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An initial-value problem with periodic variation of the velocity in space is solved. The evolution of the 
density and velocity before and after the "toppling" of the velocity profile is investigated in detail. The 
formation of discontinuities in the density and in the average velocity after the onset of the multistream 
flow is traced. The number of mutually penetrating streams increases with time, but the system retains 
the smallest initial period and the number of density peaks does not increase. For a sinusoidal initial 
condition there is one density maximum for the period preceding the toppling of the profiled, and after 
this first toppling there are two density peaks per period, with the exception of individual instants of time 
when these peaks merge. At long times, the system tends to a homogeneous state throughout, with the 
exception of some rapidly narrowing regions that preserve the density singularity. 

PACS numbers: 05.60. + w, 05.30. - d 

1. A cold gas of noninteracting particles is one of the 
simplest classical systems suitable for simulation oi 
nonlinear motion in continuous media. A qualitative 
study of this model reveals many processes that a re  
typical also of a more complicated nonlinear system, 
say a plasma. In such a system, higher harmonics a re  
generated, the slope of the leading fronts increases, 
"toppling" of the wave profile takes place, and multi- 
stream flow with density peaks sets in. The number 
of mutually penetrating streams increases in the course 
of the evolution of the process. 

A simple and physically illustrative description of 
some of the main properties of nonlinear motions in 
such a system can be found in Refs. 1 and 2. However, 
a s  will be shown below, a more detailed quantitative 
treatment helps clarify certain details that refine and 
modify the picture of the evolution of the nonlinear per- 
iodic motions. We consider in detail the case of great- 
es t  interest, that of the toppling of the profile. From 
the qualitative point of view it becomes clear that the 
shortest period of the motion remains unchanged also 
after the toppling. After the formation of the multi- 
stream flow, the density has two peaks per period. The 
number of peaks does not increase in the course of the 
evolution. These two peaks converge into one a t  def- 
inite points of space only a t  certain individual instants 
of time. Thus, the purpose of the present paper is to 
analyze quantitatively the evolution of nonlinear peri- 
odic velocity perturbations in a cold gas of noninteract- 
ing particles. 

We consider the initial-value problem for the plane 
case. Assume that at the initial instant of time t=O 
there is  specified the distribution function 

f o  (4  US, 0 )  =no ( x )  6 (v=-V).  

The velocity of the cold gas a t  the initial instant is 

V-Vo( l+a  sin kx) .  

The evolution is along the characteristics 

of the equation 

At t 3 0 the solution is the distribution function 

f (x ,  v., t )  =n,(x-u,t) 8{v.-Vo[ l+a sin (kx-u.t) I). 

The particle concentration is 

where 

The flux is 

and the average velocity u = j / n .  Here ui(x, t) a re  the 
roots of the equation 

F ( u )  =u-Vo[ l+a sin(kx-ut) ] =O. (3) 

At 0 s t (kaVo)-l Eq. (3) has a single root. The function 
u(x, t) is in this case single-valued. Putting (u - Vo)/aVo 
=y,  k(x- Vot)=cp, and kaV,t=p, we get from Eq. (3) 

Y -sin(cp-py), (4) 

whence 

q=Arcsin y+py=rn+(-1)'arcsin y+py, r=O, * I ,  * 2 . .  . . (5)  

Each value of y corresponds to an infinite denumer- 
able set  of values of cp a t  all p. The inverse function 
y(cp) has a finite number of branches a t  any finite value 
of p. At 0 < p  < 1 the function y(cp) is single-valued. Its 
derivative is 

Obviously 1 y 1 Q 1. 

