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A consistent theory is developed for nonlinear interaction of waves in a medium with an ideal periodic 
structure, for the case of Bragg diffraction of waves after Laue. Expressions are obtained for the second- 
harmonic amplitudes along the directions of the incident and diffracted waves. The regions of existence 
of "Bragg" synchronisms are identified, and the effectivenes of second-harmonic generation at various 
types of synchronism is analyzed. The theory is of interest for the description of nonlinear effects in 
optics of periodic structures and in x-ray optics. 

PACS numbers: 42.10.Hc, 42.65.Cq, 78.90. + t 

1. INTRODUCTION 

The study of nonlinear wave processes in media with 
periodic structure, when its spatial period is of the or- 
der of the wavelength, is of considerable interest for a 
number of branches of physics. For example, if one 
speaks of electromagnetic waves, such processes can 
take place both in the optical band (media with artificial 
periodic s t ruc t~re , ' .~  intkgrated-optics  element^,^ li- 
quid  crystal^,^ etc.) and in the x-ray band (crystal gra- 
tings ,8-l2 zeolite crystals). 

In the present paper, using second harmonic genera- 
tions (SHG) as  an example, we describe a consistent 
theory of nonlinear interaction of waves that undergo 
Bragg diffraction in an isotropic medium. It is shown 
that, generally speaking, in Laue diffraction there ex- 
ist six synchronism conditions that admit of simple in- 
terpretation in the language of the effective refractive 
indices (ERI) known in the dynamic theory of diffrac- 
tion,lae21 In turn, in each synchronism the harmonic 
generation proceeds simultaneously along six different 
channels. One of the channels, pertaining to the case - .  
of nonlinear diffraction, was discussed by Freund? 

It is known that Bragg diffraction of waves is possible We have investigated the of the effective- 
in media with a periodic structure- Under Bragg-dif- ness of synchronous SHG on the type of synchronism, 
fraction conditions the nonlinear interaction of the the algebraic values of the deviation from the exact 
waves acquires entirely new features. In particular, it Bragg diffraction condition, and the parameters of the 
was shown recently's-'5 that in Bragg diffraction it is medium. 
possible to realize new types of synchronism in iso- - - 
tropic media with spatially-periodic modulation of the 
linear and nonlinear susceptibilities. These synchron- 
isms uncover additional possibilities of realizing syn- 
chronous interactions of optical waves in isotropic me- 
dia, where the traditional synchronism method, based 
on birefringence, is not applicable1* (this is particular- 
ly important for the feasibility of using the short-wave 
region of the spectrum), and also makes possible a new 
approach to the problem of frequency doubling in the x- 
ray band.'4 It should be noted that the synchronisms 
revealed in our studies include as  particular cases two 
previously considered1-3 types of synchronous interac- 
tions in a periodic structure. 

2. EQUATIONS FOR ELECTROMAGNETIC FIELDS IN 
A NONLINEAR MEDIUM WITH PERIODIC STRUCTURE 

We consider the interaction of harmonic waves at 
frequencies w and 2 w  in a medium with quadratic non- 
linearity. This process id described by two equations 
for the complex fields: 

o2 8510' - rot rot El (I)- -(1+4n~,)E, (r) = - pEIE,', 
c' c' (1) 

do' 16no' - rot rot E,(r) - -(1+4n~,)E~(r) - BE:. c' 

Here E ](t,  r) =E ](r) exp (iw,t)+ c.c., x ](r) is the linear 
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susceptibility, B(r) is the quadratic-susceptibility ten- 
sor,  wj=jw, j=1,2.  

In a medium with ideal spatially periodic structure, 
the susceptibilities can be expanded in a Fourier series 
in terms of the vectors of the reciprocal vector h: 

Let the waves propagate at an angle close to the 
Bragg-reflection angle 8 8, =arcsin (hc/2w). Then, 
besides the waves traveling in the principal direction, 
waves of different diffraction orders will appear in the 
medium. Confining ourselves to the two-wave approxi- 
mation,'6+' we represent the sought fields in the form 
of a sum of a transmitted (index 0) and reflected (indi- 
ces h, 2h) waves 

E, (r) -e&, exp(iikor) fi exp (iiknr), (4) 

where E ,,, and E ,+ ,, are the wave amplitudes, which 
undergo slow changes as  a result of the Bragg diffrac- 
tion and the nonlinear interaction, 

the vector k, is directed along the "0" direction, e, and 
e, are the polarization unit vectors and are located 
either in the scattering plane (b, k,) (case of r polari- 
zation) or are perpendicular to this plane (o polariza- 
tion). 

