
rotation, a shift of the rays of the opposing wave. It 
follows also from (22) that the energy-momentum ten- 
so r  of the neutrino field satisfies the energy-dominance 
conditionlo 

~m pW/,  1 o 1 (23) 

only if Imp > 0. 
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One-soliton cosmological waves 

L D. Landau Institute of Theoretical Physics 
(Submitted 23 April 1979) 
Zh. Eksp. Teor. Fiz. 77, 1239-1254 (October 1979) 

Exact solutions of the gravitational equations which describe the evolution of gravitational solitons 
against the background of Friedmann cosmological models with the equation of state E = p  are derived 
and examined. The corresponding vacuum solutions are given. 

PACS numben: 04.90. + e 

8 1. INTRODUCTION mann space. For  the reason we have noted, this can- 
not at present be done in general form. 

The method of inverse solution of the scattering prob- 
lem has been used by Zakharov and the write$ to des- There is, however, one special case in which the 

cribe a procedure for integrating the gravitational method already described1 can still be applied even in a 

equations for the case of a metric tensor depending on space with matter. This is the case of an ideal fluid 

only two variables. The metric we used was written in with the "superrigid" equation of state E = p ,  proposed 

the form1' by Zeld'ovich? The specific form of this equation of 
state will not play any decisive part in our work, since 

-asz--f (-dt2+dzz) +gadz"dzb, (1 .I) we shall deal with soliton perturbations of the gravita- 
tional field itself, not of the matter, which remains un- 

where the functions f and gab depend on the coordinates perturbed in our solutions. From this point of view the 
t and z. Our notation for the coordinates is (xO, x', x2, xS)  matter serves only for the provision and maintainance 
= (t ,  x, y, z). The f i rs t  Latin letters a and b always run of the Friedmann background solution, and i t  can be 
through the values 1 and 2 and refer  to the coordinates hoped that the qualitative picture of the behavior of 
x and y. The Latin indices i and k, which occur later, gravitational solitons on this background will remain 
refer to four-dimensional space and take the values approximately the same for  other equations of state. 
0,1,2,3. Besides this, exact solutions of the Einstein equations, 

analogous (in the sense that the behavior of the metric 
In the previous papefl we considered the Einstein coefficients g,, remains the same in them) to those ob- 

equations corresponding to the inte mal (1 .l) only in tained here for a space with matter, exist also in va- 
empty space. The application of a similar method to cuum. The way they a r e  found in the general case is 
the integration of these equations in a space filled with described in Sec. 2, and the actual construction is giv- 
matter is a s  yet an unsettled question. Meanwhile the 

en in Sec. 4. solutions belonging to the class of metrics (1.1) include 
such fundamental exact solutions as the Friedmann In this paper we shall consider one-soliton solutions 
cosmological models, for which the presence of matter on the background of Friedmann models of all three 
is essential. It would certainly be interesting to con- types. Let us point out their main qualitative peculiar- 
struct new exact cosmological solutions describing the ities. These solutions a r e  inhomogeneous cosmological 
evolution of finite disturbances such a s  gravitational models, in which the distribution of the gravitational 
solitons, appearing against the background of a Fried- field a t  the inital time shows a clearly expressed max- 
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imum with respect to the spatial coordinates near some 
axis in three-dimensional space. During the expansion 
of the world this disturbance dies away, and after some 
finite interval of time it produces a gravitational wave 
moving away from the axis, with an amplitude decreas- 
ing with time. Accordingly, open models, during the 
final stages of the infinite expansion, go over into 
Friedmann models. In the closed model, this process 
of homogenization (and also of isotropization) continues 
only up to the moment of maximum expansion. During 
the stage of contraction of the world the fractional per- 
turbation of the gravitational field increases again, and 
a t  the final moment of the evolution it is again concen- 
trated on an axis in three-dimensional space. In the 
open models this axis is topologically equivalent to an 
infinite straight line, and the soliton disturbance pos- 
sesses  cylindrical symmetry relative to it. In the 
closed space this assertion retains i t s  meaning only lo- 
cally, since the axes on which the soliton is concentra- 
ted a t  the inital and final times a r e  circumferences of 
great circles of the three-dimensional spherical space 
of the Universe. Furthermore, the initial and final 
circles do not coincide and nowhere have any common 
points, being disposed normal to each other. 

Another peculiarity of these solutions is the very pos- 
sibility of treating them as perturbation of Friedmann 
models, since these solutions reduce, by a continuous 
limiting procedure with respect to an arbitrary con- 
stant parameter, to Friedmann metrics. This property 
is not completely trivial, since one-soliton solutions do 
not admit limiting reduction with respect to parameters 
taking them directly to the metric on whose background 
they a re  constructed by the method expounded in the 
previous paper? In the case studied here the one- 
soliton solution is close, not to the original background 
model, but to an exact copy of it, which can be obtained 
by a discrete symmetry transformation and can be re- 
garded as a different specimen of the same solution on 
a different physical sheet. This is discussed in more 
detail in the Appendix. This interpretation means that 
after obtaining the final form of a one-soliton solution 
we forget about the method by which i t  was derived, 
and take as the background solution the one that is ob- 
tained by the appropriate passage to a limit. 

