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The problem of superposition of plane waves is considered in a general metric of the form 
g,,. = g,,,,(x I), where x is a spacelike coordinate. It is shown that in this case the interacting-wave 
propagation trajectories are isotropic geodesics without convergence, but with rotation and shift. 

PACS numbers: 04.20.Jb 

1. A number of ~ o r k e r s l - ~  pointed out one of the pos- a t  H = B2(q)(2 + yZ)/2 i s  a solution of the gravitation 
sible ways of generalizing the plane-wave solutions of equation with right-hand side in the form 
the gravitational equations to include the case when Tuv-P1&, l , , l p ~  (4) 
space-time contains two waves propagating in different 

and corresponds to space-time filled with a flux of 
directions. It consists, in brief, in the following. The 

electromagnetic o r  neutrino radiation (plane wave). 
metric of the plane wave 

The vector 1' determines the wave propagation direc- 
-d~~=dz '+dy~-2dpdq-H(x ,  y, q)dqz  tion, while the quantity Bz(q) characterizes the effec- 

can be reduced by a coordinate transformation to the tive density of the radiation energy. At constant B8 
form this metric is reduced by the coordinate transforma- 

ds'=g,,dx'+2g,zdzdy+ g22dy1+2g~~dpdq, (2) tion 

where g,, =g,,(q) depends only on the isotropic coor- 9- t l+yz ,  rew*x+iy, z - 2 - " * ( ~ - ~ ) ,  t-2-'"(p+p) ,. (5) 

dinate q (q-wave). It i s  assumed that the interacting to a form where the metric tensor depends only on one 
waves should correspond to a metric similar to (2), spacelike variable x1 =r :  
but now dependent on both isotropic coordinates p and 

-&'-dr'+r"dcp'+ ( ~ - ~ / d ' i )  dz'-l/,BVdzdt- (l+'/,PP)dta. (6)  
4: 

ds2 -g ,wdX"~,  gpv=g, ( P ,  q )  . (3) If we choose the Newman-Penrose tetrad field in the 

It then becomes possible to break space-time up into 
four regions: a planar region, a region containing the 
p wave, a region containing the q wave, the the region 
of interaction with the metric (3). The Lichnerowicz 
matching conditions a r e  satisfied on the boundary. 

By using the Newman-Penrose spin-wave coefficient 
method to solve the problem1' i t  is possible to describe 
both the kinematics of the process of the interaction 
(the geometric characteristics of the propagation tra- 
jectories) and the dynamics (the change of the structure 
of the tetrad components of the Weyl tensor and of the 
energy-momentum tensor). 

In the case of solutions of the form (31, mutual 
focusing of the waves takes place. The congruences 
of the isotropic geodesics, along which the waves pro- 
pagate in the interaction region, have convergence, and 
the field quantities characterizing the intensities of the 
wave fields become infinite on some spacelike hyper- 
surface, which is called caustic in analogy with geo- 
metrical optics. 

form 
b= (O,O, 2-", 2-") , 

-2-'J:B, -2-", 2-'h), 

(2-'", 1.2-'", -1Br. 2-5, - iBp 2-") , 

then the only nonzero quantities a r e  

The introduced coordinates have the meaning of ord- 
inary cylindrical coordinates. The optical scalar 
w = Imp = 2-lJ2B i s  the rate of rotation of the con- 
gruence of the isotropic geodesics with a tangential 
vector np . The motion of test particles along this 
congruence constitutes (in the three-dimensional sense) 
motion along helical lines (nl =nT =0) around the z axis 
(na=np = -2-'J2B) in a direction opposite to the radia- 
tion flux (n3 =nx = -2-'I2). 