Substituting (3) and (4) in (1) and (2), and discarding 
the small second derivatives of the amplitudes, we ob- 
tain a system of abbreviated equations: 

where the parameter 

a-(kt,'-ka2) ~ ' l o ' = 2 ~ ~ ( 0 4 ~ ) s i n  28s 

characterizes the deviation from the Bragg condition 

n is the normal to the surface of the sample, the para- 
meter A =x, , -xl , characterizes the frequency disper- 
sion of the mediuh, the quantities 1 o! I ,  I ,  Ix j, jh 1 << 1 
are much smaller than unity, and 

Here /3:i bb.c'=e,P,hebe, are the convolutions of the vari- 
ous Fourier components of the quadratic-polarizability 
tensor. The polarization factor, equal to cos 28 in the 
case of n polarization, is included in the quantities x ,, , 
and x,,, , (in this case x;,,, =x;, j h  cos 28). In the case of 
a linear medium ( P  -0) the system (5) goes over into 
the Takagi  equation^.'^,'^*^^^^^ 

From the expressions for P,,,, P,,,, we see that in the 
case of second-harmonic generation there take place 
both collinear interactions 

ki,o+ki,o=k:,o, kt,h+ki,t,=kz,~ 

(terms with 8,) and noncollinear interactions of two 
types 

(the terms with 8-, and /3,, these interactions are shown 
dashed in Fig. 1) and 

(terms with fl,, and &,, see Fig. 1). 

We consider next with the aid of Eqs. (5) the SHG by a 
plane wave, neglecting the reaction of the second-har- 
monic field on the fundamental-f requency wave P, ,, 
= P I ,  ,=O. For convenience we omit the superior index 
of 0:; ,lC', with the exception of /3A0q0*0)=PA0), gh* hTh)=/r ,h) .  
We put also x,,,=x,, x2,,,=x2,. From the energy con- 
servation law it follows that in a medium without ab- 
sorption we have xf,=~-,,, 8% =P-*,. 

3. SECOND HARMONIC GENERATION IN LAUE 
Dl FFRACTION 

Let the normal n to the entry surface of the medium 
be perpendicular to the reciprocal-lattice vector (sym- 
metrical case of Laue diffraction), in which case JI, = (J, 
= O  (Fig. 1). At the entry to the medium, at z =0, the 
wave amplitudes are equal to 

Integrating Eqs . (5c) and (5d) at P,,, =PI,, = 0 we obtain 
the Pendellosung known from dynamic diffraction theory 
for the field of the fundamental r a d i a t i ~ n . l ~ - ~ ~  We rep- 
resent the solution in the form of a sum of two elemen- 
tary types of fields (i): 

FIG. 1. Frequency-doubling scheme in symmetrical diffrac- 
tion: a-after Laue, nlh ,  b-after Bragg. nl(B. 
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where 

Substituting (9) in (7a) and (7b) and integrating (5a) and 
(5b), we obtain expressions for the second-harmonic 
field amplitudes 

where 

p i ,  0 q -  r,=(a'I4+~i')'~. n'=~m~-~1 1-1. 5 
tr) 

C,,,= (qa12+r2)~: '1+qx-dm , 

2 to,  
F,'"= -- ; (Po  x11-p-hna-p-rrn2), P=O, 

'ti 

F;:) is obtained from FbP) by the substitution 

We note that 

P 

It is seen from (10) that when the condition 

is satisfied the expressions for the fields acquire res- 
onant terms that increase in proportion to the trans- 
versed distance z: 

Relations (11) are the phase-synchronism conditions for 
frequency doubling in a medium with a periodic struc- 
ture in Bragg diffraction after Laue. These conditions 
can be expressed in terms of the ERI (Ref. 21): 

&:.' - (I+~i.~-a/2*r,)", n:,:'= (1+y.,.o+a/2*y,)*, fat, 2, 

the plus and minus signs correspond to the two elemen- 
tary field types, see (9). Recognizing that p=O and i1 
and that q = il ,  we obtain from (11) the following six 
types of synchronism: 

The synchronisms I and III-V are satisfied in the case 
of a deviation from the Bragg condition [see (6)] 

It must be emphasized, however, that the regions of 
existence of the synchronisms do not coincide (see Fig. 
2). On the regions of the boundaries, designated by 
dashed lines in Fig. 2, the conditions of the correspon- 
ding synchronisms are satisfied under the Bragg con- 
dition: a, =O. Near these boundaries, the case 1 a, { 
<< x , is reaIized. 

