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The quantum restrictions imposed by the uncertainty principle of quantum mechanics on measurements 
of the parameters of motion of a macroscopic oscillator are estimated by means of the Feynman path 
integral. Two regimes of measurement are considered; continuous tracking of the oscillator coordinate, 
and measurement of the individual spectral components of motion of the oscillator. It is shown that a 
quantum threshold exists in each regime. Increasing the accuracy of the instrument above the quantum 
threshold does not improve the accuracy of the estimate of the force acting on the oscillator (due to the 
presence of quantum "measurement noise") in the case of continuous tracking and even impairs it in the 
case of spectral measurements. It is shown that an optimal measurement (from the viewpoint of quantum 
errors) is one performed with such accuracy that the measurement is intermediate between the purely 
classical and purely quantum measurements. The perturbation of the quantum system state in this case is 
insignificant, so that the measurement is a nonperturbing or almost nonperturbing one. It is shown that 
to observe a force with a known frequency band the spectral measurements have an advantage over those 
involving continuous tracking of the coordinate. An exception is the case when the force acts in a very 
narrow frequency band that includes the natural frequency of the oscillator. 

PACS numbers: 03.65.B~ 

1. INTRODUCTION 

The old problem of the description of measurements in 
quantum mechanics has recently acquired a more 
specific meaning and has been considered in a more 
practical light, since precise measurements, even in 
mechanical macroscopic systems have come close to  
those limits set  on them by the quantum uncertainty 
principle. A number of papers have appeared in this 
connection, in which the quantum restrictions on the 
accuracy of the measurements, and also the possibility 
of measurements that do not perturb the state of the 
system subject to the measurements a re  discussed.'-10 
As a rule, a model is constructed for the measurement 
system and with the help of a quantum calculation of 
this model conclusions a re  drawn a s  to the magnitude of 
the quantum noise and by the same token on the quantum 
restrictions on the accuracv of the measurements. 

To this problem can be appliedu the method of Feyn- 
man path integrals.= For  this one should express the 
transition amplitude of the quantum system from one 
~ o i n t  to another in the form of an integral over the 
classical path connecting these points and restrict  the 
integral to only those paths which correspond to the 
definite result of measurement. The amplitude thus ob- 
tained characterizes the probability of obtaining this 
result in the measurement process. Analysis of the re-  
sultant distribution of probabilities allows us to draw 
conclusions on the quantum restrictions on the mea- 
surement and to work out a method for estimating of 
the forces acting on the system from the results of 
measurements carried out on the parameters of motion 
of the system. The advantage of such an approach is 
that it does not require the fixing of a concrete model of 
the measurement system. The only thing that is r e -  
quired in the given case is that we settle on the class of 
measurements, i.e., that we indicate which observables 
are  measured, and which, on the other hand, cannot be 

assessed from the measurement results. The restric- 
tions on the measurement accuracy obtained in this ap- 
proach are  extremal, i.e., they cannot be improved by 
choice of a concrete measurement setup within the 
limits of the given class. 

The most direct application of this methodology is" 
in the analysis of continuous measurements of a coor- 
dinate x .  In this case, the integral is carried out along 
paths in configuration space and integration over all 
paths is  replaced by integration over the paths lying in 
a given corridor. Specification of the corridor is none 
other than the approximate specification of the function 
x(t). Just this result is produced by any measurement 
apparatus that continuously tracks some coordinate. 
The width of the corridor corresponds here to the ac- 
curacy with which the measurement apparatus deter - 
mined the instantaneous value of the coordinate. 

In the simplest case when the investigated system is 
a harmonic oscillator, the integral over paths lying in 
a given corridor can be calculated approximately. The 
result allows us to estimate the quantum restrictions 
on the measurement in such a regime." It turns out 
that the results of the tracking of the oscillator coor- 
dinate give the usual classical estimate for the force 
acting on the oscillator, s o  long as the e r ro r  in this 
tracking & remains greater than the quantum threshold 
Aa,. If Aa becomes less  than ha, then the classical 
picture is destroyed. Decrease of the e r ro r  ha below 
the limit Aa, does not increase the accuracy of the es-  
timate of the force acting on the oscillator. This esti- 
mate remains the same a s  if the coordinate tracking 
e r r o r  were equal to Aa,. Here Aa,= ( R / r n ~ ) ~ / ~  if the 
measurements interval is much greater than the period 
of the oscillator, w t  >> 1, and &, = (ET/~) ' "  if the 
measurement interval i s  much less than the period, 
w7 << 1. 