There exists one other coordinate system in which 
g=g (2) for the metric in question. In this system 

Solutions of the described type, corresponding to where the tilde denotes coordinates subjected to trans- 

different interacting wave fields, can be found in a formation. The explicit form of the transformation can 

number of papers. 1-5,7 In the present commun~cation we be found in the paper of Dinariev and Sibgatullin. 

indicate another possibility of generalizing the solu- If we choose 

tions for free plane waves. By wave of example we 1.- (0 ,0 ,1 ,O)  , nb= ( 0 , 0 , 0 , 1 ) ,  
m*= ( 2 4 ,  i .  2-'", -iBS, 0 )  , 

(1 0) 
present an exact solution that describes the gravita- 
tional interaction of two fluxes of high-frequency then, just a s  in (8) 
radiation. p=27 =2-" iB, (D,,=B2/2, (11) 

2. We present the initial metrics. The metric (1) but a r = p = O .  
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For a transverse gravitational wave in the form2' 
-ds2=dzz+dy2-2dpdq+2A'[ (2'-yz) cos 2"Ap+2zy sin 2'"Ap]dpz 

we can obtain relations similar to (9)-(11): 

-dsz=dz"z+dg'+2"~Af dgdp-2dpdq+4Azfzdp2, 

I.= (0 ,  - 2 ' h ~ f ,  1. - ~ ~ z " ) ,  

n*=(O,O, 0 .1 ) .  mp=(2-", i.2-", 0 ,  iAz"). (12) 
p=-a=e=-iA - 2 4  yo=-2Az,  A-mnsl. 

3. The solutions (6)-(12) can be generalized by a 
common metric of the type 

We choose the tetrad field in the form 

l p = ( O ,  la, 15 ,  l ' ) ,  d = ( 0 ,  d,  ns, n'), mu-(m', mz, mJ, m'), 

m ~ = r ~ ~ ,  m2--fi', ms--fil, rnL=-fi'. (14) 
- - -- - 

For  the metric (13) only the Christoffel symbols r:, 
and I?:, (i, k # l )  differ from zero. Using this circum- 
stance, we can easily show that 

T-'i,  n-jl, a-a ,  $=b, k=E, v=v, 

P=-p I*=- P, a=-#, L---1, e---e, y=--1. 
(15) 

Substitution of (14) and (15) in the commutator yields 
additional limitations on the spin coefficients: 

and equations for  the components of the tetrad vectors: 

6F= (ol+p+r) E+knu+20ms, 

6 d =  (T-a-p)  ne-vP+Wmu, 6mm= (a-p) mY--pp-pnu, 

6=m'd/dz1, p f  I .  
(17) 

We put k = v =  0. Then the system of Newman- 
Penrose equations takes the form 

p2-o'+@oo=4ez+4eo+@OO=0, 

Yo=2(o-p)o=-4eo,  

~ ~ = ( o - ~ ) ~ - @ ~ , = - 2 e ~ - @ ~ ~ ,  Y t = r 2 - @ 1 1 ,  

6e=(a+p+3~)  e+ ( B - - U + T ) ~ + @ O I ,  

6 (a+)  - (a-p)L~'+pp-oh+2yp+2ep+2@,,, (18) 

6r-  (2r+a-p) ~ - 4 e y - 2 d - 2 y a - @ ~ ~ ,  

Gr=(r+p-a) ~-2eh-2y~+@or ,  

p2-h~+@22=4yz+4yh+@zz=0, 
= ( - ) = -  Y , = ( p - h ) r + 0 , 2 = 2 y r + Q , ~ ,  

6y= ( 3 ~ - a - @ ) y +  (T-a+p)h+@tr. 

4. We present the simplest, most lucid, and in a 
certain sense most general solution of this system of 
equations, which describes the interaction between two 
radiation fluxes in the high-frequency limit, when we 
can put T,, - P1,1, + Qn,n,. The solution takes the 
form 

It i s  easily seen that as A - 0 or  B - 0 these relations 
go over into Eqs. (6)-(8). 

Since Rep = Rep = 0,  there is no focusing . The radia- 
tion-propagation trajectories a re  isotropic geodesics 
with rotation, and the rotation rate i s  larger the higher 
the energy density of the opposing radiation flux. At 
AB CO,  which corresponds to rotation of the rays in 
opposite directions, the field quantities a re  finite 
everywhere. The maximum of the density is  reached 
a t  r = 0. On the other hand if AB > 0 ,  then on going 
through the point r = ro = (4/3AB)'I2 the direction of 
rotation of the f l u  trajectories is reversed. At the 
point ro itself, the field quantities have a singularity, 
which indicates an infinite attraction between layers 
rotating in opposite directions. 