In synchronism I the fundamental-f requency field of 
the plus type interacts synchronously with the doubled 
frequency field of the minus type (Fig. 3). In synchron- 
ism II, a synchronous interaction of both types (*) of 
fields of fundamental frequency takes place with the 
field of minus type of the doubled frequency. The inter- 
pretation of synchronisms 111-VI is  analogous. In each 
synchronism (l3), at the frequency 2 w only one type of 
field is synchronously excited in both directions "0" and 
6s h ,. , . the minus type in synchronisms I-III (q =-1), and 
the plus type in synchronisms N-VI (q = 1) [see (12)]. 

It is known that the presence of only one type does not 
lead to extinction beats ,'=-'I therefore the synchronously 
excited second harmonic has no extinction beats typical 
of the Pendellosung (9). The barely noticable extinction 
beats at the frequency 2 w  (Fig. 4a) in synchronism I 
can be attributed to the weak nonsynchronous genera- 
tion of a plus-type harmonic field. 

In principle, however, two different types of syn- 
chronism can appear simultaneously: for example, I1 
and N at a,,, = a ,,,, A2 = G(: - Xi)/3, near the point D 
(Fig. 2). Then excitation of two elementary types of 
fields (*) simultaneously at the frequency 2w leads to 
spatial extinction beats of the second-harmonic waves 
"0" and "h" (Fig. 4b) with a half-period (extinction 
length) 

z.,,-cnon cos e / o r 2 .  

The effectiveness of the synchronous SHG, a s  seen 
from (12), is determined by the coefficients 

The effective nonlinear susceptibilities (ENS) Op"iM de- 
pend on the combination of several Fourier components 
of both the linear (X , j , )  and the nonlinear (P,,) suscep- 
tibilities and of the parameter a. This is a reflection 
of the fact that when SHG is produced in the periodic 
structure interference takes place between the contrib- 
utions from the synchronous processes that occur si- 

FIG. 2. Regions of existence of six "Bragg" synchronisms fn 
Laue diffraction. and synchronisms II and VI at a deviation 
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FIG. 3. Intersection of the dispersion hyperbolic surfaces for 
the effective refractive indices n:f) in reciprocal-lattice space 
(synchronism I), ?I,, is the average refractive index. 

multaneously in six different channels (different P,,,, 
see above and Fig. 1). Under certain conditions, the 
contributions of the individual channels can mutually 
cancel each other, in which case the corresponding ENS 
vanishes and the effective SHG is impossible in this 
synchronism. The effect of 'huenching" the synchron- 
ism in SHG in a periodic structure is the nonlinear ana- 
log of the effect of quenching or  "forbiddenness" of cer- 
tain reflections & jh = 0) in linear Bragg diffraction. 

Since usually the dispersion is large enough A 2 x1 
+Xa, greatest interest attaches to synchronisms I and 
11. We present therefore an analysis of the ENS for 
only these synchronisms. The treatment of the other 
ENS is similar. 

Synchronisms far from the Bragg diffraction condition 

Let the synchronisms be satisfied at large deviations 
from the Bragg diffraction conditions, a: >> 4x:, in 
which case 

For the synchronism I (a:, - Az) this case is realized at 
(X:+~:)/A~<< 4, and for 11 (a:,, -4Az)-at x:/aZ<< 4. 

In the region a s >  0 ( k h >  k,) we get from (10) and (14) 

I F<Z*I .~"-+714 :p 1 

" I00 ZOO 300 400 500 
zwo/c 

FIG. 4. Growth of the second-harmonic amplitude with in- 
creasing distance in Laue diffraction [results of numerical 
solution of the system (511: a-synchronism I is satisfied, a 
=a&, x2dxh= / l P h l / =  lPkl /P0=0-1, @ & / ~ = 1 . 8 . 1 ~ ~ ,  
A = 1. 5xh; b-two synchronism II and lV occur simultaneously, 
(y =ua=(ya; the parameters chosen correspond to the region 
mar the point D (8ee Fig. 21, aJ~~ '0 .48 ,  ISzh I =O.  1 I Bh I 
=0.03~3,, ~ & / A ~ 0 . 1 3 * 1 0 - ~ ~  +,awA/~=20. 