The solutions obtained depend on two arbitrary con- 
stant parameters. Depending on the regions of varia- 
tion of one of these parameters all solutions can be di- 
vided into two classes. Half of the solutions contain no 
singularities other than the usual cosmological singu- 
larities with respect to the time, which a r e  already 
contained in the background solution itself. This fact, 
together with the existence of the limiting transition 
with respect to  the parameters to the background 
Friedmann models makes this set  of solutions extreme- 
ly satisfactory from the physical point of view; they 
describe perturbations of the Friedmann models which 
a re  finite (but with an infinitesimal case) and every- 
where regular. The other half of the solutions, in ad- 
dition to the background cosmological singularities, 
have discontinuities of the energy density of the matter 
and of the first  derivatives of the metric coefficients 
on the light cone. The existence of such discontinui- 

ties in one-soliton solutions was already pointed out in 
Ref. 1. We emphasize that everything we have said 
about limiting transitions to background solution, and 
about what is to be taken as being a background solu- 
tion, relates only to the f i rs t  set  of regular solutions. 
We shall not consider the case of the discontinuous so- 
lutions in this paper. 

Soultions with the indicated properties describe one 
possible mechanism for  the production of gravitational 
waves of cosmological origin. Their sources a re  in- 
homogeneities of the gravitational field near the initial 
cosmological singularity and the dynamics of these 
inhomogeneities during the further expansion of space. 
In the course of time the inhomogeneities disappear (at 
least in open models), but they leave behind a trace in 
the form of decaying waves which still exist for some 
time in the universe a t  later stages of i ts  evolution. 
This entire process, however-the appearance of an in- 
homogeneity, i ts  prewave stage, and i ts  final product, 
a gravitational wave, makes up a single whole, the ev- 
olution of a gravitational soliton. In the present case 
we a re  dealing with solitons that have cylindrical sym- 
metry, and we cannot call them localized disturbances 
in the ordinary sense of the word. Nevertheless, the 
existence of this example allows us  to suppose that an- 
alogous phenomena can occur with three-dimensional 
perturbations against the background of uniform cosmo- 
logical models. 

52. THE GRAVITATIONAL EQUATIONS AND THE 
FRIEDMANN BACKGROUND MODELS 

If the matter filling space is an ideal fluid with the 
equation of state E =p, i ts  energy-momentum tensor is 

and the Einstein equations take the form 

Since for the metric form (1.1) the components R,, and 
R,, of the Ricci tensor a r e  identically equal to zero, it 
follows from Eq. (2.2) that the velocity components u, 
must also be equal to zero. It can be seen from this 
that the main part of the Einstein equations, which de- 
termines the matrix components gab, has the form R,, 
=0, and is thus the same a s  in vacuum. For this rea- 
son the method developed in Ref. l can still be applied 
in the present case. 

It is not hard to show that with the use of gravitation- 
al hydrodynamics we can, without limiting the general- 
ity of our solution, express the matter field in terms 
of a single scalar function cp, which we call the fluid 
potential: 

The Einstein equations and the equations of hydrody- 
namics now become the following system: 

The possibility of this representation of an ideal liquid 
with the equation of state c = p  was noted in Ref. 3. The 
fact that the components u, of the velocity a re  zero 
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means that the potential is a function of only two vari- 
ables, t and z. Denoting differentiation with respect to 
t with a dot, and that with respect to 2 with a prime, 
we get from Eqs. (2.3) and (1.1): 

As in our earlier paper,' we shall denote by g a two- 
rowed matrix &,, and for i ts  determinant and deriva- 
tives we introduce the notations 

det g=a2, A=-ag,t  g-', B=ag,,  g-', (2.7) 

where the comma indicates ordinary differentiation and 
instead of t and z we have introduced the light variables 
C and q :  

I£ we now write the metric coefficient F a s  a product 

it i s  easy to show that the equations (2.4) can be divided 
into four groups. The first  and second of them exactly 
repeat the Einstein equations in vacuum for the metric 

These equations can be written (cf. Ref. 1) in the form 

( a g  ;g-') .,+ ( a g , d - ' )  .t=O+ (2.11) 
(In f v )  ,:= (In a) ,;;/(In a) .L+ (Sp Az)i%ra :, (2.12) 

(In fr) (In a )  ,/ ( ln  a )  .,+ (SP Ba)/4aa, , , .  (2.13) 

The third group is just a wave equation for the potential 
CP: 

and the fourth group determines the factor F which cor- 
rects for the matter 

It follows from Eqs. (2.10) and (2.7) that the function a 
satisfies the usual wave equation a s  before: 

With this condition the equations (2.15) a re  automatical- 
ly compatible if cp satisfies Eq. (2.14). 

Accordingly, we see that to solve the problem we 
must first  integrate Eqs. (2.11)-(2.15), thus construc- 
ting some exact solution of the Einstein equations with 
the metric (2.10). This part of the problem has al- 
ready been studied in Ref. l. After this we must deter- 
mine the fluid potential 9 from Eq. (2.14) and with it 
find from Eq. (2.15) the coefficient F. Substituting this 
in Eq. (2.9), we get the desired metric (1.1), and the 
potential cp determines the energy density and the com- 
ponents of the velocity of the matter in accordance with 
the relations (2.5) and (2.6). 

