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We investigate the influence of nonmonochromaticity of radiation on transitions between atomic tenns in 
radiative collisions between atoms. As the simplest analytically solvable example of a nonmonochromatic 
field we consider the bichromatic field. An analysis is canied out of Landau-Zener-type transitions in 
such a field at different field amplitudes and at various differences between the harmonic frequencies. 
New comb'ition Landau-Zener transitions are described. The results are generalized to include the case 
of arbitrary nonmonochromaticity of the field. 

PACS numbers: 34.205 

1. INTRODUCTION 

Radiative collisions, i.e., collisions between atoms 
and molecules, which occur in the presence of an op- 
tical field, have recently attracted great interest. In 
the course of radiative collisions it is possible to have 
inelastic collisions that a re  adiabatically forbidden in 
the absence of an optical field by virtue of the slowness 
of the collisions. A review of the theory of radiative 
collisions is contained in a paper by Yakovlenko.' The 
theory of radiative collisions in the presence of a mon- 
ochromatic perturbing field has been well-developed. 
At a certain instant of time, the difference between two 
energy terms of a quasimolecule made up of two col- 
liding atoms becomes equal to the energy of the optical 
photon and crossing of the terms takes place in the 
"quasimolecule + field" system. As a result of this 
crossing, a nonadiabatic transition becomes possible. 
The mathematical description of the process is similar 
to the theory of Landau-Zener term' crossing (see Ref. 
2, Sec. 90). 

The task undertaken in the present paper is  to in- 
vestigate the influence of nonmonochromaticity of the 
radiation ch transition between terms in radiative col- 
lisions. By way of the simplest example of nonmono- 
chromaticity we consider a bichromatic field, which is 
a superposition of two harmonic waves with close fre- 
quencies w, and w,. The matrix element of the bi- 
chromatic field between the lower (a) and upper (b) 
levels of the quasi-molecule then takes the form 

The quantity a is the phase difference at the instant of 

time t =  0. 

We denote the time dependent energies of the terms 
of the quasimolecule by Ea(t) and E,(t). Following the 
usual approach, we expand the term difference near 
the point of crossing in a series, and confine ourselves 
to the linear term 

For the sake of argument, we reckoned the time from 
the crossing point due to the first field: 

Eb(0)-E.(O) =us. 

The derivatives Fa and F, a r e  small quantities, since 
they a re  proportional to the velocities of the colliding 
atoms u, which a re  small compared with the atomic 
velocities. Namely, it is assumed that 

where ua and 7, are  the characteristic atomic velocities 
and times. 

We use henceforth the dimensionless time cp 
= (F, - ~ , ) ' / ~ t  and the dimensionless frequency difference 

A0-(a1~-0~) (F.-Fb)-"s. 

The dimensionless amplitude of the field 

then coincides with the known Landau-Z ener parameter. 

In Sec. 2 we consider the case of a weak field, and in 
Sec. 3 the case when the difference between the fre- 
quencies of the bichromatic field is large enough, and 
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the field itself can be strong. Finally, in Sec. 4 we 
investigate the case of very strong fields at not too 
large differences between the frequencies of the bi- 
chromatic perturbation. The conclusion is devoted to 
a generalization to the case of a realistic m~~ltimode 
laser radiation. 

2. WEAK FIELD 

In this section we shall assume that the conditions 
vl,,<< 1 are satisfied. Then, just as  for a monochro- 
matic field, the probability of the transition between 
the terms can be obtained within the framework of 
perturbation theory.' The amplitude of the transition 
in first-order perturbation theory is given by 

The time dependence of the wave functions in the in- 
tegrand is given in the adiabatic approximation. There- 
fore direct integration with respect to time yields the 
correct result only if there are no fast oscillations in 
the region that is important for the integration (see 
Ref. 2, Sec. 131). The perturbation-theory series con- 
stitutes in this case simply an expansion in powers of 
v,,,. This is precisely the situation in the Landau- 
Zener transition in a weak field, where the essential 
time interval is of the order (F,-F,)'/~. 

