfied: 

Here v is the transport collision frequency of the elec- 
trons with the gas atoms, vex is the frequency of the 
collisions that excite the atom, and c, is the electron 
oscillation energy: 

where e and m a re  the charge and mass of the mole- 
cule, and o and E a re  the cyclic frequency and the ef- 
fective value of the electric field intensity. In addition, 
~ d d i s '  neglected the energy loss in elastic collisions 
and assumed that v is independent of energy. Under 
these conditions the problem could be solved analytical- 
ly to conclusion. The result was a calculation of the 
time required to reach the stationary regime, 7, =I,,/ 
COY. 

~ o l m a n ~  solved numerically the nonstationary kinetic 
equation with model-dependent cross sections of the 
elementary processes, without allowance for the ion- 
ization collision term. He pointed out that in  the non- 
stationary heating regime the distribution function is 
enriched with fast electrons compared with the station- 
ary distribution at the same average energy. 

Reshetnyak and Shelepins developed a quasistationary 
distribution function (QDF) method for use with equa- 

We consider now the homogeneous problem, when the 
distribution function does not depend on the spatial co- 
ordinates. This is admissible under conditions when 
the drift of the electrons from the discharge region can 
be neglected (large diffusion times 7,): 

In addition, the electron distribution function will be 
assumed to be spherically symmetrical; this is pos- 
sible in moderate fields, when the following inequal- 
i t ies a r e  satisfied 

Under these conditions, the electron distribution func- 
tion in energy F(E, t) satisfies the kinetic equation 

We use here the normalization - 
j ~ ( e ,  t)e" de=n(t) /n, ,  (7) 
0 

where n(t) is the electron density at the instant of time 
t,n,=n(O). When writing down the collision term S, for 
the inelastic collisions, we make the simplifying as- 
sumption that the energy losses a r e  I,, in each exciting 
collision and Zi in each ionizing collision. 
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We introduce the distribution function f(s, T) for an el- 
ectron produced a t  the instant of time T =O. The total 
distribution function F(c, t) can be connected with ~ ( E , T ) :  

t 

F(8 ,  t ) a  j f ( t - ~ ) ~ ( ~ ) d ~ + f ( e ,  J), (8) 
a 

where R(T) is the frequency of electron production a t  
the instant: 

m 

R ( r ) =  JF(e , z ) v , ( e ) e" 'de .  (9) 

The function f (s, t) satisfies the equation 

af aJ  e'h-,-- 
at ak + s ( t ) a ( e ) ,  (10) 

where J(E,  t) is the flux in energy space: 

Here 6 ( t )  and 6(s) a re  the Dirac delta functions which 
determine the initial condition. The function f(c, t) is 
convenient because it has a constant normalization 

4. To solve Eqs. (10) and (6) we take the Laplace 
transforms: - 

~ ( e ,  s )  = j ~ - * Y ( E ,  t )d t ,  8 ( e ,  s )  = J e - " ~ ( e ,  t )d t .  (13) 
0 0 

For p(s, S) we have the equation 

scpe"=-dJ(cp)/de+l ( e ) ,  (14) 

where J{~} denotes expression (11) with f replaced by p. 
Equation (14) is an ordinary differential equation and 
can be solved by an iteration methodm4 Knowing p(&, s)  
we can easily obtain also @ (c, s): 

To obtain the original F(E,  t) we must take the inverse 
Laplace transform of % (c, s). We use here the Papoulis 
numerical method.' 

5. We demonstrate the results of the calculations in 
three figures. Figure 1 shows the establishment of the 
distribution function in  time at co = 2 eV. With respect 
to the parameter so it must be stated immediately that 

-9  FIG. 1. Electron energy 
distribution function at 

-6 so= 2 eV for different pt 
(in units of Torr-sec): 

-a curves: 1-0.25, 2-0.6, 
3-5, 4-stationary value. 
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FIG. 2. Change of avalanche development constant with time 
at different &,(eV): 1-0.5, 2-1, 3-2, 4-5, 5-10, 6-20. 

i t  has the same meaning a s  in Ref. 4, i.e., to calculate 
i t  i t  is necessary to substitute in (2) the value v =2.4 
x 10% (sec-I). Then, a s  shown in Refs. 4 and 5, the 
parameter so for helium characterizes the action of the 
electric field both at high (o > v) and low (w < v) frequen- 
cies. 