In the framework of the metric (1.1) we must now de- 
termine the Friedmazm solutions. The standard forms 
for these, when four-dimensional spherical coordinates 
a re  used, contain a dependence on two space coordin- 
ates, while the interval (1.1) assumes a dependence on 
only one space variable. However, there exists a 
transformation of the three-dimensional coordinates 

which allows us to reduce the Friedmann solution to the 
form (1 .I). This transformation (found for a different 
reason) is  given in Appendix D of Ref. 4, and here we 
need only a special case of the result. The element of 
length in three-dimensional space in the closed model 
is given by the expression 

where the variables x , 0, cp range over the limits 0 s X 
c a, 0 6 0 Q 7 ,  0 C o 6 217. The transformation 

sin z=sin % sin 8, cos x sin y =sin cos 0, x=cp (2 .la) 

reduces (2.17) to the following form: 

in which the ranges of variation of the coordinates a r e  
0 6 z ~ a / 2 ,  0 c x 2a, -a 6 y C T .  The three-dimension- 
a l  line element of the open space i s  described by the 
expression 

with the following ranges for the coordinates: 0 Q x  6 -, 
0 s 0 6 n, 0 6 (3 2s. The transformation analogous to 
Eqs. (2.18) is 

sh z=sh ):sin 0, eh ,- sh y=sh ): eos 8, r=q, (2.21) 

and this reduces Eq. (2.20) to the form 

where the coordinates vary in the range 0 < -, 0 c x  
-C 2n, -- < y <  + -. We choose the three-dimensional 
length element of the planar space in the form 

and assume that in this expression 0 Q z c -, 0 x 
6 2 ~ ,  -OC s y c +-, s o  that the variables z,x,y form 
an ordinary cylindrical coordinate system. 

With the use of Eqs. (2.23), (2.22) and (2.19) it is now 
easy to establish the form of the Friedmann solutions 
in the framework of the metric (1.1). For  the flat 
model we have 

For  the open model 

And, finally, for the closed model we have 

-ds'=ao2 sin 2t (-dP+dz2+ sinz zdz2+cos%dy2), 
(2.26) 

cp==(3/2)" ln t g  t, e =3ao-' sin-' 2t, O<t<nl2. 

Ln the last two solutions a. is an arbitrary constant. 
For  simplicity the analogous constant in Eq. (2.24) has 
been given a fixed value. 

To obtain the soliton solutions with the models (2.24)- 
(2.26) as backgrounds, i t  is necessary, in accordance 
with the procedure described in Ref. 1, that we now de- 
termine the wave matrix $(x, t ,  z) corresponding to 
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these metrics; after this, the construction of the solu- 
tions reduces to mere algebraic operations. It turns 
out that for all three models the LA equations can be in- 
tegrated rather simply and the matrix J I  can be expres- 
sed in terms of elementary functions. The details are  
given in the Appendix, and in what follows we give only 
the final forms of the resulting expressions, so that if 
the reader is not interested in the way they a re  found 
there is no need to refer to the Appendix or  to the pre- 
vious paper .l 

In concluding this section we recall that in accordance 
with the discussion in the Introduction we a re  consider- 
ing only the solutions that are associated with a pertur- 
bation of the gravitational field. The matter potential 
rp remains unperturbed in our models, although there 
is no difficulty in obtaining, by applying precisely the 
same technique to Eqs. (2.14)-(2.15), exact solutions 
containing along with the gravitational fields also the 
soliton fields rp . 

53. SOLITON SOLUTIONS ON BACKGROUND OF 
FRIEDMANN FIELDS 

The one-soliton solution on the background of the flat 
model (2.24) is 

-ds'-h-f [o'P+(P+p)'] LPP+(ta+p)']-L(-dt'+ dz3 
+ t [ ~ = ~ + ( ~ + ~ ) ~ ~ - ~ { [ ~ ~ i + a ' ( t ' + p ) ~ + q ~ ( t ~ + p ) - q * p ~ d z '  (3.1) 

+ [szf + (tz+p) '-q (F+p) ]dy'+2qs@dy). 

Here the quantities s, 1, and q are arbitrary constants, 
related to each other by the equation 

The quantity p is a function of the coordinates and is 
given by the expression 

Here the second term contains the arithmetic value of 
the root?' 

We note that the determinant of the matrix g found 
from Eq. (3.1) is of the same form as in the background 
solution (2.24): detg = a2, where a = tz. The fluid po- 
tential for this solution also retains the unperturbed 
form 

q- (312)" In t, 
so that the matter is stationary (u, =O). The energy 
density can be found easily from Eq. (2.5): 

The deviation of this value from the background value 
is due only to the perturbation of the metric (the metric 
coefficient f) and not to a perturbation of the matter 
field as  such. 

From these formulas we see that if we let the para- 
meter q go to zero (s2 -la) the solution goes over into 
the background, Eq. (2.24). We now determine the field 
of the soliton as the precise deviation of the metric 
from its background value. This field can be described 
with a symmetrical perturbation matrix H, which is 
constructed according to exactly the same rule as  in the 
infinitesimal case: 

where the quantities with superscript zero relate to the 
background solution (2.24). 

Besides the matrix H, the soliton is also character- 
ized by the perturbation of the metric coefficient f. It 
i s  more convenient, however, to consider instead of 
this the perturbation of an equivalent quantity, the en- 
ergy density &, for which we write 

From Eqs. (3.11, (3.5), and (2.24) we get: 

Let us examine the behavior of these quantities near 
the moment t = O  of the initial cosmological singularity. 
It i s  easy to show that the first nonvanishing terms of 
the matrix H for t - 0 (and arbitrary values of z) are  
given by the expression 

and for the quantity E the first nonvanishing term is 

It can be seen from Eq. (3.11) that the field of the per- 
turbation H is concentrated, during the first few mo- 
ments of the evolution, near the axis z = O  of the axial 
symmetry, in a cylindrical volume with the character- 
istic radius z -1. The components Hll and H2, have ex- 
trema with respect to the variable z right on the axis 
z =0, and H12 has extrema at distance z =I  from the ax- 
is. The perturbation of the energy density (i. e., the 
metric coefficient f) is proportional to f in the first 
nonvanishing approximation, and is already of the next 
order of smallness as  compared with the main terms of 
the expansion of the matrix H. Nevertheless, as  can be 
seen from Eq. (3.12), the distribution of the quantity E 
with respect to z also localized on the axis z = O  with the 
characteristic width z - 1. 