There is interest in the consideration of another class 
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of measurement systems, in which, instead of tracking 
of the motion of the oscillator, a spectral analysis of 
this motion is carried out. The most widespread a re  
systems in which the signal, proportional to  the coor- 
dinate, passes through a filter which isolates a narrow 
band of frequencies, and in the limit a single spectral 
component (harmonic). In this case, the information 
on how the coordinate changes with time, i.e., on the 
function x(t), is almost all lost and there remains only 
information oli a small number of spectral components 
of this function. 

In the present work, the estimate of the quantum re -  
strictions in the spectral regime of measurements of 
the oscillator is found with the help of the path integral. 
For  this purpose, we use the expression for the path 
integral in terms of the integrals over the amplitudes of 
the individual harmonics that enter into the expansion of 
the function x(t). For  the analysis of the measurement 
procedure, the limits of integration over each harmonic 
a re  so chosen that they express the result of the mea- 
surement. In particular, the length of the interval of 
integration corresponds to the accuracy with which the 
harmonic is determined in the measurements. The re -  
sultant infinite-multiplicity integral represents the 
probability amplitude of obtaining a given measurement 
result. By analyzing the probability distribution, we 
can estimate the quantum restrictions on the measure- 
ment in the spectral regime. 

Calculations show that the optimal e r ro r  of measure- 
ment of the n-th harmonic, which has the frequency 
n , = n ~ / r ,  i s  equal to 

The measurement result gives an estimate of the n-th 
harmonic f, in the expansion of the force f(t) which acts 
on the oscillator. The accuracy with which we can de- 
termine f, inthe case of optimal measurement is equal 
to 

and in the non-optimal regime, the accuracy is even 
worse. 

Of interest is the degree to which the estimate of the 
quantum restrictions on the measurement depends on 
the measurement procedure. For example, i t  is not 
clear beforehand whether the accuracy of measurement 
of the n-th harmonic worsens if the other harmonics 
a re  measured simultaneously. Calculations show that 
i t  is not made worse. The measurements of the var- 
ious harmonics a re  completely independent of one 
another. This recalls the frequently used procedure 
of expansion of a complicated motion of a system into 
normal modes and the consideration of them a s  inde- 
pendent quantum oscillators. However, in our case 
we a re  dealing with a different expansion. The f i rs t  
difference is that the expansion into harmonic depends 
on the duration of the measurement and not on the prop- 
ert ies of the measured system (dimensions, elastic 
properties, etc.). The second is connected with the 
fact that we a re  analyzing harmonics under specific 
conditions of measurement and not under the natural 

conditions of motion of the system under the action of 
external forces. It turns out that under these conditions 
the different harmonics make independent contributions 
to the e r ro r  of measurement. 

This allows us to give for  the quantum restrictions on 
the measurement a simple interpretation whose pos- 
sibility is not obvious a priori. This interpretation is 
that a quantum noise ar ises  in the measurements. The 
noises at different harmonics a re  independent of one 
another. The noise at the n-th harmonic depends on the 
e r r o r  with which this harmonic is measured, and is 
equal to 

It is clear that the sum of the e r r o r  of measurement 
Aa, and of the quantum noise Aaz becomes minimal if 
Aa,= aO,Dt. Then the quantum noises become equal to  
the measurement e r r o r  and their sum a re  of the same 
order of magnitude, and the same order of magnitude 
determines the e r ro r  of the estimate of the force acting 
on the oscillator. 

In the case in which all the harmonics a re  measured 
and the e r ro r  in each case is optimal, the total quantum 
noise turns out to be exactly the same a s  in the mea- 
surement in the regime of continuous coordinate track- 
ing : 

This gives a still f irmer basis for interpreting the 
quantum restrictions on the measurement as indepen- 
dently existing "measurement quantum noises," a1 - 
though, naturally, we must use this concept with cau- 
tion. If the measurements a re  carried out in a narrow 
band of frequencies A n ,  then the e r r o r  is due only to 
those quantum noises whose frequencies lie in this 
band. In a large interval of measurement, W T  >> 1, and 
in the'optimal measurement regime, the total quantum 
noise is equal to 

where i t  is assumed that the frequency band ASZis 
larger than o r  of the order of 7". 

The last  two formulas allow us to draw conclusions 
about the optimal regime of measurement in the case in 
which we must detect or  measure a small force acting 
on the oscillator from the response of the oscillator. 
If there is no a priori information on the acting force, 
then the optimal regime is the continuous tracking of 
the coordinate o r  the measurement of all the spectral 
components with optimal e r ro r  AUO,~'. If i t  is known 
beforehand that the force which must be measured has 
a spectrum in a limited band of frequencies, then i t  
turns out to be convenient to carry out the optimal 
measurement of the spectral components in this band, 
filtering out all the unnecessary parts of the spectrum. 

