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An exact solution is obtained for the local magnetization of a plane Ising lattice with a line of defects of 
two types. It is shown that near the critical point, at distances to the defect much shorter than the 
correlation radius, the local magnetization has a universal behavior that manifests itself in the fact that 
its critical exponent is a continuous function of the microscopic parameters of the system. 

PACS numbers: 75.10.Hk, 61.70.Ph 

1. INTRODUCTION 

The study of the influence of various defects on the 
critical behavior of systems that undergo phase transi- 
tions is of condiserable influence both theoretically and 
experimentally. The theoretical study of this influence 
is based on phenomenological theories :-5 renormaliza- 
tion-group calculations, high-tempe rature expansions 
a s  well as  on exactly solvable m~dels?""~ P r  incipal 
attention is being paid to the study of the influence of the 
defects on the global characteristics of the system, 
such a s  the transition temperature, the free energy, the 
specific heat, etc. No less interesting, however, is the 
study of the influence of the defects on local character- 
istics such as  the local magnetization and the correla- 
tion functions. The reason is, first, that the influence 
of the defects on the local characteristics is stronger 
than on the global ones, and second, that in a number 
of experiments it is precisely the local characteristics 
that are measured. 

This paper presents a rigorous analysis.of the influ- 
ence of linear defects of two different types on the local 
magnetization of a plane Ising lattice. Fragments of the 
lattices considered are shown in Fig. 1. The local 
magnetization is calculated exactly for these models, 
and a study is made of its dependence on the distance 
to the defect and on the size of the defect. The most in- 
teresting feature of the solution is the dependence of the 
critical exponent of the local magnetization on the in- 
te raction parameters. 

The systems considered simulate real objects in 

which the defects are due to'the presence of one dislo- 
cation. They constitute the linear approximation in the 
analysis of objects having a low dislocation density. 

2. FORMULATION OF PROBLEM 

The interaction energy of the considered lattices can 
be represented as  a sum of two terms 

E=Eo+AE, 
(1) 

where E,  is the energy of the interaction of the defect- 
free lattice: 

Y N 

A E  is the energy of the perturbation due to the presence 
of the defects. For the lattice of the first type 

FIG. 1. Fragments of plane lattice with line of defects located 
between two neighboring columns (a) and inside one column (b). 
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and for the lattice of the second type 

bE=-(Jz'-Jz) 2 s ~ I c + I . ~ .  
m-l-Y 

(4) 

In these expressions s,, is the spin variable connected 
with a lattice site having coordinates m and n, and tak- 
ing on values il; J,, J:, and J,, J,' are the energies of 
the interactions between the horizontal and vertical. 
pairs of neighboring spins, respectively (see Fig. 1). 
Here and below it is  assumed that the lattice is  infinite 
in both directions (M, N - -). 

We define the local magnetization of a lattice with de- 
fects in analogy with the definition of the magnetization 
of a defect-free lattice,15'16 on the basis of the limiting 
value of the spin-spin correlation function 

(sm*s.,,+.) 
(5.) - l im 

"+- <s,,,+.> . (5) 

We have omitted from the left-hand side of this expres- 
sion the row index because of the translational invari- 
ance of the lattices in question in the vertical direction. 

For spins with large column number the local mag- 
netization does not differ from the magnetization (s), of 
a defect-free l a t t i ~ e ~ ~ " ~  

%, T t T .  
l im (s,,,+") = ( s ) ~  = 
R-- o T>T,' 

%R=li-(sh 2K,  sh2K2)-']''.=Bz".[l+O(z) 1, T =  Ii-T/T,I,  
(6) 

B=[4  ( K , ,  cth 2K,.+Kz. cth 2Kr.) ]"o, Ki=JilkT, 

where k is Boltzmann's constant, T is the temperature, 
the subscript c marks the value of the function at the 
critical point T,. Substituting (6) in (6) we get 

<s.> = ( ( ~ ) ~ ) - ' l i r n  (s, ,s , , ,+~).  
a+- (7) 

It is known16.1s that the two-dimensional Ising lattice 
can be represented a s  a model of noninteracting fer- 
mions. To realize such a representation, we introduce 
the fermion operators 

a-0 a=" 

where 

g.,=exp (-2K2sm-( asm.). (9) 

For a lattice with defects of the second type it is neces- 
sary at a = 1 to replace K2 by Kr2 in (9). 