For simplicity we will suppose that the constants s 
and I a re  of the same order of magnitude. Then there is 
a single characteristic length I in the solution, and the 
asymptotic expressions (3.11) and (3.12) a re  the first 
terms of the expansion of the solution in powers of t/l 
in the region where t I .  As in the time t increases we 
come to the region t >> 1 ,  in which all the components 
of the matrix H go to zero for t - -. However, the laws 
of this dying away are  different for points located near 
the light cone z = t and far from it. If t >> 1 and z < t , 
then we get from Eqs. (3.3) and (3.9) the following as- 
ymptotic expression for H: 

from which it can be seen that both near z = O  and also 
at any other fixed point in space the perturbation field 
falls off for t according to the law H, -H, - 12f2, H12 
-pF. On the light cone the expressions (3.13) diverge, 
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but this is due only to the fact that they cease to be ap- 
plicable when we get into the strip t - z 5 1 adjacent to 
the light line z = t. The behavior of the matrix H inside 
this strip can be estimated by determining its asymp- 
totic behavior on the cone z = t  itself for t>> 1 .  The main 
term for this is easily found from Eqs. (3.3) and (3.9): 

Thus we see that for any given time t >> 1 the ampli- 
tude of the perturbation H a t  points of the light cone is 
of the order of I f1  and is very large in comparison with 
its values a t  other points of space (where the compon- 
ents of H a re  of orders 12f2 and Z4t4). This means that 
the initial perturbation H, which for  t -0 was concen- 
trated near the axis z - 0 with characteristic dimension 
z -1, while decreasing with time produces in the later 
stages a gravitational wave moving out from the axis 
with the speed of light. The amplitude of this wave also 
decreases with time, and the field distribution in it, 
concentrated on the light cone, has the same character- 
istic width 62 - 1 a s  the initial cosmological perturba- 
tion of the metric. It must be remembered, however, 
that these assertions, a s  always, have only an approx- 
imate meaning. Actually the quantities ff and E contain, 
besides the wave part, perturbations relating to the 
background geometry, and i t  is hard to give an exact 
meaning to each of these effects by itself. This fact 
is well illustrated in an analysis of the relative pertur- 
bation E. At the moment when the evolution begins this 
quantity is vanishingly small and is given by the ex- 
pression (3.12). For  t >> 1 ,  in the region z > t the ap- 
proximation for  E is 

At points of the light cone z = t we have for t >> 1 

and finally, in the region t > z with t >> 1 we get 

It can be seen from these expressions that the fraction- 
a l  perturbation of the metric coefficients f ,  and along 
with it the energy density c ,  remain small only a t  the 
initial moment of the evolution and a t  the points of 
space where z >> t, i. e., in regions not yet reached by 
the gravitational wave. In regions t > z ,  through which 
the wave has already passed, there remains a final de- 
creasing perturbation E = ql-2 - 1, which reduces to a 
change of the constant parameters of the background 
Friedmann solution. 

Accordingly, in the final stages of the expansion for 
t -a we have instead of Eq. (2.24) the following asymp- 
totic behavior: 

This phenomenon illustrates the interaction between the 
wave and background parts of the solution. It may be 
possible to speak here of an exchange of energy be- 
tween the gravitational wave and the background, but 
this would require that one give some satisfactory def- 
inition of these concepts. 

Finally, we must discuss the physical meaning of the 
arbitrary constants contained in the solutions (3 .I)- 
(3.5). The foregoing analysis has shown that the con- 
stant 1 is the characteristic width of the initial distrib- 
ution of the soliton field. After this we can associate 
the constant s  with the amplitudes of this distribution. 
A different, and not less clear, physical meaning of the 
constant s  can be obtained if we examine in more detail 
the development in time of the profile of the component 
H,, of the perturbation. For  t -0  the shape of this pro- 
file follows from Eq. (3.11). 

Let us  now determine the extrema of H, with respect 
to the variable z a t  an arbitrary time t, by considering 
the equation eH,,/az =O. It is easy to show that this 
equation has two solutions: one of them is z =0, inde- 
pendently of the time t (which corresponds to the smooth 
behavior of Hz, on the axis of symmetry), and the sec- 
ond solution gives the following world line: z2 
= sm'(st+ Z2)(t - S)  (we assume s  > 0; otherwise the form- 
ula must be written with s replaced with I s  I). It follows 
that there is a second extremum on the profile of H,,, 
but it appears only after a finite time interval t = s  after 
the beginning of the evolution. Up to the time t = s  the 
distribution of H, with respect to z has a smooth nature 
a s  in Eq. (3.11). After the time t = s  the world line of 
the second extremum'' moves out toward increasing val- 
ues of the coordinate z ,  and for  t  - i t  asymptotically 
approaches the light line z = t - q/2s .  This means that 
the time t = s  marks the beginning of the wave stage of 
the evolution of the soliton, i. e., the generation of the 
gravitational wave. Thus the variable s  has the mean- 
ing of the delay time, o r  the time of embryonic devel- 
opment of the wave. The pattern of the behavior of the 
component Hz, is shown in Fig. 1. 