The structure of the paper is a s  follows. The prob- 
lem of the determination of the quantum restrictions on 
the measurement is formulated in Sec. 2 within the 
framework of the method of path integrals and results 
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obtained in Ref. 11 are  given for measurements in the 
regime of continuous coordinate tracking. In Sec. 3, 
the spectral measurements of an oscillator, namely 
measurement of the amplitude of a single harmonic, 
are analyzed within the framework of the path-integral 
method. In Sec. 4, the general case of spectral mea- 
surements i s  considered, in which all the harmonics 
are  measured in a definite frequency band, and different 
harmonics measured, generally speaking with different 
errors. A comparison i s  made of the quantum restric- 
tions that arise in measurements in the spectral regime 
and in the regime of continuous coordinate tracking. In 
Sec. 5, we discuss the results and several prospects of 
the investigation are  noted. 

In the calculation process, we do not take into ac- 
count thermal noise, i.e., we consider such conditions 
of measurement in which the thermal noise is negligibly 
small in comparison with the quantum indeterminacies. 
The quantum errors  in all the calculations are esti- 
mated only in order of magnitude, a fact not specifical- 
ly stipulated. 

2. CONTINUOUS MEASUREMENT OF THE 
COORDlPlATE 

According to the Feynman the~ ry , ' ~  the probability 
amplitude of transition of a quantum system from one 
point of configuration space to another during a definite 
time interval T is equal to the path integral 

Here the integral i s  carried out over all paths [XI= 
={x(t)} that lead from the initial point to the final one, 
and the classical action, calculated for the path [x], is 
denoted by ~ [ x ] .  The definition of the path integral can 
be found in the book of Feynman and Hibbs." Briefly, 
i t  reduces to the following. The time interval corre- 
sponding to the transition is broken up into equal in- 
tervals, each oath i s  approximated by a broken line, 
which is a straight line segment on each of the intervals 
of the breakup, and the path integral i s  replaced by a 
multiple integral over the nodes of these broken lines. 
Then the limit of the resultant expression is taken as 
the lengths of the intervals approach zero. This limit 
is, by definition, the oath integral. We can formulate 
all the premises of quantum mechanics in terms of such 
integrals and this allows us to make clear to a maxi- 
mum extent the connection between quantum mechanics 
and classical mechanics. We apply this apparatus to 
the solution of the problem of the quantum restrictions 
on the measurement. 

For definiteness, we shall speak of a one-dimensional 
harmonic oscillator. Then the integral (1) takes the 
form 

Here the integral is taken over paths with fixed ends 
x(0) and x(T). Since we shall not be interested in "edge 
effects," i.e., we shall not take into account the state of 
the oscillator immediately before the measurement and 
immediately after the measurement, we set x(0) =x(T) 

= 0. Then the path integral (2) with such end points 
gives the probability amplitude that the oscillator, hav- 
ing zero coordinate at the initial instant of time, will 
have zero coordinate also at the time 7. Here it  is as- 
sumed that the force f(t) acts on the oscillator in the 
interval [O, 71. 

We now assume that measurement is made of certain 
parameters of motion of the oscillator during the inter- 
val [0, T]. The resultant information can be formulated 
in terms of paths. For example, if the measurement 
consists of continuous tracking of the coordinate of the 
oscillator, then, as a result of the measurement we 
shall know precisely the path along which it  travels 
from the point x = 0 at time 0 to the point x = 0 at time 
T. If the measurement of the coordinate i s  carried out 
with finite accuracy, then we shall know exactly that 
the path of the oscillator lies in a definite corridor, but 
we shall not know the exact form of the peak within the 
limits of the corridor. The probability amplitude that 
the measurement give a result described by such a cor- 
ridor can be expressed by the integral (2) taken not over 
all paths but only over those which lie in the given cor- 
ridor. The calculation of such an integral gives the 
probability distribution over all possible results of 
measurement. 

Such a calculation was made in Ref. 11. Here we 
formulate only its result. First  of all, we must define 
more precisely the concept of the corridor, which i s  
the result of the measurement. We shall say that the 
path x(t) lies in the corridor {xo(t), Au} i f  

It would be more accurate in this case to say that the 
mean square departure of the curve x(t) from the path 
xo(t) does not exceed the value Aa. The integral (2) 
taken over paths satisfying the condition (3) gives the 
probability amplitude that the continuous tracking of the 
coordinate of the oscillator gives the result {xo(t), Da). 
It is clear that the probability distribution obtained in 
such fashion depends on what forceflt) acts on the 
oscillator. 