In the resonance approximation, leaving one expo- 
nential each from the cosines in the perturbation (1) 
and taking the expansion (2) into account, we obtain the 
transition probability 

We see therefore that the magnitude of the interference 
term depends both on the initial phase difference a, 
and on the change of the phase as a result of the differ- 
ence between the frequencies of the harmonics. 

If the frequency difference is large, i.e., Aw>> 1, 
then we must average the probability over small fluc- 
tuations of this quantity. The reason is that in a 
realistic case the two laser waves are not strictly 
monochromatic, but have a finite spectral width 6w. 
The statement made above concerning the averaging 
is valid under the condition 

of these two inequalities, the right-hand one ensures 
the existence of two separated monochromatic wave, 
and the left-hand one ensures a large increment, 
compared with unity, to the argument of the cosine in 
expression (2), owing to the contribution Bo, and it 
is this which brings about the need for averaging. As 
a result, the interference term vanishes, and the prob- 
ability of the transition turns out to be equal to the sum 
of the probabilities of the Landau-Zener type from each 
of the harmonics: 

<wd>=2n ( V , ' + V ~ ) .  

We note that because of the indicated effective averag- 
ing there is no interference between two such trans- 

ition points in the pre-dissociation phenomenon (Ref. 
2, Sec. 90). 

3. FIELD WITH HARMONICS THAT DIFFER 
GREATLY IN FREQUENCY 

In this section we consider the case when the crossing 
points of the terms can be regarded as isolated. To this 
end it is  necessary that the time interval between the 
crossing points Acp =Aw be substantially longer than the 
time of transition in the vicinity of the crossing points: 

The amplitudes can in this case be of arbitrary mag- 
nitude: v l , , s l .  

Inasmuch as  at Aw >> 1 there is effective averaging 
over the phase difference of the two fields and there 
is no interference term, we can multiply the prob- 
abilities calculated by the Landau-Zener theory for 
each of the transition points. This statement was 
justified in Sec. 2 within the framework of perturbation 
theory. We shall show that it is  valid also outside this 
framework. Assume that far to the left of the first 
term-crossing point t, the particle is on the lower 
level a. Then its wave function is 

After passing through the point t,, since the time of 
buildup of the probability of population of the upper 
level b is  small compared with the time t, - t, to the 
next crossing point, we have for the wave function in 
the interval between the two crossing points the ex- 
pression 

Y (t,atat,) =a,"q. exp (-at+$.) + ( i - - ~ ~ ) ~ r p ,  exp (-E~~+Q,). 

Here a, = exp(-~TV:) is the probability of staying on 
the lower level a in accord with the Landau-Zener 
theory, while q ~ ,  and cp, are the phase shifts accumu- 
lated after the passage through the first  crossing point 
tl. 

After the passage through the second term crossing 
point t,, we have for the wave function the following 
expression: 

Y (tWt,) =(a,a,)'hlp exp(-E.t+icp.') 

+ (al(i-a,) )'klpb exp (-iE,t+bbr) 

+((l-at)ar)"% exp(--i&t+b*" 

+ ((l-a,) (l-a,))'"t)aexp(-lE.t+llp."). 

Here a, = exp(-2rv& and cp:, and cp:,, are the phase 
shifts accumulated after the passage through the 
crossing point t,. The transition probabilities are 
given by 

we= I (a,(l-a=) )"+(az(l-al))'" exp[i(qs"-cpr') 11'. 

The interference term vanishes after averaging over the 
phase difference, in analogy with the situation in Sec. 
2 for the perturbation-theory case. We thus obtain 

For a weak field we obtain from this the result obtained 
at the end of Sec. 2, as  was to be expected. 