The extremal values y =i1 a r e  reached a t  

The derivative is then dcp/dy = m .  The toppling of the 
profile takes place a t  points where dq/dy = O .  This is 
possible only a t  odd values of r ,  when y =i(p2- l)ll'/p, 
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i. e., a t  the points 
(p2-1)" 

cp=rn* (-1)' arcsin- * ( ~ ~ - 1 ) ' ~ ,  
P 

where r = 2 m +  1, m is any integer, and p>O. It is seen 
that a t  O<p < l  no toppling is possible. The first  top- 
pling occurs at p = 1 + 0 at  the points cp =(2m + 1 ) ~ .  

3. We introduce the variables T =p - 1, $ = cp - (2m + 1 ) r  
and consider the function y(cp,p) near the f i rs t  toppling, 
7 << 1, y << 1. Taking into account the periodicity 

Y ( c p )  =Y (cp+2n), 

we put $ << 1. It follows then from (5) that 

pry--'/,y" .. . . 
This cubic equation yields y($,?). The function y($) is 
odd and its plots for different values of T a re  shown 
qualitatively in Fig. 1. 

a )  At 7 < 0 the function y($) is single-valued and given 
by 

y,=2"1~l"sgngshln[p+(p'+i)'h]'h, 

b) At T = 0 we have 

c) At T > 0 the function y($) is single valued in the re- 
gion p < 1, where i t  is given by 

Expression (8) tends to T -+0 to (7) in the region p > 1, 
and as p - 1 + 0 we have 

In the region p g 1 at  T > 0  the function y($) is triple- 
valued: 

yi=-2" 1 T I  " sgn g c o ~ ( ' / ~  arccos p ) ,  

~2'2% 171% sgn 9 cosl/s(X-arccos p ) ,  (9) 
~ 3 ~ 2 %  1 T I  " sgn $ cos '1, (nfarccos p ) .  

In this region we have a s  p - 0 

yi=- ( 6 ~ ) "  sgng,  y,= (67)"' sgn g, yl=O. 

FIG. 1. Evolution of the velocity y($, T )  and of the density 
n($, T )  in the first toppling of the profile: a) t = O ,  b) T = -  0.5,  
c )  T = O ,  d) ~ = 0 . 1 .  

At p = 1 - 0 it  follows from (9) that 

the two other roots merge 

y,=y,= (22)" sgn 9 .  

The branch y, a t  the point p = 1 (point c in Fig. 1) is 
continuous and is determined by (9) a t  p < 1 and by (8) a t  
b. 

1. The branches y2 and y, exist only a t  p 1. The se- 
quence of the branches is shown in Fig. 1: edcbblcldfe '- 
the first  branch (y,), nf blab-second branch (y,), afa- 
third branch (y,). The positions of the points a-c a re  
determined by the approximate formulas (8) and (9). 
We have 

The coordinates of the points d and e a re  calculated 
from the exact formulas (4) and (5): 

The points a'-ef a re  mirror-symmetrical relative to 
a-e. The density is calculated from (2). Let no = 1 in 
this formula. Then the concentration on each branch 
is 

The concentration on the branch ed decreases monoton- 
ically with time because of the dilatation of the volume. 
At the point e we have n - [ 1 +p  ( ' and at  the point d we 
have n = l .  At the points a-c ($<<I ,  y<<1,  ~ < < 1 )  we 
can use the expansion 

At the point 0 we have y, = 0 and on this branch n, = 1 T I - ' .  
At the points c and b we have y =z3l2 ( T ( ~ ' ~  and y = (67)lh, 
and correspondingly n - 137 I-', n = 127 I-'. At the top- 
pling point a we have T - fry2 and the succeeding terms 
of the expansion must be retained when the concentra- 
tion is calculated. 