The operators (8) under the mean-value sign satisfy 
the Fermi anticommutation relations [if they are de- 
fined, at identical first coordinates, in accordance with 
(A.7)) 

where A =*, 6& and 6,,. are Kronecker symbols. The 
inverse transition from the spin operators to the fer- 
mion operators is based on the following relations: 

Using (11) and the fact that (s,,)~ = 1, we can repre- 
sent an arbitrary function of the spin operators in the 
form of a product of the fermion operators (8). In the 
subsequent calculations it is more convenient, however, 

to use linear combinations of the operators (8): 

b,.* -ch K , k . * r i  sh K l k n T .  (12) 

It is easy to verify that the transformation (12) is  can- 
onical, i. e., that the operators b,,* also satisfy the 
Fermi anticommutation relations. 

Using (11) and (12), we can represent the expression 
in the right-hand side of (7) in the form of a product of 
fermion operators: 

where P is the Dyson chronological-ordering operator, 
which arranges the Fermion operators in increasing or- 
der of the coordinate m. The operator P in (13) can be 
replaced by the Wick chronological-ordering operator. 
We then obtain in the right-hand side of (13) the many- 
point Green's function 

where ((. . .)) = (T. . .), and T is the Wick chronological- 
ordering operator. 

The many-point Green's function satisfies the Wick 
theorem, and as a result the right-hand side can be re- 
presented in the form of a Pfaffian whose elements are 
two-point Green's functions. The solutions for these 
functions are given in the Appendix. Recognizing that 

we obtain 

( S . ) = ( ( S > ~ ) - ~  lim det (A:"' ), 
a+- 

(15) 

where A(:' is a matrix with elements 

I 

<tb:,+i+,bG+r+l&=-(~n)-' j&exp[-(2n+j+k)q]bL,2(cp). (18) 
-I 

Expression (18) is written for lattices with defects of 
the first and second type, respectively. The subscript 
0 means that the function pertains to the defect-free 
lattice, and the subscript "per" refers to the perturba- 
tion due to the defects. The expressions for @,(cp), @,,, 
((0) and ~ ( q )  are given in the Appendix [(A.13), (~.16) ,  
(~.20) ,  and (A .18), respectively]. 

The calculation of the magnetization of lattices with 
defect lines has thus been reduced to the calculation of 
determinants of semi-infinite matrices whose elements 
are represented a s  sums of two terms, the first depen- 
dent on the difference of the indices, and the second on 
the sum. 

3. CALCULATION OF THE MAGNETIZATION 

To calculate the determinants (15) we use the method 
of an earlier paper?' We note for this purpose that the 
terms of the expansion of the determinant (15) o r  of the 
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Pfaffian (14) can be broken up into separate groups, de- 
pending on the number of Green's functions that corres- 
pond to the perturbation: 

where F, is the sum of terms, each of which contains k 
Green's functions corresponding to the perturbation: 

where the summation is carried out over values of a 
and 0 that satisfy the conditions 

is the aggregate of the Green's functions of the defect- 
free lattice a t  the given choice of the functions corres- 
ponding to the perturbation; a;, . . . , a,, ( P i ,  . . . , 0, -,) 
are  the indices that remain after eliminating from the 
s e t 0 ,  1, 2 ,..., R - 1  the indices a, ,..., a, 
(01, ..., 0k). 

A s  shown in Ref. 19, expression (21) can be repre- 
sented initially in terms of the minors of a Toeplitz 
matrix with element (17), and then in terms of the ele- 
ments of the inverse matrix, which a re  obtained as 
(X -a by the Wiener-Hopf method. As a result we have 
as 2-* 

A'%) ( a l a 2 .  . . akl P I P z .  . . f i i ) = < ~ > ~ '  (-1)Prp,~alr4,1~. . . . rpk !OR' 
(22) 

tall.' 

where 
mln(a.6)  

G,,= r( rAL)lrj::, y:(2'= (2n) - I  J dcp (el*). 
1-0 -,, 

Substituting (22) in (20), we obtain after some alge- 
braic simplifications 

where in contrast to (20) the summation over a and P 
is free of restrictions. 