The interaction leads also to the appearance of longi- 
tudinal (@, and @,) and Coalomb (a,) components of the 
f ree  gravitational field . 

5. Under other assumptions with respect to @,, \k,, 
and @, we can obtain similar solutions of the system 
(18), which describe the superposition of the gravi- 
tational, neutrino, and electromagnetic waves. In 
these cases, however, the limiting metrics should be 
chosen to be (9) and (12). 

We dwell in conclusion on certain properties of the 
solution for  interacting neutrino and gravitational waves. 
A neutrino field with a current vector parallel to Iu is  
described by a component J ,  that satisfies the equation 

The tetrad components of the energy-momentum tensor 
a r e  of the form 

We see  therefore that upon interaction with the gravi- 
tational wave the neutrino field loses i ts  isotropic 
character. It follows from (18) and (21) that Imp 
=I)$ > 0, i. e . , polarized neutrino radiation admits of 
rotation in only a definite direction. 

The gravitational wave corresponds to the conditions 
@,#O andip,=O. In this case 

p=-o=ef 0 .  (22) 

Thus, a transverse gravitational wave causes, besides 
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rotation, a shift of the rays of the opposing wave. It 
follows also from (22) that the energy-momentum ten- 
so r  of the neutrino field satisfies the energy-dominance 
conditionlo 

~m pW/,  1 o 1 (23) 

only if Imp > 0. 

The author thanks G.  V. Shishkin, V. M. Sakhonenko, 
and M.I. Syrkin for  a discussion of the work and for 
useful remarks. 
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Exact solutions of the gravitational equations which describe the evolution of gravitational solitons 
against the background of Friedmann cosmological models with the equation of state E = p  are derived 
and examined. The corresponding vacuum solutions are given. 
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8 1. INTRODUCTION mann space. For  the reason we have noted, this can- 
not at present be done in general form. 

The method of inverse solution of the scattering prob- 
lem has been used by Zakharov and the write$ to des- There is, however, one special case in which the 

cribe a procedure for integrating the gravitational method already described1 can still be applied even in a 

equations for the case of a metric tensor depending on space with matter. This is the case of an ideal fluid 

only two variables. The metric we used was written in with the "superrigid" equation of state E = p ,  proposed 

the form1' by Zeld'ovich? The specific form of this equation of 
state will not play any decisive part in our work, since 

-asz--f (-dt2+dzz) +gadz"dzb, (1 .I) we shall deal with soliton perturbations of the gravita- 
tional field itself, not of the matter, which remains un- 

where the functions f and gab depend on the coordinates perturbed in our solutions. From this point of view the 
t and z. Our notation for the coordinates is (xO, x', x2, xS)  matter serves only for the provision and maintainance 
= (t ,  x, y, z). The f i rs t  Latin letters a and b always run of the Friedmann background solution, and i t  can be 
through the values 1 and 2 and refer  to the coordinates hoped that the qualitative picture of the behavior of 
x and y. The Latin indices i and k, which occur later, gravitational solitons on this background will remain 
refer to four-dimensional space and take the values approximately the same for  other equations of state. 
0,1,2,3. Besides this, exact solutions of the Einstein equations, 

analogous (in the sense that the behavior of the metric 
In the previous papefl we considered the Einstein coefficients g,, remains the same in them) to those ob- 

equations corresponding to the inte mal (1 .l) only in tained here for a space with matter, exist also in va- 
empty space. The application of a similar method to cuum. The way they a r e  found in the general case is 
the integration of these equations in a space filled with described in Sec. 2, and the actual construction is giv- 
matter is a s  yet an unsettled question. Meanwhile the 

en in Sec. 4. solutions belonging to the class of metrics (1.1) include 
such fundamental exact solutions as the Friedmann In this paper we shall consider one-soliton solutions 
cosmological models, for which the presence of matter on the background of Friedmann models of all three 
is essential. It would certainly be interesting to con- types. Let us point out their main qualitative peculiar- 
struct new exact cosmological solutions describing the ities. These solutions a r e  inhomogeneous cosmological 
evolution of finite disturbances such a s  gravitational models, in which the distribution of the gravitational 
solitons, appearing against the background of a Fried- field a t  the inital time shows a clearly expressed max- 
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