Let us now pass on to the one-soliton solutions with 
the open and closed Friedmann models as backgrounds. 
These metrics can be written in the following unified 
form: 

-dsz-a.'rs-'k-' sin ZktQL-' (-dt'+Lg) 

+ (2k)  -' sin 2ktQ-'[ (2k-%za,"L sinZkz+op cosay+os-'pR sinay)&' 

+sf-' (2adL cos" kz-akZp sin" y-okes-'bJZ cos' 7) dy' 

+ak's-'p (R-s') cos 27 dzdy], (330) 
Q--s' sin2 k t + ~  cosa kt, L=r sin2 k t + ~  cosa kt. (3.21) 

FIG. 1. Behavior in time of the profile of the absolute value 
of the perturbation Hz,  in the flat model. The sequence of plots 
corresponds to increasing values of the time t : a) distribu- 
tion of the perturbation at the time the evolution starts, t - 0; 
b) the initial perturbation begins to die away; c) profile near 
the critical time t -s, beginning of production of the wave; d) 
the wave recedes to infinity with the speed of light, its am- 
plitude decreasing as I q/2st 1 . 
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The fluid potential is of the form 

cp' ('1')" In (k-' tg kt) (3 22) 

and from Eq. (2.5) we get the energy density 

~=3a.-%~r-'k~LQ-' sin-' 2kt. (3 23) 

In these formulas q,, s, k, a, r, and y are arbitrary 
constants, connected by two relations: 

The quantities p and R are functions of the coordinates 
given by 

p-ao'(2k2)-'{cos 2y+cos 2kt cos 2kz-[ (cos 27+cos 2kt cos 2kz)' (3 -25) 
-sin2 2kt sinz 2kz]") 

R-kg&-' ms-' 2y[s2k-' t 8  kt(cos 2y-oos 2kz) -pk-'cos-a kt]', 
(3 26) 

where the square bracket taken to the power in $ in 
Eq. (3 25) means the arithmetic root. 

The solution depends on two essentially new constant 
parameters, y and s. The constant a. is of the same 
nature as  in the background models (2.25) and (2.26), 
and the constant k (if k f 0) can be eliminated by a trans- 
formation of the constants and a scale transformation 
(kt,kz)-(t ,~).  The choice of the constant k determines 
the type of the model. For real values of k (in this case 
we can take k =1) the solution describes the evolution of 
a soliton on the background of the closed Friedmann 
model. For imaginary k (here we can set k=i)  we get 
the analogous solution on the background of the open 
model, and the case k = O  reduces to the soliton pertur- 
bation of the flat model, which we have already dis- 
cussed. It is not hard to carry out the passage to the 
limit k -0, by setting $, = i and renaming the con- 
stants in the following way: 

where the constants s', I ,  and q are to be regarded as  
independent of k. In this case we get from Eqs. (3.24)- 
(3.26) in the limit k -0: 

- - 

r-41z, q=s"-P, R=412(tz+ v) ' ,  

and for the function /.I we get the formula (3.3), if we 
consider k? <O (for k2 > 0 we get a result analogous to 
Eq. (3.3), but with the minus sign for the square root). 
It can now be verified that the limit of the metric (3.20) 
for k -0 exists and can be reduced by a simple trans- 
formation to the form (3.1), in which s' will appear in- 
stead of s. 

It is easy to see that the solution (3.20)-(3.26) goes 
over into the background solutions (2.24)-(2.26) through 
taking the limit with respect to the parameter u(u-0). 
As has already been pointed out, we shall consider here 
only those regions of variation of the arbitrary con- 
stants in which our solutions have no additional singu- 
larities beyond the initial cosmological singularities 
that are already present in the background models. The 
solution (320)-(3.26) in fact has this property if the 
constant r is positive: 

r--k-'tg2 2 ~ > 0 .  (3.27) 

This condition means that for the closed model (real k) 
we must choose a purely imaginary y, and for the open 

model vice versa: imaginary k, but real y . The con- 
stant s is always real, and consequently, with the con- 
dition r >  0 the parameter u=s2 - r can in fact go to 
zero. It is easy to see that for u=O the metric gives 

-dsz=ao2k-' sin 2kt (-dt2+dxz+k-' sin' kzds2+cos2 kzdy2), (3.28) 

and it follows from Eq. (3.23) that 

e =3ao-'ks sin-' 2kt. (3 29)  

For k=O ( g = i ) ,  k=i ,  and k = l  the form (3.28) be- 
comes identical with the respective metrics (2.24), 
(2.25), and (2.26). There is similar agreement for the 
potential cp and the energy density &. 

We note also that the determinant of the matrix g, 
i. e., of the two-row block g,, has the following sim- 
ple form: 

det g = d ,  u=ao'(2ka) -' sin 2kt sin 2kz, (3.30) 

and, as  can be seen from Eq. (3.28), remains the same 
a s  in the unperturbed background metrics. 