To analyze expression (23) i t  is convenient to use a 
diagram technique. To this end we set  in correspon- 
dence to the operators b' and b-  two different points, 
and set  in correspondence with the Green's functions 
and the elements r two different lines that join these 
points. Then the expansion (19) becomes a sum over 
the connected and unconnected diagrams, with the un- 
connected diagram corresponding to the product of i ts  
connected parts. It is possible to apply to this expan- 
sion the connectivity theorem? as a result of which the 
magnetization can be represented in the form 

where kqlFk is that part of (23) which correspond to the 
connected diagrams; i ts  graphic representation is 

shown in Fig. 2. To write down the analytic expression 
i t  remains only to sum over a and 0, a s  a result of I 

which we get 

4. ANALYSIS IN  THE SCALING REGION 

We consider the behavior of the local magnetization 
in the most interesting-scaling-region, defined by the 
following relations: 

el-'= (ES:' ) ;'-+O, n+m, n l f ,  - arbitrary, (26) 

where [ is the correlation radius of the defect-free lat- 
tice'": 

E-'=[2(C,Cz-St-S,) ] '"=Br+O(.cZ) ,  B=' /~(C,CE)-"B' .  (Z7) 

An analysis of expression (25) in the region (26) 
shows that the largest contribution to the integration is 
made by the region of small values of cp , in which the 
quantities 

q ( c p )  - (E-Z+Szq2)S,-i+0 (cpi). 

are  also small. Then, using the change of variables 
cp = ( [s :~~) -~  sinh u and extending the limits of integra- 
tion with respect to u to P, we get 

<s, )=(s) , f  (x, x )  . (28) 

The scaling function fix, x ) ,  which describes the devia- 
tion of the magnetization of a lattice with defects from 
the magnetization of a defect-free lattice is  represented 
in the form .I 

X k -  
" k sh' Ur 

f k = - ( - - )  J d u  o l . . . ~ d u k ~ e x p ( - z c h u l )  
o 1-1 ( C ~ U I - x )  (ch u [ + c ~  u l+ , )  

For  a lattice with defects of the first  type 

and for a lattice with defects of the second type1) 

r = 2 ( n - 1 ) g , - ~ ,  x=th Z ( K > - K ~ ' ) ,  _ I < ~ < I .  (32) 
Expanding the exponenetial of (29) in a ser ies  and 

recognizing that 

(ch r + c h  u1+,)-'= i d y l  e r p [ - y l ( c h  u,+ch us,) 1. 
O 

we can represent the scaling function fix, n) in the form 

i - x  k m  j (f"'..."), f = ( )  U dy.  ... 
O d y Y .  I Y Z . .  . yh ' 

FIG. 2. Diagram corresponding to expression (25). 

615 Sov. Phys. JETP 50(3), Sept. 1979 R. Z. Bariev 615 



X%(YI + ~i + z ) .  . . ~ C , ( Y I  + Y,' + x) 
, ( - . . "  )= I . .  . . . . . . . . . . . . . . . . . . 

yl'y;. ?I,' X ,  (y, $ yz' + X )  . . . . X ,  (y, + y,' + 2) 

- 
ah' u 

. ~ ~ ( y ) =  J d u e r ~ ( - ~ c h u ) - .  
ch u-x 

a 

It is then easy to see that fix, x )  is the Fredholm deter- 
minant of the integral equation 

* 

Y ( Y ) - ?  Jw.(Y+Y'++)Y ( Y ' ) ~ ~ ' = x ( Y ) .  
0 

From the general theory of integral equations" follows 
the regular convergence of the series (33) for the scal- 
ing function fTx, x) at all values x> 0. 

At sufficiently large values of x, the scaling function 
Ax, x )  can be approximated by the first terms of the ex- 
pansion (33) 

. - 
1c sh'u 1 j ( z , x )=~ - -Jdue -xc~u( - ) -+~ (e -b ) .  

2n 0 
chu-x ch u (35) 

At x>> 1, the asymptotic form of (35) is 

It should be noted that expression (35) approximates 
well the scaling function also a t  x - 1. The maximum 
value of the correction term is reached at x = 1 and 
does not exceed 1% for x> 0.3 

To find the asymptotic form of Ax, u) a t  small x ,  we 
consider the representation (29), (30). The asymptotic 
form of the multiple integral in (30) at x<< 1 can be ob- 
tained in the same manner a s  in Ref. 22: 

f?(x, x) =aI(%) In x-'+El(%) + O ( l ) ,  (38) 
where 

Substituting (38) in (29) we get 

f (2, X )  = ~ ( x ) x ~ ( ~ ' [ l + O ( x )  1 ,  
where 

E(x) is a constant that does not depend on x .  The nu- 
merical value of this constant lies in the interval 

0.875810 ...= B(-1) GB(x)  GB(1) =1.097665 ... . 
Recognizing that B(0) = 1, we can conclude that B(x) is 
practically a linear function of x, and obtain the nu- 
merical value of this function with approximate accur- 
acy 1%. Plots of the function A x ,  x) for several values 
of u, based on the asymptotic expression (35) and (39), 
are shown in Fig. 3. 