A specifically new effect for the bichromatic field is 
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the appearance of combination frequencies of the type 
nw, - (n - l)w,. If the distance between the quasimolec- 
ular terms is close to any one of these frequencies, then 
transitions of the Landau-Zener type also occur in the 
vicinity of these points. The corresponding transition 
points are shown in Fig. 1. The distance between neigh- 
boring transition points is Aw, as is also the distance 
between the basic points, where the term difference is 
equal to w, and w,. Therefore the very idea that these 
points are  isolated is valid under the condition Aw 
>> max(1, v,,,) written out above. 

To consider the produced transitions, which we can 
call combination transitions, the standard system of 
two equations that describe the dynamics of a two-level 
system in a monochromatic external field in the vicin- 
ity of the Landau-Zener point1 must first be subjected 
to the following modification: it is necessary to iterate 
each of the equations up to terms of third order pertur- 
bation theory with respect to v,,, and retain only those 
terms which contain the combination frequencies 2w1- 
w, or 2w, - w,. The system of equation then assumes 
the traditional form in the Landau-Zener approxima- 
tion, except that the matrix element v,,, is replaced by 
a three-photon combination matrix element. A similar 
procedure is carried out for the investigation of multi- 
photon bound-bound transitions in atoms in the case of 
term energies that are  independent of the time (Ref. 
3, Sec. 3.2; Ref. 4). 

The matrix element for the transition at the frequency 
2w, - w, is of the form 

The corresponding Feynman diagram (Ref. 3, Sec. 2.3) 
is shown in Fig. 2. Similarly, in the case of the trans- 
ition of the frequency 2w,-w, we have 

Under the condition Aw >> v,,, indicated above, these 
multiphoton matrix elements are small compared with 
the single-proton matrix elements v,,,. This state- 
ment agrees with the assumption that the Landau- 
Zener transition points are isolated. If v,,,s 1, then 
the combination transitions have a weak effect on the 
resultant transition probability inasmuch as we obtain 
in this case vl::<< 1. They become important, how- 
ever, in the case of strong fields v,,,>> l. The passage 
through the points w, and w, (see Fig. 1) returns the 
system in this case to the initial state, so that the re- 
sultant transition probability, after passing through 
the four Landau-Zener transition points 2wl-w,, w,, 

FIG. 1. Term crossing in bichromatic field and combination 
points of Landau-Zener transition. 

FIG. 2. The Feynman 
diagram for three-photon 
combination transition at 
the frequency 2w2 - wi .  

w, and 20,-w, takes the following form 

<w*>-a:" (i-a:) )+a? (1-d:) ). 

They have introduced here the notation 

and used the same averaging over the phase difference 
a s  in the derivation of Eq. (4). 

At v,,,>> 1 and v:l:<< 1, a s  seen from (4) and (5), the 
transition probability is low. If we remain within the 
framework of Eq. (4), then the probability obtained is 
exponentially small. The probability of combination 
transitions calculated by formula (5) may turn out to 
be much higher. In this case the probability is 

and has only a power-law smallness. However, if we 
take Aw large enough such that (we& turns out to be 
very small, then we can make the combination prob- 
ability small compared with the exponentially small 
probability obtained from formula (4) on the funda- 
mental harmonics. 

All the foregoing is valid when then following five- 
photon combination transitions geperated by the matrix 
elements 

at the frequencies 30, - 2w, and 30, - 2w, are small. 
To describe them we can repeat everything stated 
above concerning three-photon combination transitions. 
This description is necessary if they become com- 
parable with unity. 