We shall characterize the force f by the trajectory 
along which the classical oscillator would have moved 
under the action of such a force, i.e., the function F(t), 
which satisfies the condition 

The probability distribution does not depend on whether 
the measurement e r ror  Au exceeds the quantum thresh- 
old 

(R/mo)" for a r W l  

(Rr/m)ah for  r r < i  ' 

If Au >> Au,, then the situation turns out to be complete - 
ly classical. In this case, the probability of obtaining 
the result {xo(t), Aa) turns out to be approximately the 
same for any path xo(t) lying in the corridor {[(t), Au} 
and vanishes if  xo(t) lies outside this corridor. It can 
be said that the path obtained a s  a result of the mea- 
surement is identical, to within .experimental error,  
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with that predicted by classical theory (4). If the mea- 
surement error  becomes less than the quantum thresh- 
old, Aa < Aa,, then the accuracy of prediction ceases 
to increase. In this case, the probability of the result 
of the measurement {xo(t), Aa} turns out to be approxi- 
mately the same for any path xo(t) lying in the limits of 
the corridor (5, b e ) ,  and is equal to zero i f  xo(t) lies 
outside this corridor. 

The result obtained in this fashion has a very illus- 
trative interpretation. The motion of the oscillator 
contains quantum noise, which is equal to Aa, in ampli- 
tude, and can be of arbitrary form. If the measurement 
error  i s  much greater than the amplitude of this noise, 
Aa >>Aa,, then the quantum noise, naturally, does not 
affect the results of the measurements. If Aa s Aa,, 
then the quantum noise itself begins to play the decisive 
role and further increase in the accuracy of measure- 
ment becomes meaningless, since in no way does it  de- 
crease the scatter of the measurement results in the 
case of a given external force. It should be noted, 
however, that the formulated results were obtained for 
a given class of measurements, that is, for measure- 
ments whose result is the path corridor (3). There- 
fore, the interpretation of the results in terms of 
"quantum noise* is valid beforehand only for this class 
of measurements and its application to another class of 
measurements can lead to errors.  

The probability of the various measurement results 
allow us to solve the problem of the estimate of the ex- 
ternal force from the given measurement result. Let 
the measurement give the result {xo(t), Aa}. Then at 
Au >: Aa,, we should draw the conclusion that the func- 
tion S(t) (which characterizes the force) lies in the cor- 
ridor {xo(t), &} and that at Aa s Aa,, the function ((t) 
lies in the corridor {xo(t), Aa,}. It is obvious that the 
estimate of the external force is also naturally formu- 
lated in terms of the quantum noise of amplitude Aa,. 

3. MEASUREMENT OF A SINGLE HARMONIC 

We now consider a measurement of a different class, 
as a result of which information is obtained only about a 
single spectral component of the function x(t) and con- 
sequently, only about a single spectral component of the 
forcent).  In order to find the quantum restrictions for 
the measurement system of this class, we can also use 
the path integral method. However, in this case, we 
must use another (equivalent) definition of the path inte- 
gral (2). Instead of calculating this integral as the 
limit of a multiple integral with integration over the 
nodes of broken lines, we can calculate the same inte- 
gral by expanding the function x(t) in harmonics and in- 
tegrating over the amplitudes of all the harmonics. = 

Since we are interested only in the interval [O, T] on 
'the time axis, we expand the functions x(t) and f(t) in 
this interval in Fourier series:'' - - 

r(t) - 4 sin Q.t, f ( t )  - f. sin Q.t, 
.-I 0-1 

where n, = nn/~. Then the action for the oscillator can 
be expressed in terms of the spectral components a, 
and f, in the following fashion: 

It was shown in Ref. 12 that an integral analogous to (2), 
but at f =0, taken over paths with zero boundary condi- 
tions, can be expressed a s  an infinitely multiple inte- 
gral over the variables a,. By analogy with this, we 
write, in the case of a non-zero force, 

where J is a normalizing factor. We now verify the 
correctness of this formula. 

Integration over all paths x(t) means that the integra- 
tion over each of the variables a, should be taken in the 
limits from -m to +m. As a result, we obtain integrals 
of the Gaussian type,'' which can be calculated explicit- 
ly and yield 

where J, is some new normalizing constant. We use 
the formula2' ( ~ e f .  12) 

sin or n ( ~ - $ ) = ~ *  
"-1 

and also the fact that 

where [(t) is the solution of the problem (4). If we take 
these equations into account and choose Jl in appropriate 
fashion, then the infinite product (8) can be put in the 
form 

in which the transition amplitude of the oscillator is 
expressed in terms of a functional of the action on the 
classical trajectory (4). According to problem 3.11 of 
Ref. 12, the transition amplitude of the oscillator in a 
strong field should actually be expressed by Eq. (9). 
Nevertheless, i t  is shown that the spectral representa- 
tion of the path integral (7) is valid even i f f  + 0. 
Therefore, we can use it for the solution of the problem 
of the quantum restrictions on the spectral measure- 
ments. 