Since (~2,>>4~:, it follows from (15) that the synchron- 
isms will be much more intensive in the "h" direction 
than in the "0" direction: Cf, >> C,q'-,. The relative 
effectiveness of synchronisms I and 11 along the channel 
Fzh is determined by the small quantity xf/ol;, while 
Ph and pbh' are  practically the same in the other chan- 
nels. 

If the modulation of the linear susceptibility is van- 
ishingly small, X ~ / ( Y , - X  -0, then only the ENS for 
synchronism I along the "h" direction remains different 
from zero: ct, = IF,, 1, and is connected in this case 
with the interaction channel due to the modulation of the 
quadratic susceptibility. The condition for synchron- 
ism I assumes in this case the form a,, =A; the non- 
linear diffraction condition &,,,=2&,,+ 2h is then sat- 
isfied (this type of synchronism was first discussed by 
Freundl). The last case can be used to obtain effective 
SHG in an isotropic medium with large frequency dis- 
persion. 

In the region a,<O (kh< k,) we get from (10) and (14) 
the expressions 

c,!!',= l~J~)1/4, c;,!, = l F:' ~~/4a , l ,  I 

In this region the situation is reversed: the stronger 
synchronisms are  those along the "0" direction: 

~ ~ ! ~ ~ / ~ ~ ~ , - l x ~ l / l a ~ l < i ,  

and the ENS for synchronism II is 2 la, I /  I X h  I times 
larger than for synchronism I in the case of a centro- 
symmetric medium (@:=a) and Z a ~ / x ~  times larger for 
a non-centrosymmetric medium (go)# 0). At a vanish- 
ingly small modulation of the linear susceptibility x ,/ 
as - 0 the effectivenesses of both synchronisms drop to 
zero. 

Thus, in the region of large positive values of a ,  the 
synchronous SHG manifests itself primarily in the "h" 
direction, while in the region uf negative values with 
large moduli-in the "0" direction. This result is un- 
derstandable from physical considerations. As already 
mentioned, in the synchronism L I D  (q = -1) a field of 
the minus type is excited synchronously at the frequen- 
cy 2w. As seen from Fig. 5c, if  a "X,, then IE',;',,I 
>> (E;:, I, therefore a second-harmonic wave will be ef- 
fectively excited only in the "h" direction. At a<< -xZ, 
on the contrary, \E'$!, 1 >> \E'2zh 1 and only a harmonic 
wave in the "0" direction will be effectively generated. 

The opposite picture is observed for synchronisms 
w-VI (q = 1). 
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FIG. 5. Plots of effective nonlinear susceptibilities (ENS) in the "x-ray" (a. the arrows indicate the positions of the synchro- 
nisms) and "optical" (b) cases, c-dependence of the amplitudes of the two types of field on the parameter a!. 

Synchronisms near the Bragg diffraction condition Absence of Bragg diffraction at one of the frequencies 

Let the synchronism be satisfied with small deviation If the Bragg diffraction of the fundamental wave is 
from the Bragg condition: I as\  <<x j. For synchronism forbidden, X, =0, and the diffraction of the excited sec- 
I this condition is satisfied at Ixl+xz - A 1 << x j, and for ond harmonic is possible, X, # 0, then 
II at I X ,  - A 1 <<xj.  Then the ENS for synchronism I is F$)-F!O)-.O, F:"-fi,'"'(l+a/lal)', F:'-$,(l+a/lal)'. 
equal to 

I (I' 
cl.-,=~,,-,=~/,l$d"+2~~~~/~~+g-~~'/~: 

- ($ th+zgh~ ,+adh)~ f /X : )~ -u /X~~ .  

Synchronism II loses its force, since Cr;$ =O. Synchro- 
nism I appears only in the region a > 0 at a, = (Aa 

(19) 
A and the corresponding ENS at synchronism are equal 

Similarly for synchronism 11 at I a,,,\ <<x2 we have to 
101 c,,-,- I x - ~ ( $ : ~ ~ x ~ - A $ ~ )  I/(A'~x:), 

c:!',=c:,!,=~/,I pio' -i3-mnz/~lt- Y ~ ~ I x : ) x - ~ x I I .  (20) C:,?,=C,(."_'I (A'-x;+lyd) /2~-~Al .  