Figure 2 shows the change of the avalanche develop- 
ment constant with time, due to relaxation of the dis- 
tribution function, while yo denotes the stationary val- 
~ e . ~  

Figure 3 shows a plot of the growth of the electron 
density with time: 

with the straight lines showing the corresponding sta- 
tionary values. 

6. An analysis of the calculations shows that the time 
T, required for the distribution function to settle at i t s  
stationary value is close to  

and for  helium in a wide range of the parameter 

so, eV c s o <  20 eV, i t  is expressed by the simple 
analytic relation 

T, was determined here in accord with the level y: 

In the narrow region sow 0.01 - 0.1 eV, the values of T, 

calculated from (18) a re  close to the result of ~d;dis.' 

In conclusion, the aythor thanks A. V. Gurevich, M, S. 
Rabinovich, M. D. Raizer, and A. A. Rukhadze for in- 
teres t  in the work and for useful discussions. 

15 FIG. 3. Growth of elec- 
tron density with time at 

10 different so (eV): 1-2, 
2-5, 3-10, 4-20. 
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We investigate the influence of the limited radial dimensions of a plasma on beam-plasma interaction in 
the absence of a magnetic field. It is shown theoretically and experimentally that in the presence of a 
static transverse electric field, which causes transverse oscillations of the plasma, the limited radial 
dimensions of the system greatly influence the dispersion of the excited electronic oscillations if two 
conditions are satisfied: k,r,< 1 and o <vT/ro,  where k, is the longitudinal wave number and r, is the 
inhomogeneity dimension (the radius of the plasma), v, is the thermal velocity of the plasma electrons, 
and o is the oscillation frequency. The observed effect, that the frequency is lower than the electron 
Langmuir frequency, is due to the decrease of the transverse conductivity of the plasma as a result of the 
indicated oscillations.. 

PACS numbers: 52.40.Mj 

One of the fundamental problems in beam-plasma 
interaction is the influence of the limited radial dim- 
ensions of the system on the dispersion of the excited 
oscillations. In the one-dimensional case, which is 
realized in a strong magnetic field (a,<< 51,, where SZe 
and 51, a r e  the plasma and cyclotron frequencies of 
the electrons), it was shown theoretically and exper- 
imentally that the radial restriction leads to a sub- 
stantial decrease of the frequencies and increments of 
the oscillations, and critical values of the parameters 
it stops the instabi1ity.l' As to systems without a mag- 
netic field, the situation remained unclear until the 
very latest time. On the one hand, a rigorous theor- 
etical analysis with account of both the fact that the 
oscillations are not potential5 and of the inhomogeneity 
of the system3 has led inevitably to the conclusion that at 
al l  I Z , ~ ,  (k, is the longitudinal wave number and ro is 
the characteristic dimension of the inhomogeneity o r  
the radius of the plasma) the increments and frequen- 
cies of the volume oscillations a r e  equal to the cor- 
responding values in an unbounded homogeneous sys- 
tem with particle concentrations close to the cor- 
responding concentrations on the axis of the considered 
system. 

of the transverse static electric fields which confine 
the plasma particles within the beam, and show that 
under certain conditions these fields, in analogy with 
longitudinal magnetic field, lead to a substantial de- 
pendence of the dispersion of the excited oscillations 
on the characteristic dimension of the inhomogeneity 
(radius) of the system. The experimental data obtained 
in the present paper in an investigation of the collective 
interaction of a beam of positive ions with plasma elec- 
trons have confirmed the main conclusions of theory. 

THEORY OF BEAM-PLASMA INTERACTION WITH 
ALLOWANCE FOR TRANSVERSE OSCILLATIONS OF 
THE PLASMA ELECTRONS IN AN ELECTROSTATIC 
WELL 

We consider an axially symmetrical system in which 
a cold beam of charged particles passes with velocity 
V, along the Z axis through a plasma with electron 
temperature T,. The potential of the plasma varies 
along the radius like 

cp, ( r )  =-T2/ero1 

and i s  the potential well for the electrons. 

On the other hand there exist experimental indica- An investigation of the wave processes in the plasma 
tions that in some conditions and in the absence of an will be carried out in a quasistatic approximation (E 
external magnetic field the decrease of r, can lead to a = -VP) on the basis of linearized equations-the Vlasov 
decrease of the frequencies and increments of the ex- equation for the electrons captured in the radial po- 
cited volume  oscillation^.^^ This contradiction is re-  tential well, the hydrodynamic equations for the beam 
solved in the present paper, in which we construct a particles, and the Poisson equation. For  simplicity 
theory of beam-plasma interaction with account taken we consider only axially symmetrical perturbations, 
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