4. FIELD WITH HARMONICS THAT DIFFER LITTLE 
IN  FREQUENCY 

We assume in this section that the condition Aw 
<< v,,, is satisfied. The time of the Landau- Zener 
transition then greatly exceeds the distance Aw between 
the transition points, and these points cannot be re- 
garded as  isolated. For the same reason, we cannot 
speak of combination transitions, since the respective 
points come close to the point corresponding to the 
fundamental tones. At first  glance it might seem that 
in the case considered here we can speak of one field 
with amplitude 

Actually, the inequality Aw<< v,,, indicated above turns 
out to be insufficient. The amplitude of the bichromatic 
field 

vr+v~ exp [i(a+cpAo) ] 

remains constant also during the transition under the 
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condition AwApt,<< 1. In a weak field Apt,-1 and the 
transition to the limit of one field is  justified, since 
Aw<< 1. On the contrary, in a strong field we have 
Apt=-v, ,, and the two fields can be replaced by a 
single one when the more stringent condition Aw << v;,', 
is satisfied. 

When a transition to the case of a single field is pos- 
sible, the probability is described by the Landau- 
Zener formula 

This formula is valid under the condition 

At v,,,<< 1 this yields in natural fashion the perturba- 
tion-theory result (3) with &o<< 1. 

If the phase difference a of the two fields has a ran- 
dom character, then expression (6) can be averaged 
over a! and we get 

Here I. is a modified Bessel function. In particular, 
in strong fields, when v,,, >> 1, we get from (7) 

(w*)==i- (8nZu,vz) -' exp [-2n(vi-v,)']. 

We see that in the case of a very strong field at v, 
= v,, for a bichromatic field with close frequencie.~ but 
with randomly distributed phases, the probability that 
the particle will remain on the initial level can be 
small not exponentially in v,,, as for the case of the 
monochromatic field, but in power-law fashion. How- 
ever, at v,*v, the exponential smallness is pre- 
served. 

We proceed now to the case 

when the problem cannot be reduced to the case of a 
single field. In this case, obviously, it is  necessary 
to regard the field as strong, i.e., v,,,>> 1. To con- 
sider this much more complicated situation we con- 
fine ourselves to the particular case of identical per- 
turbation amplitudes in both harmonics: 

This system of equations that describe the amplitudes 
of the populations of the levels b(p) and b(p) takes the 
following dimensionless form 

In the case when 

qAe-a 
cos (T) 4, 

we have the usual Landau-Zener system of equations' 
for a monochromatic field. 

In the general case the system (8) has no analytic 
solution. We resort to a quasiclassical solution of this 
system. It is valid under the condition dk/dq << 1, 
where 

a= vcos- [ 2 I -' 
is the characteristic wavelength of the system. This 
means that the conditions v >> Aw and v >> 1, which 
were already postulated before, must be satisfied. 

When these conditions are satisfied, the probability 
that the particle will remain on the level a takes, ac- 
cording to adiabatic perturbat ion theory, the form 
(Ref. 2, Sec. 53) 

Here f = 2vAw, and x* is a point in the complex plane 
(complex turning point), where 

In the case f<< 1, i.e., Awv", we obtain from (9) the 
possibility of the substitution 

ws ( x t - d 2 )  +cos (a/2), 

so that x* = icos(a/2). We then obtain 

as  already seen in (6) above at v ,  = v,. 

In the case of arbitrary vAwP 1, we estimate the in- 
tegral in (9) by starting from the condition v >> 1. It 
is easy to see that under this condition w ,  is  maximal 
when the phase difference a is close to n. Outside this 
region, the probability w,, decreases rapidly, so that 
we confine ourselves only to the vicinity of the values 
of a! near n. Calculating the integral in (Q), we obtain 

At 5" 1 we obtain from (10) the already knuwn result, 

If 5>> 1) then we get from (10) 

The last formula is  valid if v-'<< Ao<< v. 

5. CONCLUSION 

We examine in conclusion how the results of the pres- 
ent paper are modified if we go over from the simplest 
nonmonochromaticity in the form of two harmonics of 
a field to a realistic nonmonochromatic field containing 
a large number of close harmonics. The situation is 
simplest i f  perturbation theory is  applicable (see Sec. 
2). By generalizing formula (3) we find that the trans- 
ition probability is proportional to the sum of the 
squares of the individual harmonics of the amplitude 
of the nonmonochromatic perturbation, expanded in a 
Fourier series, to which quadratic interference terms 
are added. The latter vanish in the case of a sufficiently 
large so-called correlation interval of r ad i a t i~n ,~  which 
constitutes the difference between the frequencies of 
neighboring field harmonics (the analog of the condition 
Aw >> 1), or when the mode phases are not synchronized. 