In the optical band, for a medium with induced o r  na- 
If the parameters satisfy the relation gOkah =A&,, then 

tural periodic structure, the typical situation is x,, 
= X  - j h = ~  ,. In this case we get from (19) and (20) q!, =0, "quenching" of the synchronism takes place 

(above), and no synchronous generation of the harmonic 
c : . ~ , ~ c ~ ~ ~ , ~ ' / , I ~ : " '  -$:I' +2($-~-th) +$-u-Pal, OCCUIS. 

C,.'-":=C.~!~,=*/,I a:"' +$' -a-m+bul. 

If the medium has no inversion center, then its quad- 
ratic susceptibility has a dc component &. An example 
of such a mediuin is lithium niobatel) with $ - lo-' cgs 
esu, in which it is possible to induce a periodic dis- 
tribution of the 'refractive index with a modulation depth 
-lo4. Then usually I@[ - Igh)l >> lPhl >> (PPhl and the 
ENS of synchronism II is much larger than that of syn- 
chronism I: 

C ~ . ? , = ~ ~ ~ ~ / ~ W C ~ ~ , = I ~ ~ I .  

If @:) = @? = 0 and p, is pure imaginary, then e!-, # 0, 
C:,)-, = 0 and synchronism I is more effective than syn- 
chronism II. In this case, however, the quantities 
ISh[ and l P z h  1 are quite small and both synchronisms 
manifest themselves weakly. 

In the x-ray band for a centrosymmetrical crystal 

--&<o, pO(@)-$:L1 =o %h'X-*- 

and the ENS are determined by the pure imaginary 
quantities P ,  = -P-,, PZh = -Plh (see the Appendix). In 
this case 

~ : , ? t 1 . ~ ~ , = ~ / , 1 b - ~ + b 2 h - 2 ( ~ - L + $ h )  I=0, 

(01 ~ ~ , - , = ~ d . ~ , = ~ / , l $ ~ - p ~ ~ 1 - 1 ~ m 1 / 2 + 0 .  

Thus, in the x-ray band (X <0) the synchronism I at 
I a,, ( << X ,  cannot be observed in a centrosymmetrical 
crystal, while t'ne synchronism II can appear in this 
case ( 1  a,,, ( <<x j. 

If there is no Bragg diffraction at either frequency, 
xl=xz=O, then e!-,=O, C:'f,= (Pa,l and we arrive at 
the earlier result [see (15) and (16)]. 

If the single-wave approximation X, = O  is satisfied at 
the doubled frequency, and the two-wave approximation 
,yl f O  is satisfied at the fundamental frequency, then the 
synchronisms in the "0" direction appear only in the 
region of negative a,: C:!, = O  at as> 0 and q l l  = I Fa I / 
4 at a, <O, while the synchronisms in the "h" direction 
appear only for positive a,: C':, = (FaM,1/4 at a,>O and 
C(L)-l=O at a,<O. .. - 

The considered general regularities of the behavior 
of the ENS can be easily seen on the plots of Fig. 5, 
which were constructed for the intermediate region 

I a 1 4XL. The positions of the synchronisms depend on 
the dispersion of the medium A and are marked for the 
concrete case on Fig. 5. The case a can be realized in 
a silicon crystal, at a fundamental-radiation wavelength 
X =0.71 (the MoK a line), h=[220J, 2h=[4401, x,,/x, 
= 0.17 (Ref. 21). p,, is pure imaginary, and the ratio 
Pah/ph = 4/3 was calculated from formula (A.l) (Refs. 8 
and 12) and go)= gh)=O. The case b can be realized in 
the optical band in a medium with artificially induced 
periodic structure. The ratio of the susceptibilities 
with spatial frequencies 2h and h was chosen to be of the 
order of the depth of modulation of the refractive index 
(see Fig. 4a). It was assumed here that x,,=x -jh>O, 
pbO)=gh)>O are real quantities, and P,, has equal real 
and imaginary parts 13- jh). 
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Angular and frequency width of the "Bragg" synchronism 

If the synchronism conditions (11) are not exactly sat- 
isf ied 

AP, q- I PT~-9~z -A  I +O, 

then beats of the second-harmonic amplitude appear 

IE=Imsin(A,, d2)/(Ar. d2). 

