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Helicon resonances in plane-parallel single-crystal plates of ultrapure indium were investigated 
experimentally. It was observed that besides the resonances described by the known theory [R. G. 
Chambers and B. K. Jones, Proc. Roy. Soc. (London) A270, 417 (1962); P. A. Penz, J. Appl. Phys. 38, 
4047 (1967)l there exist additional peaks whose resonant magnetic fields depend nonlinearly on the 
excitation freque-ncy. These peaks can appear near a helicon resonance at both stronger and weaker 
magnetic fields. The spectrum of the flexural acoustic waves in a plate of ultrapure metal is calculated 
with account taken of the propagation of helicons in the plate, and it is shown that near the helicon 
resonance the acoustic characteristics change so strongly that acoustic resonances, whose positions agree 
with the experimentally observed ones, can occur when the magnetic field varies in a small range. 

PACS numbers: 43.35.Rw, 76.90. + d 

1. INTRODUCTION by equations of the type 
o~~.=oou~,.; 1, m, n=O, I, 2 , .  . . , 

This paper reports an experimental investigation of 
(4) 

helicon in plane-parallel single-crystal where wo is the resonant frequency of a thin, essential- 
plates of pure indium. It was observed that besides the ly infinite, plate (31, the coefficients a,,, depend on the 
resonances described by the unknown theory; there ex- ratios of the transverse dimensions of the plate to the 

ist additional resonance peaks. The aim of the paper is thickness, and on the numbers 1, m,  a, and do not de- 

to elucidate the nature of these new resonance peaks. pend on the magnetic field. 

The picture of helicon resonances in a thin (one di- 
mension much smaller than the two others) plate in the 
case of symmetrical excitation is the simplest: the re- 
sonance should occur whenever the plate thickness 
spans an odd number of helicon half-waves. The values 
of the resonant frequencies w ,  can be obtained with the 
aid of the dispersion relation 

kz=4n I N.-Nh 1 ew/cB cos 8 (1) 

with account taken of the resonance condition 
k=(%n+l)n/d,  n=O, 1, 2 . .  . . (2) 

In the experiment, the decrease of the transverse di- 
mensions of the plate leads to the onset of satellite re- 
sonances near the main resonances, close to the posi- 
tions of w, calculated in accord with (3). These satel- 
lites, which are of the helicon type, should occur only 
on the higher-frequency side (when the resonances are 
plotted as  functions of the frequency with constant B) o r  
on the side of the weaker magnetic fields (at constant 
w). The position of each satellite is such that at reson- 
ance the excitation frequency is proportional to the 
magnetic field. 

Here k is the wave vector of the helicon, w is the fre- We proceed now to report the experimental results. 
quency, B is the external constant magnetic field, N ,  
and N ,  are the concentrations of the electrons and holes, 2. EXPERIMENT 
respectively, and 9 is the angle between the field B and 
the wave propagation direction, which coincides with 2.1 Samples, procedure, experimental conditions. The 
the normal to the plane of the surface. single-crystal samples were made from ultrapure in- 

dium with resistivity ration p(300K/p(1.4K) = 2x lo5, ob- 
After substituting (2) in (1) we obtain tained by the method of Ref. 6 from the Pure Ingredi- 
on= (2n+l)2ncBo cos 8/4d'] N.-N,I e, (3) ents Division of our Institute. 

where B, is  the magnetic field in which the resonance is 
The samples were grown in a dismountable polished 

observed. quartz mold and were plates measuring 1.5 x 10 x 50 
Relation (3) expresses one of the most characteristic Am. The long axis of the sample coincided with the 

properties of helicon resonance, viz., the direct pro- [I101 axis, the [001] axis made an angle of 30" with the 
portionality of the exciting frequency to the constant normal to the surface. 
magnetic field under the resonance condition. The pro- 

The method of crossed coils was used: the signal 
portionality coefficient is determined only by the elec- from an acoustic generator, of frequency 20-8000 Hz, 
tronic characteristics of the metal and by the geometry was applied to the primary coil; the signal from the 
of the experiment. 

secondary coil was amplified and was registered, syn- 
The picture becomes more complicated in thick chronously detected, and plotted with an x-y recorder. 