We turn therefore to the initial exact expression (5) 
and consider the vicinity of the toppling points in great- 
e r  detail. At these points, a s  already noted, 

(pZ--I) " 
cp.=rn* (-1)' arcsin- ~ t ( p ~ - i ) ' ~ ,  (11) 

r = 2 m + l  is odd and p a  1. The upper sign corresponds 
t o  the point a ,  and the lower to the point a'. At the top- 
pling points 1 - y% = 1/p2 we have 

d4cp -1 = (-1)'3y.(3-2y.') (1-y.7-"~=3(-1)'p'(pz+2) (p2-1)'. 
drr? , 

We use the obtained values of the derivatives in the ex- 
pansions 
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Putting y - y* = c, cp - cp, =X , we obtain near the point a 

The discarded terms a re  always small compared with 
the retained ones a t  c << 1. In the derivation of (14) it 
was recognized that 

We note that x is negative here. 

In the case T = p  - 1 << 1 we must distinguish between 
two regions: IX l < < ~ ~ / ~  and IX ( > > T ~ / ~ .  In fact, if c 
<< (27)lI2, then the principal terms in (12) and (13) a re  
the first  ones 

These expressions a re  valid if I X  ) << 2112~312. 

On the other hand if I 6 I >> (27)'12, then the principal 
terms will be the second ones. Then E, = (-%)lI3, nl 
= 2 ~ ; ~ = 2 ( - % ) - ~ / ~ .  These expressions a re  valid a t  I X  ( 
>> 2112~312, and in particular a t  T = 0. We indicate here 
the subscript that numbers the branch. 

Thus, a t  the instant of the first  toppling a t  7 =0,  cp 
=(2m+ 1 ) ~  the density has only one singularity of the 
type n -x-'I3 over the entire period a t  the toppling point 
(x =O). In the subsequent instants of time O < T  < 1 there 
a re  two toppling points (a and a') in the period, a s  well 
a s  a density singularity of the type 

in the immediate vicinity on the left of the point a (on 
the right of a') at / X  I << 2112~312. At the points e and e' 
the density equals 1/(2 + T), while at the points d and d' 
the density is not distorted, n = 1. At the toppling point 
$, = $, on Fig. 1 the density has a discontinuity: On the 
right there is one branch n = + ~ .  To the left of this 
point there a re  three and the density becomes infinite 
like 

in the region 

The average velocity, determined by the ratio 

becomes discontinuous a t  the toppling points. It as- 
sumes successively the values Vo at  the point e ,  
(1 * a)Vo at  the point $,, Vo(l+ 21r ' a ~ ' ~ ~ )  a t  the point 
$,- 0, v0(1 - 21r2af 12) a t  the point $,+ 0, Vo at the point 
0 ,  Vo(l+ 21r 2 a ~ 1 r 2 )  at the point $a - 0, Vo(l - 2 ' / ' a ~ ' ~ '  1 
a t  the point $a+ 0, etc. (see Fig. 2). The jump of the 
average velocity a t  the toppling points is k3 X 21'2a~07, 
7<< 1. It increases with time and tends to the value 
*avo a s  t - m .  

FIG. 2. Average velocity 
u(ll, ) after toppling (a =O. 1, 
T =  0.1, vo= 1. $,=3 .  

For  each branch we can write everywhere, with the 
exception of the toppling points, the expansions 

dn 1 d'n 
= n +  ( v - c p = ) + - - - ( ~ - ~ - ) ~ + .  . 

dcp V a  2  dcp 

The functions y(cp) and n(cp) a re  implicitly specified 
here by Eqs. (4) and (lo),  and the derivatives a re  

dn d'y-GSy,  -= -- pyG-a sgn G ,  
dv' d v  

bn -- - [ p  cos (~-py)G-'+3pzyZG-51sgn G .  
dv' 

To simplify the formulas, we have introdyced the no- 
tation 

and have left out the subscript that numbers the bran- 
ches. 