The first maximum is reached at a distance 
(PA') 

zc0h -no cos 8U2AP,,. 

The width of the synchronism relative to a! can be es- 
timated from the formula 

ad -z~(Aab~h=x. 
aa 

We have 

where A,,-, = El +y, - A ( for synchronism I and A,,, 
= ly, - A  I for synchronism H. If the deviation from the 
Bragg position in the synchronism is not small 1 a, 1 
;axj, then (ha),,,-X/z. In the optical band at x -  lo-= 
cm and z - 0.1 cm we have @a),,- lo4, in the x-ray 
band at X - lo-' cm and z -0.1 cm we have (~a), , ,-  lo-". 

If the synchronism takes place at small deviation 1 a, 1 
<< x then B A ,  a/8a - 0 and the width of the synchron- 
ism increases by -(x ,Z /X)"~  times and is estimated 
from the formula 

(Aa)coh~ (n& cos 8/22 (PA,, J&cz),)". (22b) 

For the first types of synchronism we find 

If the fundamental radiation is monochromatic AW/W, 

<< (Aa),,, then the angle width of the synchronism co- 
incides with the width of the synchronism in a ,  i. e., 
(A8 - (ACY),,,. Analogously, if the fundamental radi- 
ation has a narrow angular spectrum AO, << (ha),,,, then 
the relative frequency width of the synchronism coin- 
cides with the synchronism width in a: (Aw),,,/w 
- (Aa),,,. 

When the fundamental radiation has simultaneously 
a broad frequency spectrum and a broad angular spec- 
trum (Aw,/w,, Ae,>(Aa),j, then the effects of spatial 
and temporal non-coherence can cancel each other in 
part, i. e ., in the fundamental-radiation band there 
wil l  be, for example, two pairs of values 8', w', and 
0 ", wa such that 

Let Aw,/w,>~8,>(~a),,,, then the frequency interval in 
which the deviation of a from a, does not exceed the 
value (ha),,,, and synchronism SHG is possible, is es- 
timated from the formula (~a),,,= w1cot8A8,. 

The role of absorption 

In the presence of absorption, all the Fourier com- 
ponents of the linear susceptibility and the parameters 
expressed in their terms are complex quantities whose 
real and imaginary parts will be respectively designa- 

ted r and i. The synchronism condition (11) takes.now 
the form 

In an absorbing medium, the second-harmonic field 
in the case of synchronism (23) reaches a maximum at 
a distance 

For synchronism H ( p  =0, q 7-1) in the x-ray band 
(Si crystal, h=[220], x=0.71 A, s polarization) we ob- 
tain according to the data of Ref. 21 the estimate z!;;" 
-0.15 cm. 

SHG in Bragg diffraction 

The excitation of the harmonic can occur in a periodic 
structure in the case of the Bragg diffraction a s  in Fig. 
lb. 

It is then necessary to solve Eqs. (5) with boundary 
conditions specified on the two surfaces of the sample 
of the medium 

where t is the thickness of the sample. 

The solution obtained for the second-harmonic fields 
contain resonant terms, which indicate the presence of 
synchronism. Deferring a detailed analysis of the ef- 
fects that occur here to later publications, we present 
only the formulas for the two synchronism conditions 

a,r-(~1'-xz*)/A ( I ) ,  a, II=A*~XZ (11). 

Synchronism I is realized in the case of a &tuning a 
lying between the regions of reflection of the fundamen- 
tal wave and the second-harmonic wave. Synchronism 
H occurs at values of a corresponding to the boundaries 
of the harmonic-reflection band. 

In contrast to Laue diffraction, we can go here to the 
limit of one-dimensional propagation of all the waves 
along the reciprocal-lattice vector: 8 =n/2. If further- 
more the reflection of the fundamental wave is forbid- 
den (X h = O ,  E,,,=O), then synchronism I1 becomes inef- 
fective and synchronism I becomes one-dimen~ional?.~ 

4. CONCLUSION 

Experiments on the realization of the described syn- 
chronisms can be performed in the infrared, visible, 
and ultraviolet bands with laser sources in periodic 
structures with d - X (see Ref. 15) and with sufficiently 
large modulation of the linear susceptibility x ,- I A I by 
virtue of (15)-(la), or else by substantial modulation of 
the nonlinear susceptibility @,,+0 [see (15) and (16)l. 