plates, since the resonance condition is determined not The coils covered an approximate volume 12 x 12 x 2 
by one dimension, as  in (2), but in general by all three mm. The measurements were made at a temperature 
dimensions of the plate. It was established495 that the 1.3 K, and the sample with its holder were placed di- 
resonant frequencies are well described in this case rectly in the helium. 
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The work was performed in an electromagnet capable 
of producing fields up to 20 kG with homogeneity not 
worse than over the dimensions of the sample, and 
with a long-time stability not worse than 

2.2 Experimental results. Figure l a  shows typical 
plots of the mutual inductance of the crossed coils 
against the magnetic field at various fixed frequencies. 
In weak magnetic fields this function had a simple form: 
a peak corresponding to the helicon resonance in our 
case with n = 0 under condition (2). The Hall constant 
A, =  IN,-N,,lec, calculated from the position of this 
peak, turned out to be 1.6 X lo-'' St . cm -6, which 
agreed within better than 1% with the known experimen- 
tal  value^.^ 

With increasing excitation frequency, the resonance 
peak shifted towards stronger magnetic fields, its 
shape became initially distorted, and it split later into 
a number of resonant peak. When the resonance was 
recorded in fixed magnetic fields and the excitation 
frequency was smoothly varied, a similar picture was 
observed, Fig. lb. 

The reduction of the curves shows that the excitation 
frequency and the magnetic field remain directly pro- 
portional only for the peaks @(Fig. 1). The resonant 
peak for peaks of type a, located in weaker magnetic 
fields, and for peaks of type y ,  located in stronger 
magnetic fields, depends nonlinearly on the excitation 
frequency (see also Fig. 7). 

FIG. 1. a) Dependence of the real part of the mutual induct- 
ance of crossed coils on the magnetic field at various fixed ex- 
citation frequencies: 1-22.1 Hz, 2-66.3 Hz, 3-110.5 Hz. 
b) Dependence of the real part of the mutual inductance of 
crossed coils on the excitation frequency in different fixed 
magnetic fields. 

A discrepancy with the theory is thus observed at 
least at in two aspectse: first, a strong deviation from 
the proportionality of the excitation frequency to the re- 
sonant magnetic field; second, the appearance of a re- 
sonant peak in a field stronger than the helicon reson- 
ance at the same frequency. 

It turned out later that when helicon resonances with 
higher numbers (n= 1, 2, 3) were excited in the sample 
under condition (2), there was no splitting of the reso- 
nant peak at all, Fig. 2. 

In the subsequent experiments it turned out that the 
satellite resonances are quite sensitive to two factors: 
to the position of the coil system relative to the sam- 
ple, and to the locations of the points were the sample 
was mounted (the sample was secured with small drops 
of BF-2 adhesive). The distance between the peaks @ 
and y decreased with increasing number of fastening 
points. 

3. DISCUSSION OF RESULTS 

The analysis of the results suggests that the observed 
satellite resonances a re  due to resonances of flexural 
acoustic waves, whose spectrum is strongly altered in 
the region of magnetic fields and frequencies at which 
helicon resonance sets in. 

This is based on the following considerations. Con- 
sider a metal plate in a normal magnetic field, Fig. 3. 
Any flexure o r  rotation of the plate produces a tangen- 
tial magnetic-field component that can subsequently 
propagate in the sample in the form of a helicon. Thus, 
the transverse flexural or  rotational vibrations of the 
plate with frequency w ,  can lead to the onset of helicon 
resonance and are equivalent in a certain sense to the 
exciting-coil system. 

On the other hand, the onset of helicon resonance 
leads to a resonant appearance of large magnetic mo- 
ment of the plate, whose pondermotive interaction with 
the external magnetic field can cause rotation or flex- 
ure of the plate. Effects connected with such an inter- 
action were first observed by Pippard and co-workers." 

A consistent solution of the problem of acoustic oscil- 
lations of a plate, with account taken of helicons propa- 
gating in it, can be broken up into several stages. We 

FIG. 2. Dependence of the real part of the mutual induction of 
crossed coils on the magnetic field at frequencies wrrespond- 
ing to excitation of helicon resonance with different numbers: 
a) f=132.6 Hz, n=O, b) f=1190 Hz, n=1. 
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FIG. 3. Flexural oscillations of a plate in a magmtic field. 

obtain first the magnetic moment M of an element dx 
of the plate, averaged over the sample thickness, at 
a helicon boundary condition set by the acoustic oscil- 
lations: 

h ( z ,  t )  -BO(z, t ) .  

where h is the tangential component of the external 
magnetic field, and 0 is the angle between the external 
magnetic field and the normal to the surface of the 
plate, Fig. 3. We calculate next the pondermotive 
torque K= M x B and take it into account in the derivation 
of the wave equation for the flexural acoustic oscilla- 
tions. 