The results of Sec. 3 remain on the whole in force 
also for an arbitrary nonmonochromatic field, inas- 
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much as in a real laser the distances between the fre- 
quencies of the neighboring modes are the same. Con- 
sequently, no new combination transitions, besides 
those indicated in Fig. 1, arise. Of course, changes 
take place in the values of the probabilities of the tran- 
sitions because each value of the combination frequency, 
including also that of the fundamental tones, is real- 
ized by a large number of pairs of radiation harmonics. 
We can state as  a result that the time of the Landau- 
Zener transition increases to the effective width of the 
nonmonochromatic radiation 

if this width exceeds the time of the Landau-Zener 
transition for one harmonic. 

The laser-radiation spectrum, however, contains be- 
sides the superposition of the modes also a nonmono- 
chromaticity due to the finite duration of the pulse and 
the stochastic phase randomization, whose influence 

on the character of the Landau-Zener transition calls 
for a separate analysis and may alter the foregoing 
conclusion concerning the transition time. 

The authors are sincerely grateful to N. B. Delone 
and M. V. Fedorov for valuable advice on the content 
of the paper. 
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Permutation symmetry of wave functions of a system of 
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It is shown that if the concept of identity of particles of a system is correctly defined, the known 
limitation on the permutation symmetry of the wave functions of physically possible states of the system 
turns out to be an automatic consequence of this definition. 

PACS numbers: 03.65.a 

1. We consider a system of N particles and assume 
that the quantity q, is the complete set of dynamic 
variables that describe its i-th particle. Then the 
Hamiltonian of this system and the wave functions I*) 
of its physically possible states will depend on the 
quantities q,. If the particles of the system are in- 
distinguishable, then its Hamiltonian turns out to be a 
symmetrical function of the quantities q,. Analytically, 
this property of H is expressed by the relation 

P-'HP-H-tHP-BH, (1 ) 

where f i  is any operator of the permutation group of 
the N indices of the quantities q,. We must immediately 
emphasize that the explicit form of H, and in partic- 
ular its property (1) is assumed to be known before - 
hand, since the equations of quantum mechanics be- 
come meaningful only under this condition. 

Each level of the SchrBdinger equation 

Hln)-E. ln)  (2 

of a system of identical particles (SIP) corresponds 
as a rule to a function In) which has one fully defined 
type of permutation symmetry (PS), i.e., to each 
value of En there corresponds only one Young pattern. 

However, Young patterns of different levels may not 
coincide: Eq. (2) obviously admits of solutions In) 
with different types of PS. On the other hand, it is 
known that in nature there have been encountered so 
f a r  only those In) for SIP, which have a maximal PS- 
either fully symmetrical, or fully antisymmetrical. 
It can be assumed that this strong limitation on the 
possible type of the PS of the solutions In) of the 
Schriidinger equation for SIP is connected with the 
nature of its particles-an SIP of definite nature ad- 
mits also solutions only of the corresponding type PS, 
consequently, so far only two types of particles have 
been observed-bosons and fermions. This raises the 
question of the possibility in principle of existence in 
nature of particles (of course, with integer or half- 
integer spin in units of h), aggregates of which would 
be described by functions with an intermediate type of 
PS-parabosons and parafermi~ns."~ 

If the wave functions I*) of the physically possible 
states of SIP admit of more than two types of PS, then 
there is apparently no unambiguous connection between 
the spin of the particles and the PS of these functions. 
It will be shown below, however, that the PS of the 
functions I*) is an intrinsic property of the SIP as a 
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