The value of a at the synchronism, a,, is determined 
by the quantities X ,  and A, which are constant for a 
given sample. The deviation of a(0, w) from a,(8,, w,) 
can be due either to a change of angle 60 =0 - 0,, o r  to a 
change of frequency 60  = w - w,. Therefore, by varying 
the angle of incidence of the radiation on the medium, 
we can change the frequency w at which the synchron- 
ism occurs. The range of possible smooth tuning of the 
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harmonic frequency is estimated from the formuh 6w/ 
w-  68cotO and should correspond to the tuning range of 
the fundamental radiation. 

The nonlinearity in the x-ray band, is usually due to 
the nonlinearity of the free electrons and is smaller 
than in optics by ten orders of magnitude (see the Ap- 
pendix). Therefore the SHG harmonic even when syn- 
chrotron radiation for pumping is small?4 Cases are 
possible, however, when at least one of the frequencies 
lies in the resonance (nuclear or  electronic), and then 
the nonlinear susceptibility can increase by 3-4 or- 
d e r ~ : ~  while the SHG intensity can increase by a factor 
equal to the square of this number. 

In the present article the nonlinear interaction of the 
waves in the periodic medium in the case of Bragg dif- 
fraction was considered with the second-harmonic gen- 
eration as  the example. Equations (5), which describe 
the degenerate case of three-frequency interaction (w, 
= wl + w,, w, = w, = w )  can be easily generalized to the 
case of the nondegenerate interaction (wl + w,). It must 
be borne in mind here that satisfaction of the Bragg 
condition for one of the frequencies does not automat- 
ically mean satisfaction of this condition for the other 
frequencies. The developed approach can be used also 
to describe nonlinear effects cubic in the field (third- 
harmonic generation, Raman scattering). 

The authors are deeply grateful to R. N. Kuz'min and 
V. A. Bushuev for interest in the work and for valuable 
remarks. 

APPENDIX 
Calculation of the Fourier components of the nonlin- 

ear  susceptibility in periodic structures, with account 
taken of the specifics of these structures, was carried 
out in the papers known to us only for crystals in the 
x-ray band.8,12 Freund and Levins were the first to ob- 
tain an expression for the convolution of the Fourier 
components of the quadratic susceptibility tensor of a 
crystal in the x-ray band (w,= w,+ w,) (see also Ref. 
12): 

~?"'" (us, 01, ut)=ea$~(~a, 01, ror)ele, 

-id(h) - (ear) (he,) - (*a,) (elh) - 5 (ele.) (44) . (A.1) 
( (1) 1 0 2  

where 7 =e3/2m2cw1w2w, is the quadratic increment to 
the polarizability of the free electron, the structure 
factor is  

F(h)== z f , ( h ) e l k i *  
1 

and f,(h) is the factor of atomic scattering of the 2-th 
atom in the unit cell. 

Equation (A.l) was obtained by transforming the gen- 
eral expression for nonlinear p~larization.'~ In the 
derivation of (A.l) it was assumed that the wave func- 
tions are real, the charge distribution is centrosym- 
metric, and the fields are transverse. In the present 
paper we are interested in a frequency-degenerate 
case, when w,=w,=w, w3=2w. 

It must be emphasized that centrosymmetric crystals 

(including silicon) have a nonzero pure imaginary Four- 
ier component of the quadratic susceptibility B, (when 
the reciprocal-lattice vector h# 0), even though the zer- 
oth Fourier components @' and @> (for which h = 0) van- 
ish for such crystals. The reason is that the periodic- 
ity of the medium gives rise to a preferred direction, 
which is precisely characterized by the reciprocal- 
lattice vector. 

We present an example of the calculation of the con- 
volution ~,=ea,e ,e ,  in accord with formula (A.l) at 
q = w, = w, w, = 2 w in the simple case of a a-polarized 
fundamental wave and a n-polarized second-harmonic 
wave. For this case e,h =e,h=O, a,h=e&=h cos8. 
Substituting the scalar productions in (A.l), we get B, 
= i~F(h)cos8hc/2w, @-, =@:=-P,. Recognizing that hc/ 
2w = sine, we can write the expression for 0 ,  also in the 
form 

p&=i~F(h) sin 28. 