The calculation procedure is described in the Appen- 
dix (Item 2), and here we present the final form of the 
dispersion relation for the flexural oscillations of a 
plate placed in a magnetic field: 

where n is the magnetic polarizabilityg of the plate, 
which in our case is given according to Ref. 3 by 

It is seen from the foregoing expressions that if the 
helicon damping is weak enough near the helicon reson- 
ance [see condition (2)] the acoustic characteristics of 
the plate undergo abrupt changes. Since (5) and (6) con- 
tain sufficiently well known quantities, it is easy to car- 
ry out the numerical calculations for our concrete case. 

Figure 4 shows a typical plot of the propagation veloc- 
ity c of the flexural acoustic oscillations, in an indium 
sample having parameters close to those used by us, 
in the absence of helicon damping. The plates behave 
a s  if  it were much more rigid on the high-frequency 
side and has a decreased "effective" elasticity on the 
low-frequency side. The reason is that the elastic mo- 
ments of the forces and the pondermotive moment are 
directed parallel at frequencies higher than the frequen- 
cy of the helicon resonance, and antiparallel at lower 
frequencies. 

Before we proceed to compare the theory with exper- 
iment, we make one more remark. At frequencies cor- 
responding to long waves, when the wavelength greatly 
exceeds the sample length, i.e., at  qL << 1 (L is the 
transverse dimension, the sample moves in essence 
as  a rigid unit, and in this case we must solve the prob- 
lem of the motion of the sample together with the Sam- 
ple holder and take into account the rigidity of the parts 
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FIG. 4. Dependence of the propagation velocity of acoustic 
flexural waves in an indium plate placed in a magnetic field B 
= 9500 G. The dashed line shows the dependence in the ab- 
sence of a magnetic field, and the dash-dot line the position of 
the helicon resonance (vertical line). 

of the experimental setup. The solution of this problem 
is given in the Appendix (Item 1). We present some 
conclusions. 

In the absence of a magnetic field, the natural fre- 
quencies of the oscillations of the sample holder with 
the samples are obtained from equations of the type 

J* is the effective moment of inertia, and C* is the ef- 
fective rigidity of the system." As shown in the Appen- 
dix (Item I ) ,  allowance for helicon propagation in the 
sample leads to a new resonance condition 

-rm2+C'-%B2V, (7) 
where V is the volume of the sample. 

4. COMPARISON OF THEORY WITH EXPERIMENT 

Acoustic resonances occur at definite wavelengths, 
such that the configuration of the plate oscillations sat- 
isfies the geometrical conditions of the experiment. 
The resonance condition can be written in the form 

where C is a certain constant determined by the geom- 
etry of the experiment. For example, for a hinge-sup- 
ported plate 10 we have C=vn/L, v=1.2 ... . 

At a fixed frequency, resonance takes place in a field 
B, that is obtained by solving the equation (5) for B with 
account taken of (6), (8), and (1). Such a problem can 
be solved, for example, graphically with the aid nomo- 
grams showing the dependence of q on the magnetic field 
(see Fig. 5). The position of the resonance is deter- 
mined by the intersection of the horizontal line (8) with 
the q(B) curves. 

It is convenient to characterize the position of the re- 
sonance by the difference AB between the resonance 
field B, and the theoretical value of the field of the B, 
of the helicon resonance: 

AB--B,-Bo, 

AB is essentially the position of the resonance, reck- 
oned from the theoretical resonant field of the helicon. 
This quantity can be easily determined experimentally 
for different frequencies from the positions of the res- 

V. T. Petrashov 610 



FIG. 5. Dependence of the wave vector of the flexural acous- 
tic waves on the magnetic field in an indium plate 1.5 mm 
thick at  frequencies 22.1, 44.2, 66.3, 88.4,  110.5, and 132.6 
Hz (curves 1-6, respectively). The vertical lines correspond 
to the positions of the helicon resonances at  the indicated fre- 
quencies. The points of intersection of the curves with the 
line q= const determines the values of the magnetic fields at  
which acoustic resonances a re  produced. 

onant peaks (see Fig. 1). 