We assume that a measurement is carried out in the 
time interval [0, r ]  and determines the quantity a, with 
error  Aa, . Then the probability amplitude of obtaining 
the result a, can be found with the help of the path inte- 
gral (7). The integrals over the variables a; and n i # n  
should be taken here in the limits from -a to +m, and 
the integral over a, in the limits from a, - Aa, to a, 
+ Aa,. Lumping all the integrals except the integral 
over a, in the normalizing constant, we obtain for the 
desired probability amplitude 

{ ;Au( 2 r (G, AG)=J, jdup(u).xp i- a ~ . ~ - a ~ ) + - u f ~ ] ] ,  (10) 
-- m 

where p(u) is a weighting factor, which is approximately 
constant in the range [a, - Aa,, a, + Aa,] and falls off 
rapidly outside this range. In order that the resultant 

670 Sav. Phyr JETP 50(4), Oct 1979 



integral be of Gaussian type, i t  is convenient to choose 
this weighting factor proportional to exd-(u -a,?/ 
4@,}. Calculating the resultant Gaussian integral, we 
obtain an explicit expression for the desired probability 
amplitude. The square of the modulus of this amplitude 
is the probability that the measurement, carried out 
with e r ro r  Aa,, gives the result a,; 

1 (an-anc1)* 
P(a , ,  Aa,) = J ,  exp - - 1 2 bana+ (Aanopf)4/Aa.2 1 

where 

nnC'=f , /m(ca2-s) .~) .  (13) 

The probability (11) reaches a maximum at  an=a,et, 
which corresponds to the classical connection between 
a spectral component of the force and the spectral com- 
ponent of the response of the oscillator. The probabil- 
ity falls off. With increasing deviation of the measure- 
ment result a, from this classical value. The more 
rapidly i t  falls off, the more accurately can we esti- 
mate the quantity f, from this classical value. It is ob- 
vious that the fastest fall-off, i.e., optimal measure - 
ment conditions is achieved a t  La, = &IT'. Here the 
probability distribution takes the form 

This probability distribution is concentrated almost 
completely in the interval [a, - a, + ha:9t]. Con- 
sequently, the results of measurement of a, will repro- 
duce in this case the classical value of this quantity a:' 
accurate to  AZpt. Conversely, if the result of measure- 
ment is equal to a,, we can then guarantee that a:' dif - 
fers  from a, by not more than a quantity of the order of 
Aapt9'. 

From formula (13) we can easily transform to the es -  
timate of the spectral component of the force. If the 
result of measurement of the spectral component of the 
coordinate of the oscillator is equal to a,, then the opti- 
mal estimate for the corresponding spectral component 
of the force is given by the formula (13) with the re -  
placement of a:' by a,. The e r r o r  of this estimate 
under optimal conditions (ha, = aaOZt) is of the order of 

If the e r ro r  ha, of measurement of the quantity a, dif - 
fers  from ha?', then the conditions of measurement 
are  not optimal and the e r ro r  in the estimate of the 
force is worse than (15). In this case, according to  
( l l ) ,  the scatter of the resultant measurement of a, is 
determined by the classical e r ro r  of measurement, Aa,, 
and the quantum e r r o r  is equal, in order of magnitude, 
to 

If ha, > aa0Zt, then the classical e r r o r  ha, predominates 
and in fact determines the scatter of results. If ha, 
< UnDt, i.e., the apparatus e r ro r  of measurement is 
less than optimal, then the quantum er ro r  begins to 
predominate, ha: > La,. Under both conditions, the 

scatter of the measurement results is greater than in 
the optimal case, and because of this, the e r ro r  in the 
estimate of the force acting on the oscillator is also 
non -optimal: 

In order to apply formula (15) to the case in which the 
measurements a re  carried out over the resonance f re-  
quency 51, = w, it  must be recalled that w cannot coincide 
exactly with any of the frequencies 51, (see footnote 2). 
Since the interval between 51, and a,,, i s  equal to Sl, 
- rl, it  must be assumed that the measurement at the 
resonance frequency corresponds to a choice of 51, such 
that (w - 51, - 7'. Here the formulas (12) and (15) give 

We thus see that in spectral measurements at the reso- 
nance frequency the quantum e r r o r  is essentially no dif- 
ferent from that which ar ises  in the regime of contin- 
uous tracking of the coordinate (Sec. 2). 