For the case of the open model the solution (3.20)- 
(3 26)  describes approximately the same pattern of ev- 
olution of the soliton a s  is found in the flat model. With 
the closed model, on the other hand, there are natural- 
ly qualitative differences because there are no infinite 
values for either the time or  the space coordinates. 
For this reason we confine ourselves here to closed 
model only. In all further formulas the parameter k 
is regarded as real, and the parameter y ,  a s  imagin- 
ary. In the closed space the evolution of the model oc- 
cupies a finite time interval from the moment kt = O  (the 
big bang) to the time of collapse of the Universe, kt 
=r/2. It is not hard to show that near the initial instant 
kt-0 the asymptotic form of the solution (3.20)-(3.26) 
is 

g , , = ~ , ' k - ~  sin 2kt sin' kz[ l+os-' sin' 7 sin' kz(coss kz-sin' y) -:I, 
g,,=o.+k-'sin 2kt cos' kzl l-or-'sin" sin2 kz(cos2 kz-sinE 7)- I ,  

g,,=-aO2a(4ks)-'cos 21 sin 2kt sinz 2kz(cos 2y+cos 2kz)-', 
(3.31) 

f=aoak-' sin Zkt, e=3kaa.-"in-' 2kt, 

and near the finite cosmological sirigularity kt - r/2 we 
get for these same quantities: 

gtI=a2k-'sin 2kt sin2 kz(l+os-' sin' 1 cos' kz(sin2 k ~ - s i n ~ ) - ~ ] ,  

g,,=ao'k-'sin 2kt oos' kz[l-or-'sid y cosz kz(sin' kz-sin' 7)-'I, 
(3.32) 

g,2=a,'o(4ks)-' cos 2y sin 2kt sinz 2kz(cos 27-cos 2kz)-', 

f=rs-'ao'k-' sin 2kt, e=3s2r-'k'ao-z sin-' 2kt. 

In Eq. (3.31) one must take sin2kt = 2kt, and analogous- 
ly in (3.32) sin2kt = r - 2kt. 

The field of the soliton for the solution (3.20)-(3.26) 
is determined as  before by the perturbation matrix H 
and the fractional change E of the energy density. 
These components are given by the same formulas 
(3.6)-(3.8), in which the quantities g,, and E must be 
taken to mean the expressions shown in Eq. (3 20) and 
(3.23), and the corresponding quantities with the index 
zero refer to the background solution (3.28), (3.29). 
Setting 

k=l ,  sin *(=iA, S = ~ ~ A  (l+A')"'(l+2Az)-', (3 -33) 

where A and p are new arbitrary constants (and A is al- 
ready real), we get from Eqs. (3.24) and (3.31) the as- 
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ymptotic values of the perturbation fields H and E for 
t-0: 

HI,= (I-pZ)p-'A2 sin2 z (cos2 z+A" -I, Hz,= (p2-l) A' sin' z (cos5+A2) -', 
H,,-(I-y2)p-lA(I+A2)'" sin z cos z(cos2 z+Ag) -I, E=O, 

(3.34) 
and from Eqs. (3.24) and (3 32)  we get their asymptotic 
forms for t - r/2: 

Hll-(i-pf)p-~acos2z(a~'z+A')-i, H,,=(pa-i)A2coa2z(sin: z+J2)-I, 

H,;-(p"i)p-'A (i+Aa)'" sin z cos z(sin2z+A')-', E=p2-i. 

(3.35) 
These formulas show clearly the distribution of the per- 
turbation H in the initial and final moments of the evo- 
lution. Near the initial instant the absolute values of the 
components HI, and Hz, are  largest at  z = n/2 and equal 
to zero for z = O .  The absolute value of HI, has its max- 
imum in the region n/4 < z < n/2. With the passage of 
time the maxima in the distributions of the quantities 
HI, and H, are  shifted in space, and at  the finite time 
t =r/2 they a re  a t  z =0, while H,, and Hz, go to zero at  
the former position of the maxima, z =n/2. The extre- 
mum of the component HI, also shifts during the cycle 
of evolution, through a finite distance in the direction of 
smaller values of z ,  and for t - r/2 it is in the range 0 
< z  < r/4. Figures 2 and 3 show the initial and final 
profiles of the perturbations Hz, and HI, a s  functions of 
the value of the parameter A,  which determines the 
widths of the corresponding distributions (for definite- 
ness we consider p > ly A > 0 and use a fixed value of the 
parameter p ) .  

In a closed space (0 -C z n/2) we can speak of locali- 
zation of the perturbations only for a sufficiently small 
value of A.  If A << 1, then we can see from Eqs. (3.34) 
and (3.35) and the figures that the field of the soliton 
at  the b e g i ~ i n g  and a t  the end of the evolution is con- 
centrated near z = r/2 and z =0, respectively, in narrow 
ranges of width bz - A ,  which a re  much smaller than the 
number n/2, i. e., than the linear extent of the Universe 
in the coordinate z .  With this condition the picture of 
the evolution of the soliton in the stage of expansion of 
space is partially similar to what happens in the flat 
model; during a short time interval after the beginning 
(t s A) the pertrubation H in the region around z = r/2 

FIG. 3. Profiles of the initial and final distributions for the 
component Hiz. The upper row shows profiles near the time t 
= 0, and the lower row shows them near the final moment t 
= 7r/2. Curves a and d are for very large values of the para- 
meter A, and b, e and c,f show the change of shape of the 
distributions as .* is made smaller. The respective extreme 
values of Hiz on the uppar and lower diagrams are (1 -p2)/2p 
and (P' -1)/2p, and the coordinate values at which they occur 
are given by the equations cos2zo = - (1 +2a2)" and cos2eo 
= (1 +2 a2)", respectively. 

will die away, without changing the general shape and -- 

width of i ts  profiles. Near the points with z =0, on the 
other hand, the perturbation H begitlg to grow. After 
a critical time t - A this process will continue, but 
along with it a gravitational wave appears from the re- 
gion near z = n/2 and is propagated toward z = 0  with the 
speed of light. At the time of maximum expansion, t 
=r/4,  it has passed through a "quarter of the Universe" 
and reaches the region with z = n/4. 