In the calculation of AB, the quantity C in (8) was as- 
sumed to be a fit parameter. If i t  turned out that CL 
<< 1 (L is the sample length), the calculations were 
made with the aid of Eq. (7). The plots shown in Fig. 
6, which constitute the dependences of the right-hand 
side of (7) on the magnetic field, were f i rs t  used to de- 
termine the values of J* and C* from the positions of 
the peak a t  the two frequencies; the same plots could 
be used next to determine the position of the peak a t  any 
excitation frequency. 

Figure 7 shows the experimental results and the the- 
oretical curves. 

The curves for which AB >O correspond to excitation, 
in the plate, of resonances of flexural acoustic oscilla- 
tions with wavelengths X = 19.6, 12.8, and 9.2 cm (cur- 
ves l ,  2, and 3). The wavelengths were calculated 
from the values of the fit parameter C. The three cases 
differed experimentally in the fact that in the first  case 
the sample was placed in the coils and was not glued, in 

FIG. 6. Dependence of the right-hand side of the resonance 
condition (7) on the magnetic field a t  frequencies 44.2 ,  66.3, 
88.4, 110.5, 132.6 Hz (curves 1-5). By way of example are 
shown the points a t  which resonances occur a t  J* 
=1.7x103 g-cm2 and C*=3x1oT g.cm2 sec2. 

FIG. 7. Positions of observed resonance peaks, reckoned 
from the magqetic field of the helicon resonance a t  various ex- 
citation kequencies. Points-experimental data, the solid 
curves were plotted in accord with the theory developed in the 
present paper. 

the second case one end of the sample was glued to the 
sample holder with BF-2, while in the third case the 
sample was additionally glued a t  two other points, ap- 
proximately 12 mm away from the ends. Obviously, 
when the number of fastening points is increased and the 
distance between them is decreased the resonance 
wavelengths should decrease; this agrees with the char- 
acter  of the change of the fit parameter. The resonance 
peaks corresponding to the experimental points near 
the line 4 can be interpreted a s  ordinary helicon res- 
onances. 

Curves 5, 6, 7 correspond to resonant oscillations of 
the sample holder with the sample fastened to it, vary- 
ing in the magnetic field in accordance with the condi- 
tion (7). The peaks closest to the helicon resonance, 
located on the weak-field side (AB <O, curve 5), cor- 
respond to J*=1.7x103 g.cm2 and c*==3x107 g-cm2 
sec-'. It follows from this that one of the natural fre- 
quencies of the sample holders in the absence of a mag- 
netic field is f -42 Hz. Special measurements have con- 
firmed this. 

To explain why no splitting of helicon resonances with 
higher numbers is observed, calculations were made 
for  frequencies corresponding to n = 1 and 2 under the 
resonance condition (2). A typical plot of q(B) in this 
case is shown in Fig. 8. As seen from the figure, the 
resonances should occur in fields so  close to the heli- 

-,.-- 
FIG. 8. Example of the dependence of the wave vector q (of 
flexural waves) on the magnetic field at  the frequencies m e -  
sponding to excitation of heIicon resonance with n = 0 in the 
sample (dashed curves, f - 110.5 Hz) and a t  n =l (solid curves, 
f = 994.5 Hz). The acoustic resonances occur at the points of 
intersection of the horizontal lines and the q(B)  lines. 
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con-resonance field, that at the Q factors of the obser- 
ved resonances these peaks cannot be resolved in the 
investigated field interval. 

Taking into account all the results of the comparison 
of the theory with the obtained experimental results we 
can regard the agreement as  fully satisfactory. Inter- 
est attaches to the extension of the theory to include 
the case of finite damping of the helicons and of the 
acoustic oscillations, and also to an investigation of 
the above-described phenomena under conditions when 
quantum oscillations of the phase velocity of the elec- 
trons set in." These oscillations should lead to quan- 
tum oscillations of the characteristics of the acoustic 
waves. 