We compare these two regimes (spectral measure- 
ment and coordinate tracking) in the case of non-reso- 
nant interaction. If a periodic force f(t) + FsinS2t acts 
on the oscillator, then its response has the amplitude 
F/m (w2 - n2(. According to Eq. (51, this response can 
be measured in the tracking regime only with accuracy 
( t i ~ / r n ) " ~  (we assume that the measurement is of long 
duration, W T  >> 1). Consequently, the force can be mea- 
sured by this method with accuracy 

At the same time, by measuring a single spectral com- 
ponent of the oscillator response, we can attain the ac- 
curacy (151, which, in the same notation, is equal to 

If the ratio I l /w is less  than or  of the order of unity, 
then 

which makes the spectral measurement more suitable. 
The advantage comes essentially from the fact that in 
the spectral regime of measurement, we use apriori 
information on the frequency of the force acting on the 
oscillator. 

On the other hand, continuous tracking of the coordi- 
nate has the advantage over the spectral measurements 
in that it allows us  to observe a force of arbitrary f re-  
quency. Furthermore, within the limits of quantum e r -  
rors ,  the shape of the curve describing the change in 
force with passage of time is reproduced. It is true 
that the spectral measurements also can be organized 
in such a way a s  to  reproduce a force about which there 
is no a priori information. For  this purpose, i t  is nec- 
essary to measure al l  the spectral components of the 
oscillator response. However, as will be shown in the 
following section, the estimate of the quantum e r r o r s  in 
this case turns out to be exactly the same a s  in contin- 
uous coordinate tracking. In other words, in the ab- 
sence of a priom' information on the frequency of the 
force the spectral measurements offer no advantage. 
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4. GENERAL CASE OF SPECTRAL MEASUREMENTS 

We now can consider the case of an arbitrary spectral 
measurement on an oscillator. We assume that the sig- 
nal, which i s  proportional to the oscillator coordinate, 
is subjected to a spectral analysis and the value of each 
harmonic a, is then measured; the errors  of measure- 
ment &, are different for different harmonics. The 
result of the measurement i s  expressed by a sequence 
of numbers {a,, %, . . . , a,, . . . } which are determined 
with the respective errors  {&,, A%, . . . , &,, . . .}. The 
probability amplitude of obtaining such a result i s  given 
by the integral (7), in which the n-th integral (for ar- 
bitrary n) is taken over an interval of the order &, 
around the value a,. It i s  clear that the result of such 
an integration can be expressed as a product of ampli- 
tudes of the form (10). Transforming to probabilities, 
we obtain a product of expressions of the form (11): 

It follows from this distribution of probabilities that 
the result of the measurement, expressed in the form 
of the sequence {a,}, leads to the estimate of the spec- 
tral component of the force acting on the oscillator in 
accord with Eq. (13), with the replacement of a$ by a,, 
while the error of the estimate of the spectral compo- 
nent f, is described by Eq. (17). For those components 
for which the error of measurement greatly exceeds the 
optimal, Aa,>> qt, we obtain the purely classical for- 
mula 

Af.==mI as-8,'I Aa.. 

For those components for which the optimal measure- 
ment error i s  obtained, Aa, = M;', the error of the 
estimate of the spectral components of the force reaches 
its limiting value (15). This limiting value depends on 
the duration of the measurement T and decreases with- 
out limit with increase of this parameter. 

We now consider the case of a long-duration measure- 
ment, WT >> 1, and assume that the force acting on the 
oscillator has a spectrum in a comparatively narrow 
frequency band [SZ, SZ+ An]. In order to find and mea- 
sure this force, it i s  convenient to measure all the 
spectral components of the motion of the oscillator in 
this band of frequencies and to measure each of them 
with optimal error (12). If the results of the measure- 
ment of the frequency components are expressed by the 
set of numbers {a,, a,,, . . . ,a,}, where k = 51/0, = (51 
+ AS2)/SZ, then, setting the remaining harmonics equal 
to zero, we can obtain an estimate of the motion of the 
oscillator from the formula (6): 

4(t)--C a. sin 0.t. 

However, since each harmonic a, is equal to the clas- 
sical value (13) only accurate to Aa,,'", the classical mo- 
tion of the oscillator ((t), which corresponds to the ex- 
ternal force given by (4) acting on it, can be different 
from x,(t). The difference can be estimated from the 
mean square deviation 

It i s  not difficult to see that the maximum deviation is  
equal to 

I 

( A ~ ' > = C  (AaPL)' = AAQ 
m-k 

mloz-Qzl ' 

The amplitude of the quantum noise in the band A n  z T-' 
is estimated in this way. If the band of frequencies i s  
sutficiently broad (but does not contain the resonance 
frequency id= w),  then the estimate of the quantum noise 
is given by the integral 

The error in the estimate of the force acting on the os- 
cillator can be found in similar fashion. We get 

for a narrow band of frequencies and 

for a broad band. 