With further increase of the time from t =n/4 to t 
= n/2 the perturbation H becomes concentrated in the 
region at  z =0, and after a time t - r/2 - A it absorbs 
the wave which has arrived there. The final distribu- 
tion of the field of the soliton is given by Eqs. (3.35) 
and again has a small width 6z - A. It can be shown that 
the distribution of the field in the gravitational wave it- 
self is similarly small in width during the entire time 
of its propagation from the region a = r/2 to the region 
a t  z =O. The process is shown schematically in Fig. 4. 

For large values of the parameter A both the initial 
and the final distributions of the field of perturbations 
has a width of the order of the size of the whole Uni- 
verse (corresponding to the profiles shown in Fig. 2, 
a and d).. For  any observer to study the profile of the 
soliton will require a time of the order of the entire 
cycle of evolution of the Universe, and the usual inter- 
pretation of a soliton as a single localized disturbance 
can be applied in this case only in a conventional sense. 

FIG. 2. Profiles of the initial and final distributians of the 
perturbation component Hzz in closed models. Curves a ,  b , 
and c correspond to the beginning of the evolution, t - 0, and 
d, e ,  and f ,  to the final time t -7r/2; a andd correspond to 
very large values of the parameter A, for which the width of 
the soliton is comparable with the size of the Universe; b .  d 
and c, e show the change of shape of the initial and final die- 
tributions as t is made smaller. The value of Hz2 at the max- 
imum is p - 1 throughout. 

FIG. 4. Schematic representation of the evolution of a soliton 
in the closed model. The sequence a-e corresponds to vari- 
ation of the time from t = O  to t =7r/2. The picture corresponds 
to rather small values of the parameter A. 
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As for the perturbation E of the energy density, in the 
approximation considered here it is zero at the begin- 
ning of the evolution, and Eg. (3.35) shows that at  the 
concluding stage of collapse it becomes constant in 
space, producing a change of the parameters of the 
background Friedmann model. Here we again encounter 
the same phenomenon as  was described in the analysis 
of the perturbations on the background of the flat model. 

In conclusion we note that the geometrical loci of the 
points z =n/2 and z = O  are  circles in the closed three- 
dimensional space of the Universe, and are  great cir- 
cles on this hypersphere. It can be seen from Eqs. 
(2.18) and (2.19) that in standard four-dimensional 
spherical coordinates the equation of the circle z = ?r/2 
is x = n/2, 9 =n/2 and it may be arbitrarily called the 
equator. The equation of the circle z = O  is 9 = O  and 9 
= r, and it can be called the polar axis. These circles 
have no points in common. The equator and polar axis 
so defined are  completely equivalent and can be inter- 
changed by a suitable transformation of the four-dimen- 
sional coordinates. These closed curves a re  the equi- 
valent of what qas an infinite axis of cylindrical sym- 
metry of the soliton in the open models. 

54. VACUUM SOLUTIONS 

It was shown in Sec. 2 that for any solution of the 
form (1.1) in a space with matter described by a poten- 
tial cp there is a corresponding solution of the gravita- 
tional equations in vacuum, of the form (2.10). By us- 
ing Eq. (2.9) this solution can be written in the form 

where the functions f and gab are  precisely the same a s  
in the solution with matter, and the coefficient F is de- 
termined by the equations (2.15). It is easy to find this 
coefficient for the solutions (3.20)-(3.26) by substitu- 
ting in Eq. (2.15) the expressions for the potential cp 
[Eq. (3.22)] and the function a [Eq. (3.30)]. A simple 
integration gives 

F=Fo (sin 2kt)" (sin 4kE)-"(~in4kq)-'~~, 

where C and q are  the light variables (2.8) and Fo is an 
arbitrary constant. Substituting this result along with 
the metric coefficients f and gab of Eq. (3.20) in the ex- 
pression (4.1), we get the desired vacuum solution. 

We note here that an interesting qualitative study of 
closed vacuum cosmological models with metrics of the 
type (1.1) has been given by Gowdy .' 

APPENDIX 

We shall here describe briefly the method for deriv- 
ing the solutions presented in Sec. 3. As shown in the 
previous paper,' the main step in finding them is the 
determination of the matrix functions $(x, 5 , ~ )  corre- 
ponding to the background metrics (3.28). Such a func- 
tion satisfies the equations 

where the operators D, anci D, are  given by 

Here X is a complex spectral parameter, I and q are  
the variables (2.8), a2 is the determinant of the matrix 
g of the background solution, which is of the form , 

(3.30), and the matrices A and B are defined from Eq. 
(2.7) with the same matrix g, which, as  shown in Eq. 
(3.28), is 

g=diag ( a 0 W J  sin 2kt sinqz, aozk-' sin 2kt cost kz )  (A .3) 

(the commas in Eq. (A.2) and the letter 8 denote ordin- 
ary differentiation). 