Thus, sin 20 and vanishes when 0 =n/2 o r  9 =O; 
furthermore, if 0 # 7/2 and 9 # 0, then B,+ 0 even in 
centrosymmetric crystals. 

For the Si crystals h =  [220], 2h= [4401 and the ratio 
of the structure factors is  equal to the ratio of the 
atomic scattering factor F(2h)/F(h) = f (2h)/f (h) =a/3? 
The quantity P,/F(h) is proportional to the reciprocal- 
lattice vector h (exactly for a u-polarized fundamental 
wave, and approximately so for a 7-polarized pump). 
Therefore P,,/P, s4/,. If we assume the atoms to be 
pointlike and the crystal to be monotonic, then F(h) 
=F(2h). In this case we have for a a-polarized funda- 
mental wave 4, = 2Ph. 

Formula (A.l) was calculated for one unit cell of a 
crystal. In estimates of the nonlinearity we must mul- 
tiply (A.l) by the cell density, which is  -loz3 for a mon- 
atomic crystal. If the wavelength of the fundamental 
radiation is A =2A, i. e., w =  10lg sec-', then (A.l) 
yields ( /3,1 - 10-l8 cgs esu. The nonlinearity increases 
rapidly with increasing frequency in proportion to l/d. 

an anisotropic crystal 2 is a tensor and x-jh=eofr~h, Xjh 

=ehR,@o. 
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Resonance processes in a two-level system in the presence 
of nonresonance fields 
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A two-level system acted on by resonance and non-resonance fields is considered. It is shown that in a 
nonstationary regime the effect of nonresonance fields is proportional to the first power of the ratios of 
the amplitudes of the nonresonance fields to their detunings dative to resonance and depends on the 
initial phases of the fields. In a stationary regime in a system with damping the effect of nonresonance 
klds depends on the level of the resonance field. The analysis is based on the solution of the Bloch 
equations by the method of averaging, up to the third approximation of this method. 

PAC3 numbers: 03.70. + k 

There are  well known resonance'-' and nonreso- 
nance3'%' effects which appear when high-frequency 
fields interact with a quantum system. In the present 
paper we consider the behavior of a two-level system 
in fields which include simultaneously resonance and 
nonresonance frequencies. The main attention will be 
given to effects that arise when resonance and non- 
resonance fields act together. Effects of this kind 
occur when classical oscillators interact with high- 
frequency fields? ' 

The analysis of a two-level system in fields is based 
on the solution of the Bloch equations by the method of 
averaging, up to the third approximation of this method. 
It is well known6 that the Bloch equations describe the 
behavior of a magnetized assembly of spins in  the case 
of magnetic resonance. These equations a r e  also used 
in opticsZ (the optical Bloch equations) in the study of 
the interaction of light with a two-level system. In 

where w, is the frequency of the transition between 
the levels, x is the gyromagnetic ratio in  the case of 
magnetic resonance, and in optics x = 2d/5 (d is the 
magnitude of the dipole matrix element), ~ ( t )  is the 
strength of the high-frequency magnetic (or in optics 
the electric) field acting on the system, T, is the lon- 
gitudinal relaxation time (in optics the damping or 
inversion time), Tz is the transverse relaxation time 
(in optics this is the damping time for the dipole mo- 
ment), g is the equilibrium value to which the mag- 
netization (the inversion) relaxes in the presence of 
noncoherent pumping in  the case F ( t )  TO. A dot de- 
notes differentiation with respect to the time. In the 
theory of magnetic resonance Eqs. (1) correspond to 
the case of orientation of the high-frequency magnetic 
field perpendicular to the static field. Here the com- 
ponents s, a r e  the projections of the magnetization 
vector. 

optics one introduces an auxiliary vector of a fictitious 
electric spin s = (s,,s,,s,), o r  a speudospin vector Let the system be acted on by external linearly pol- 
whose components s, and s, a r e  associated with the arized fields 
dipole moment of the system, while the third compo- 
nent s, is associated with inversion of the atom? F ( t )  =Pi cos(o,t+6,) +F~cos(o,t+6~), (2) 

1. Let us consider a two-level system described by 
the Bloch equations where the field with frequency w, is a resonance field, 

i.e., w, = wo, and that with frequency w, is a nonreso- 
(1) nance field, i.e., wz #o,. Substituting Eq. (2) in the 

i,=-XF (t)s,- (ss-s,)/T,, equations (1) and using the substitution 
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