Formulas (19)-(22) are suitable for the estimate of the 
the accuracy of the optimal measurements in a band of 
frequencies, i.e., in the case in which we have a priori 
information on the spectrum of the force acting on the 
oscillator. If there i s  no such information, then all the 
spectral components of the motion of the oscillator 
must be measured in optimal fashion for a reliable de- 
termination of a small force or for an accurate mea- 
surement of i ts  form. In this case, the error  in the 
determination of the oscillator coordinate i s  equal to 

A - Q"' -I 
( d f ) = k  ( ~ a ~ " ) ' = - ~  ( 1 - ; ; I  . 

rmo' 

If the measurement interval i s  large, 07 >> 1, only 
terms with numbers n 5 WT= w/O, make a contribution 
to this sum, and the contribution from each of such 
terms is approximately equal to unity. This gives the 
estimate 

<&?)=h/mo for o r B i ,  (24) 

which i s  identical with the quantum threshold in the 
case of tracking of the oscillator coordinate (5). In the 
case of a short-time measurement, WT 5 1, the essential 
contribution to the sum (23) is made only by the first 
few terms, which leads to the estimate 

< A i > = h r l m  for o r G I ,  (25) 

which also agrees with (5). Consequently, in such a re- 
gime of measurement, which reliably measures the 
force of arbitrary shape (i.e., in the absence of a priori 
information), the spectral measurements do not have 
any advantage over continuous coordinate tracking. 
This is understandable, for if  we know the complete 
spectrum {a,, %, . . .} we can reconstruct the function 
x(t) completely, i.e., the measurement of all the spec- 
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t ra l  components is equivalent to continuous coordinate 
tracking. 

5. CONCLUDING REMARKS 

Summing up our results, we can draw the following 
practical conclusions. For  a measurement of the force 
about which there i s  no a pr ior i  information, acting on 
an oscillator, the spectral measurements do not give 
any advantage in comparison with continuous coordinate 
tracking. If the frequency band in which the spectrum 
of the active force is certain to lie is known beforehand, 
then the spectral measurements turn out to be better 
than the continuous tracking of the coordinate (with the 
exception of measurements a t  the resonance frequency, 
see Sec. 3). 

Both in the case of continuous coordinate tracking 
(Sec. 21, and in the case of spectral measurements 
(Secs. 3,4) we have seen that the optimal measurement 
regime lies on the boundary of the region in which the 
measurements a re  purely classical and a re  described 
by non-quantum equations. Since the measurement in 
classical theory does not lead to a significant perturba- 
tion (reduction) of the state of the system, we see  that 
the measurements in the optimal regime (from the 
viewpoint of quantum er ro rs )  should also be nonperturb- 
ing or  nearly nonperturbing. This illustrates the role 
which nonperturbing or  quantum-nondestructive mea- 
surements play in the quantum theory of measurements 
(see Refs. 2-5,7-10). The method of Feynman inte- 
grals, a s  we have seen, allows us to  consider measure- 
ments with account taken of the perturbation of the 
state to which this measurement leads. In addition to 
purely theoretical interest, this problem is of practical 
interest in those cases when the measurement system, 
even if designed for optimal measurements is subjected 
to the action of a force for which the measurement pro- 
cess turns out to be not optimal. In this case, to cal- 
culate the reaction of the system it i s  necessary to 
take into account the perturbation of the state. 

Specific estimates of quantum er ro r  a re  given by for- 
mulas (19)-(251, in which, naturally, Planck's constant 
enters. We note that these restrictions manifest them- 
selves in an oscillator even if the energy dissipation in 
i t  can be neglected. 

Besides these specific conclusions, there is interest 
in the conclusion that the quantum restrictions on the 
measurement can be formulated in terms of "measure- 
ment quantum noise," which has the spectrum (16). 
This possibility ar ises  a s  a consequence of the fact that 
the measurement of one harmonic has no effect on the 
accuracy of measurement of the other harmonics. In 
turn, this independence of the harmonics is a conse- 
quence of the fact that the path integral (7) is written a s  
the produce of integrals over the different harmonics. 
Additionally, the conclusion on the objective character 
of the quantum measurement noise is confirmed by the 
fact that the estimates of the quantum noise a re  identi- 
cal in continuous tracking of the coordinate (5) and in 
optimal spectral measurements at all frequencies [ ~ q s .  
(24) and (2511. 

It would be interesting to analyze more deeply the 
question of the correctness of the concept of measure- 
ment quantum noise, by considering the problem of the 
quantum measurement restrictions for principally other 
classes of measurements and for other (different from 
the oscillator) quantum systems subject to measure- 
ment. It can be thought that in the case of optimal mea- 
surements, which lie on the boundary of the classical 
region (see above), the concept of measurement quan- 
tum noise is correct. But if the perturbation of the 
system is substantial, then i ts  character and the char- 
acter of the measurement noise depend on the type of 
measurement procedure. One must also consider mea- 
surements in the quantum system with account of dis- 
sipation, and compare the measurement quantum noise 
with noise described by the fluctuation-dissipation the- 
orem in the quantum limit. Still another problem is the 
allowance for "boundary conditions," i.e., the state of 
the measured system before and after the measure- 
ment. In the present paper, the boundary conditions 
were not taken into account, which is admissible, in 
any case, for long-duration measurements. However, 
their account in the general case may turn out to  be 
significant. 