We introduce the symbol x =cp - cp, and consider the 
characteristic points anew. At the point e we have cp, 
= r n ,  with r odd, 

We obtain 

At the point d we have y ,= l ,  cp,=m+(-l)'n/2+p. This 
point moves a t  constant (highest) velocity. About this 
point we have the expansion 

At the points c and b we obtain a transcendental equa- 
tion for y (p ) .  These points were considered a t  7 << l. 
At the toppling point a the expansion (15) is not suitable 
(G = 0). At the point 0 the phase is cp = r 8, r is odd, y 
= 0, and G = 1 - p. The expansions a t  these points a re  
given by 

Y = ( ~ - l ) x + o ( x = ) ,  
n= ( p  -1 I-'+'/2p(p--l)'sgn ( P - I ) X ~ + O ( X ~ ) .  

5. The behavior near the toppling points is described 
by Eqs. (13) and (14), from which we get a s  t -m the 
asymptotic expressions 

E= ( Z X )  ,Ap-%, n= ( Z X )  -"y*, 

if p2s<< 1, i. e., in the region &p)'I2<< 1. On the other 
hand, if pa&>> 1, then 

€ = ( z X )  "P-'/' n=2/,(2X) -'/'p-'/' 

in the region (2Xp)113 >> 1. Thus, the density singularity 
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continues to exist a t  all time when p >  1, but narrows 
down rapidly. 

As t-rn, cp=-kV,t we get y,=(cp-rlr)/p. Since -1 
< y < 1, we get for integer r the restriction r , , , <  r<r,,, 
where r,,, =p(1- a)/na, r,, =p(1+ a)/aa. The number 
of mutually penetrating streams N =r,,, - r,,, =2p/s in- 
creases linearly with time. 

The concentration of each stream is 

The density is calculated by summing over r ,  which can 
be replaced by integration over the equidistant spec- 
trum y,, with Ay,=y,, -y,= r ~ r / p :  

At t -rn i t  is natural to regard the quantity 

a s  the velocity distribution function with normalization 
(17). The average velocity is 

The mean squared velocity of the "thermal" motion is 

Thus, with the exception o narrow regions containing 
density singularities, the system evolves into a homog- 

enous state with a distribution function (18), character- 
ized by a density n = 1, an average stream velocity u 
= V,, and an effective temperature 

Allowance for the thermal motion in the initial distribu- 
tion (1) leads to a spreading of the inhomogeneities and 
to a finite amplitude of the density peaks. The equilib- 
rium velocity distribution is established when account is  
taken of the collisions. Motions of the considered type 
a re  possible in a plasma consisting of cold ions and 
thermal electrons (see, e .  g., Refs. 3 and 4), in which 
case the potential is 

The author thanks V. I. Karpman and L. P. ~ i t a e v s k f i  
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We study the nonlinear penetration of an electromagnetic wave into a plasma upon development of 
modulational instability. We use an averaging method which employs the substantial scale difference 
between the plasma and the electromagnetic waves to fmd the change in the refractive index of the 
incident wave when the plasma is layered on a fine scale. We consider in detail the stationary self-action 
of an s-wave in an initially uniform layer of an overdense plasma with sharp boundaries. We fmd the 
field distribution and the dependence of the transmission coefficient on the amplitude of the field of the 
incident wave. 

PACS numbers: 52.35.Hr, 52.35.Py, 52.40.Db 

INTRODUCTION 

It is well known that the processes of the modulational 
instability of Langmuir waves, which lead to the form- 
ation of Langmuir solitons and of the corresponding in- 
homogeneities in the plasma density (cavitons), play an 
essential role when strong electromagnetic waves in- 
teract with a dense collisionless plasma. One usually 
studies the modulational instability in order to deter- 
mine the magnitude of the effective collision frequency 

v,,, which characterizes the additional electromagnetic- 
energy loss connected with the excitation of fine-scale 
electric fields. In that case one does not take into ac- 
count the fact that appearance of cavitons (plasma strat-  
ification) also leads to a change in the real  part of the 
refractive index of the electromagnetic wave and, 
thereby, to a change in the distribution of the large- 
scale electric fields in the plasma. It is clear that 
taking such "reactive" non-linear effects into account 
is important for the determination of the characteris- 
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