The most interesting feature of the obtained solution 
is the non-universal behavior of the local magnetiza- 
tion at distances n smaller than half the correlation 
radius 5, bf the defect-free model. This non-univer- 
sality consists in the fact that the critical exponent 
PI,, of the magnetization is a continuous function of the 

FIG. 3. Plot of the scaling function f ( x ,  x) for different values 
of x: 0.8 (1); 0.6 (2); 0.2 (3); -0.2 (4); -0.6 (5); -1 (6). 

interaction parameters 
<s,)-zba'x'no'"' at n<e,/2, 

where 
1 &,s +arc cos ( - x )  ]', 

2n (42) 

and x is determined by expressions (31) and (32). A 
plot of the function Bloc is given in Fig. 4. For the mod- 
e l  with defects of the first type, &,, varies in the range 

1 
-[arc cos (C,-*) ]'<$,,<0.5, 
2n2 

and for the model with defects of the second type in the 
range O< P,,,<0.5. 

Thus, the local magnetization of a lattice with a line 
of defects, at distances larger than 5,/2 to the defect, 
hardly differs from the magnetization of a defect-free 
lattice. The correction term necessitated by the per- 
turbation is exponentially small in this region compared 
with the magnetization of a defect-free lattice [see (36) 
and (37)J. However, with further decrease of the dis- 
tance the local magnetization deviates strongly from 
that of defect-free lattice, increasing or  decreasing 
when the parameter u takes on negative and positive 
values, respectively (see Fig. 3). The deviation be- 
comes so  substantial, that it leads to a change of the 
critical exponent &,, that characterizes the dependence 
of the local magnetization on the relative temperature 
?[see (41)J. In this region the local magnetization ex- 

FIG. 4. Dependence of the critical exponent P,, of the local 
magnetization on the microscopic parameter x. 
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hibits a non-universal behavior-its critical exponent 
is a continuous function of H [see (42) and Fig. 41; this 
behavior is connected in turn with the parameters of the 
interactions of the considered lattices [see (31) and 
(3211. 

5. CONCLUSION 

We discuss now the reason for the non-universality of 
the critical behavior of the local mag~netization from the 
point of view of the general theory of phase transitions. 
The first example of a system with non-universal be- 
havior was the Baxter model.'' The non-universality of 
this model consisted in the fact that its critical expon- 
ents are continuous function of the pprameter of four- 
particle interaction, and this interaction can be regar- 
ded in this case as  a perturbation. It was shown on the 
basis of a phenomenological approach that the non- 
universality of the Baxter model is due to the fact that 
the physical dimensionality of the system d coincides 
with the scale dimensionality A,, of the perturbation 
(d = A  =,) .24.25 It was assumed in Refs. 24 and 25 that the 
physical dimensionality d,,, of the perturbation coin- 
cides with the dimensionality of the system. In real 
objects, however, besides the case d,,, =d, the situa- 
tion d,,,<d is frequently encountered. 

Application of the phenomenological to 
this case shows that if Ap,,=d,,, then the critical be- 
havior of the system can become non-universal, with a 
continuous dependence of the critical exponents on the 
microscopic parameter of the perturbation. Here, 
however, in contrast to the case d,,,=d, the functions 
of the perturbation parameters can become only the ex- 
ponents that characterize the local quantities near the 
perturbation. 

It is precisely this situation, Ape,=dp,, <d, which is 
realized in the plane models with linear defects consid- 
ered by us, and the local critical exponents connected 
with the spin operators s are continuous function of the 
microscopic perturbation parameter. In particular, for 
the exponent of the local magnetization we have in first- 
order perturbation theory 

p.=!30+ha+O(h2), (43) 

where X=Kl-K;, a=l/rrS, and A=K2-K,', a = l / r  re- 
spectively for the defects of the first and second type 
(a is the coefficient of the operator algebra,27128 and its 
exact value was obtained in Ref. 29). It is easily seen 
that expression (42) also takes on the form (43) in f i rs t  
order in A. Thus, the results of the phenomenological 
and rigorous approaches are  in agreement. 

Application of the phenomenological approach25126 to 
the general situation when d,,,<d leads to the following 
conclusion: if the physical and the scale dimensional- 
ities of the perturbation coincides, then application of 
the perturbation brings about a situation wherein either 
the correlation functions near the perturbation take on a 
scale-invariant form, or  else the local critical expon- 
ents become continuous functions of the microscopic 
parameters of the system. 