The comparison of the results here with the results 
obtained in quantum radiophysics is another problem, 
in particular, with calculation of the optimal filtration 
of quantum  signal^.'"'^ Such a comparison is made 
difficult by the essential differences in the setup of the 
problem and applied m e t h ~ d s . ~ '  

The author takes this opportunity to thank V. 8. 
~ r a ~ i n s k i r  and V. N. Rudenko for useful discussions. 

 or our purposes, it is convenient to have the expamion in a 
ser ies  and not in a Fourier integral. A transition to the 
Fourier integral, would transform each spectral line, which 
corresponds to a frequency a,, into a continuous-spectrum 
band having a width of the order of T", so  that the neigh- 
boring bands would run together. In the case of a large mea- 
surement time 7 >> (~i7j- l  (An i s  the band of frequencies of 
the force acting on the oscillator) the difference between the 
discrete and continuous spectra becomes unimportant. The 
transition from one method of description to another corre- 
sponds to the replacement of summation over n by integration 
( T / ~ T )  JdS2. S ~ c h  a transition was used in Eqs. (19)-(22) be- 
low. 

2 '~t  is seen from this formula and from the subsequent calcu- 
lations that the applied method is correct only in the caae in 
which the frequency 0, is not identical with the natural fre- 
quency of the oscillator a t  any n = 1 ,  2, 3. 
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We investigate the influence of nonmonochromaticity of radiation on transitions between atomic tenns in 
radiative collisions between atoms. As the simplest analytically solvable example of a nonmonochromatic 
field we consider the bichromatic field. An analysis is canied out of Landau-Zener-type transitions in 
such a field at different field amplitudes and at various differences between the harmonic frequencies. 
New comb'ition Landau-Zener transitions are described. The results are generalized to include the case 
of arbitrary nonmonochromaticity of the field. 

PACS numbers: 34.205 

1. INTRODUCTION 

Radiative collisions, i.e., collisions between atoms 
and molecules, which occur in the presence of an op- 
tical field, have recently attracted great interest. In 
the course of radiative collisions it is possible to have 
inelastic collisions that a re  adiabatically forbidden in 
the absence of an optical field by virtue of the slowness 
of the collisions. A review of the theory of radiative 
collisions is contained in a paper by Yakovlenko.' The 
theory of radiative collisions in the presence of a mon- 
ochromatic perturbing field has been well-developed. 
At a certain instant of time, the difference between two 
energy terms of a quasimolecule made up of two col- 
liding atoms becomes equal to the energy of the optical 
photon and crossing of the terms takes place in the 
"quasimolecule + field" system. As a result of this 
crossing, a nonadiabatic transition becomes possible. 
The mathematical description of the process is similar 
to the theory of Landau-Zener term' crossing (see Ref. 
2, Sec. 90). 

The task undertaken in the present paper is  to in- 
vestigate the influence of nonmonochromaticity of the 
radiation ch transition between terms in radiative col- 
lisions. By way of the simplest example of nonmono- 
chromaticity we consider a bichromatic field, which is 
a superposition of two harmonic waves with close fre- 
quencies w, and w,. The matrix element of the bi- 
chromatic field between the lower (a) and upper (b) 
levels of the quasi-molecule then takes the form 

The quantity a is the phase difference at the instant of 

time t =  0. 

We denote the time dependent energies of the terms 
of the quasimolecule by Ea(t) and E,(t). Following the 
usual approach, we expand the term difference near 
the point of crossing in a series, and confine ourselves 
to the linear term 

For the sake of argument, we reckoned the time from 
the crossing point due to the first field: 

Eb(0)-E.(O) =us. 

The derivatives Fa and F, a r e  small quantities, since 
they a re  proportional to the velocities of the colliding 
atoms u, which a re  small compared with the atomic 
velocities. Namely, it is assumed that 

where ua and 7, are  the characteristic atomic velocities 
and times. 

We use henceforth the dimensionless time cp 
= (F, - ~ , ) ' / ~ t  and the dimensionless frequency difference 

A0-(a1~-0~) (F.-Fb)-"s. 

The dimensionless amplitude of the field 

then coincides with the known Landau-Z ener parameter. 

In Sec. 2 we consider the case of a weak field, and in 
Sec. 3 the case when the difference between the fre- 
quencies of the bichromatic field is large enough, and 
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