Integration of Eqs. (A.l) and (A.2) with k+O leads to 
the following diagonal matrix J I :  

rpz2= (aa+2$E.+A')$11-', $lz-O, (A .4) 
where 

a=aoa(2k2)-' sin 2kt sin 2kz, b=-ao'(2kz) -' cos 2kt cos 2kz. (A.5) 

The limit k -0 cannot be taken directly in Eqs. (A.4) 
and (A.5), a s  in the case of the flat model, but it is 
easy to find a solution for which it is possible. The 
point is that the matrix J ,  and the function 6 (the second 
solution of the wave equation satisfied by a) are not 
uniquely determined. The function B is determined up 
to an arbitrary additive constant, and the matrix fi, up 
to multiplication from the right by an arbitrary matrix 
of the argument w = $(a2X-'+ 2P-k X)* Using this freedom, 
we can reconstruct the solution (A.4), (A.5) so that it 
has a limit for k =O. We have not done this, however, 
and in constructing the solutions (3.20)-(3.26) for k#O 
we have used just the formulas (A.4), ( ~ . 5 )  (the indica- 
ted transformation for k = O  would not change anything 
in the solution except to redefine the constants). The 
matrix J ,  for the flat model can be found either by the 
method indicated o r  by direct integration of Eqs. (A.1) 
and (A.2). The result, which we have used in construc- 
ting the solution (3.1), can be written in the form 

The further operations that lead to the solution are  
merely algebraic and are  explained in Ref. 1. We shall 
not repeat them here, but we point out the following im- 
portant features. Starting from the background metric 
(3.28) and the J I  function (A.4)-(A.6), we arrive at solu- 
tions in which the natures of the variables t and z a re  
in a certain sense reversed. Whereas in the background 
solutions (3.28) the matrix g has an isotropic cosmo- 
logical singularity with respect to t and fictitious co- 
ordinate singularities with respect to z,  in the one- 
soliton solutions an isotropic physical singularity ap- 
pears with respect to the space variable z, and ficti- 
tious ones with respect to t. When we try to take the 
limit with respect to a parameter to obtain the back- 
ground metric we get instead of the metric coefficients 
g ,  from Eq. (3.28) the same functions except that t and 
z a re  interchanged. Accordingly, to recover the cos- 
mological character of the model, one must interchange 
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the coordinates t and z and at the same time choose the 
correct sign of the metric coefficient f (so that the var- 
iable t  will actually be timelike). This must be done 
first in the vacuum solution, and then one can turn to 
the solution with matter. 

The final sequence of operations is: 1) with the me- 
tric (3.28) and the potential (3.22) we determine the 
vacuum background solution [the coefficient F for 
changing from f to f ,  is given by Eq. (4.2)], 2) we apply 
the one-soliton perturbation to the vacuum solution, 
3) in the result so found we make the interchange t -2, 

z - t  and choose the correct sign off,, 4) we again re- 
turn to the solution with matter with the same potential 
(3.22). [The transition coefficient F remains unchanged, 
since the function a! is not changed by the interchange 
t - z, z - t, and Eq. (2.15) is also unchanged when there 
is no change of the potential q .  But the solution of these 
equations, i. e., the coefficient F itself, does not have 
this symmetry, and F( t ,  z) *F(z, t) ,  which is important 
in this sequence of transformations.] After these oper- 
ations we obtain a solution which can be reduced to the 
form (3.20) by a certain linear transformation (with 
constant coefficients) of the variables x and y. 

Analogous operations in the case of the flat model 
give the metric (3 .I). As was pointed out in Sec . 3, a 
transition from (3 20)  to (3 .l) in the limit k - 0 exists, 
although it does not exist in explicit form between Eqs. 
(A.41, (A.5), and (A.6). The linear transformation of 
the coordinates x , y  is made from considerations of con- 
venience of the final result; only after this transforma- 
tion do we get the metric (3.20), in which: a)  there is 
a transition in the limit with respect to a parameter to 
the form (3 28), b) the coefficient g,, goes to zero at z 
=0, and c) for the closed model the coefficient g,, goes 
to zero for kz = n/2. For the flat model the analogous 
transformation serves to satisfy conditions a) and b) 
and to make the behavior of the metric for z - m  the 
same as  in the background solution (2 24). 

In the investigation of the properties of the solution 
(3.20)-(3.26) it is necessary to use certain identities 
connecting the funtions [Eq. (3.2511 and R [Eq. (3.26)l. 
We give them here. The function p is a solution of the 

quadratic equation 

pa-- (a. %-' cos 27-28) p+az=O, 

where a! and 0 are given by Eq. (A.5). Besides this, the 
following two identities hold: 

ru2~- '  tgz kt+pJ?-a,'k-a(cos Zy+cos 2kz)L, 

rp+a2p-'R ctg' kt--ao'k-' (cos 27-cos 2kz) L, 
(A.8) 

from which one further relation can easily be derived: 

rp(cos2 7-sinz kz) +pR(sina 7-sin' kz) 

==aOz(2ka) -' sinz 2kz (r sin' kt-R cos' kt). (A .9) 

The quantity L in Eq. (A.8) is determined by Eq. (3.21). 

'1 A system of units is  used in which the speed of light and the 
gravitational constant are equal to unity. The interval is  
written in the form - d ~ ~ = ~ & d x ' d . @ ,  where gu has the slma- 
ture (-, +, +, +). 
2, We impose this condition only for deflniteness. The opposite 
sign of the square root in Eq. (3.3) leads to the same physical 
results. The same is true for the function p in the expres- 
sions (3.25) (see further discussion). 

Throughout its entire extent this world line remains space- 
like and corresponds to the phase velocity of propagation of 
the wave. The physical velocity of the wave i s  equal to the 
speed of light for large times, and in other regions it is  not 
uniquely definable. The values of the quantity Hz, at  the ex- 
tremal pointsz2 =s"(st +12)(t -s) are  given by the simple ex- 
pression Hzz = -q/2 st, from which it is apparent that a s  t in- 
creases this extreme value decays in the same way as the 
field H on the light cone z = t , Eq. (3.14). 
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