The author is grateuful to A. M. Polyakov, V. L. 
~okrovskii ,  G. B. Teitel'baum, M. P. Zhelifonov, and 

A. R. Kessel' for helpful discussions, and is indebted 
to I. B. Nilova for compiling the computer program. 

APPENDIX 

We consider first a lattice with defects of the first 
kind. The equations of motion with respect to m,  for 
the fermion operators (8) of this lattice, can be ob- 
tained either on the basis of the transition matrix" o r  
by using the method of Ref. 30. If we regard a',, and 
a,, as  components of the volumn vector 

these equations can be written in matrix form 

where 
p,,. =cs ,-,, ,,.+as,,.+b6,+,, .,+ (G,ob'+S,,a'+6n2t') 61. ,,, (A -3) 

- iCISz* - S1Sz* ' (- S,Sz* iCISa*) 
1 (A.4) 

c = 0 0 '  

a', b', c '  a re  obtained from a, band r by replacing C, 
and S,: 

The first line of (A.5) corresponds to the defect-free 
lattice, and the second to tht? lattice with defects. 

We introduce the casual Green's functions defined at 
m, + m,: 

and at m, =m,  =m: 

At n, >n, we define the Green's function in such a way 
that the anticommutation relations (10) are  satisfied. 
By the same token we make the problem of the two-di- 
mensional Ising lattice equivalent to the problem of 
noninteracting fermions .'6 

The equations of motion for the Green's functions are 
obtained from (A.2) with allowance for the anticommu- 
tation relations (10) and (A.7): 

Taking into account the translational invariance with 
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respect to m, we change over to the equations of motion 
for the Fourier transforms of the Green's functions 

eiVG.,.,- ~ P . , , , G . , , . = - ~ P . , , ~ , ,  

(A.9) 
<G:,.,a:.,,= (221)-'$ exp[i(m1-m~)cp1~~~,~ ((0 @- 

-I 

The solution (A.9) is written in the form 

Thus, the determination of the Green's function reduces 
to finding the matrix inverse to (A.ll). For a defect- 
free lattice P, and consequentely also A ,  is cyclic, and 
therefore its inverse matrix can be easily obtained with 
the aid of the Fourier transformation. As a result we 
get the following expressions for the Green's functions 
of a defect-free lattice1': 

+ + + - 
Uam~,n,am,,n,~o Uam,,~,am~,n,~o 

( U a - a +  m,,m.>o <am,,n,am,..,J'o - - )  

sign(m,-m,) +iS,Sz'sin cplsh 7 -ieo(cp) + (CI-1)s; sincp!sh 7 
i [ma (cp) ]-I- (C,-1) S2' sin cplsh 7 sign(m,-m,) -iSIS,' sin cp!sh 7 

where 

It is knownz0 that Green's functions of a perturbed 
system are expressed in terms of the Green's functions 
of the unperturbed system and the matrix elements of 
the perturbation operator. As a result we obtain for a 
lattice with defects of the first kind, after setting up the 
linear combinations (12), 

@,(cp) =[t,(S,'sh q)-'+(x,St'sh q-t,) (Sr'sh i~-z,t,)-'lSI-l, (A.16) 

17 =q(q) is defined a s  the positive solution of the equa- 
tion 

ch q= (C~CC-COS cp) (SSz')-'. (A.18) 

The Green's functions for the lattice with defects of 
the second kind; it is simpler, however to  use for this 
purpose dual transformations?' A s  a result we obtain 
expressions (~ .14) ,  where the functions Tqq) and @,(q) 
are replaced respectively by 

Tt*(cp) =-i sin cp((ch q*C, sh q) (St sh q)-'+[x,(C,Cz' ch q 
-SlS,'*C2'sh q) - (ch q*Cl sh q) 

x(S1 ~h 11-%at,)-') (5,')-'en, tz=SiC,' ch q-C,Sz', ( ~ ~ 1 9 )  

Qz(cp)=ltz(Si sh q)-'+(xzSi ~h 114,) (S, sh q-xztr)-'] (S;)-'end ((420) 

x~=th 2 (Kt-K,'). (A.21) 

It must be noted that the solution (A.14) represents 
the Green's functions of the right-hand side of the lat- 
tice, i. e ., the functions made up of the fermion opera- 
tors 

am,+-ch K,bmnf+i sh K,bi,- (n22) 

and 

am,--ch K,b,.--i sh Klbm.+ (na i ) .  

 he case n = *1 corresponds to a semi-infinite model and 
will be the subject of a separate study. 
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