In conclusion, I am grateful to E. P. ~ol'ski;, V. F. 
Gantmakher and V. Ya. Kravchenko for a discussion of 
the results. 

APPENDIX 

1. Consider a system consisting of a sample holder, 
on which is rigidly secured a plate of pure metal, and 
the holder itself can be rotated through a small angle 
8 (8 is a vector) lying in the plane of the plate. We as- 
sume that this rotation gives rise to elastic moments 
that obey Hookeys law: 

G=-C'e, (A.1) 

C* is the elasticity, which we shall assume for sim- 
plicity to be a scalar. 

In the absence of a magnetic field the equation for the 
moments takes the form 

re--cw, (A.2) 

J* is the moment of inertia of the system (which will 
also be regarded a s  a scalar) about an axis parallel to 
the vector 8. Equation (A.2) corresponds to oscillations 
of frequency w, defined by the condition 

PO'-c'=o. (A.3) 

In a magnetic field B perpendicular to the plate sur- 
face at equilibrium, any rotation of the plate through an 
angle 8 leads to the onset of a tangential component h: 

h = [ ~  x el.  (A. 4) 

The appearance of the tangential component leads in 
turn to the production in the plate of a helicon whose 
field is proportional to h ,  is  directed parallel to the 
plate surface, and rotates in the same direction as  the 
Larmor rotation of the carriers?,' The entire plate as  
a unit has in this case a magnetic moment M, which is 
determined by the value of h and by the helicon charac- 
t e r i s t i c ~ . ~  For the Fourier component M, we can write 

M.=xlb.V, (A51 
x is the magnetic polarizability which in the case of 
absence of helicon damping is a real quantity. V is the 
volume of the sample. 

Allowance for the pondermotive torque K= M x B 
acting on the plate leads to the following equation of the 
moments in the magnetic field: 

~ e = - c = e + [ ~ x  B]. (A.6) 
This equation, with account taken of (A.4) and (k5 ) ,  

leads to a new condition for the determination of the re- 
sonant frequencies: 

-oT++C'=xB2V. (A 7) 

2. We consider now flexural acoustic wave in a metal 
plate, with account taken of the helicon propagation. 
Assume that the undeformed plate lies in the xy plane 
and the magnetic field is parallel to the z axis. We de- 
rive a dispersion relation for the case when the flexur- 
al wave propagates in one direction, parallel to the x 
axis. 

In the absence of an external load, the equation of 
motion of the length element dx (see Fig. 3) with cross 
section a is given by 

where p i s  the density of the metal, F is the force ex- 
erted on the element dx by the neighboring elements, 
and u is the deviation from the equilibrium position. 

The torque equation, with account taken of the ponder- 
omotive torque K = m x Bdxo, acting on the element dx, 
where m is the magnetic moment per unit volume of the 
metal and averaged over the plate thickness, is of the 
form 

where 

aau an 
G=EJ-, I=b jz'dz, 0=- 

a 2  az' 

E is Young's modulus, and b i s  the width of the plate. 
Eliminating G and F from (A.8) and (A.9) and neglecting 
the inertia term in the left-hand side of ( ~ . 9 ) ,  we get 

where d is the sample thickness. Substituting the solu- 
tion in the form 

u=uo exp ( - tqz+iot)  

and recognizing that m l B ,  m, =xh,, h =B8u/8x, we 
obtain 

Solving this equation, we obtain the dispersion relation 
(5): 

4'- xB2Et ( ~ ~ B ' + ' / , p E d ' a ~ )  % 

'/,Ed= 

where the plus sign in front of the square root corres- 
ponds to the propagating acoustic wave modified in the 
magnetic field. 
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Effect of linear defects on the local magnetization of a 
plane lsing lattice 
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An exact solution is obtained for the local magnetization of a plane Ising lattice with a line of defects of 
two types. It is shown that near the critical point, at distances to the defect much shorter than the 
correlation radius, the local magnetization has a universal behavior that manifests itself in the fact that 
its critical exponent is a continuous function of the microscopic parameters of the system. 

PACS numbers: 75.10.Hk, 61.70.Ph 

1. INTRODUCTION 

The study of the influence of various defects on the 
critical behavior of systems that undergo phase transi- 
tions is of condiserable influence both theoretically and 
experimentally. The theoretical study of this influence 
is based on phenomenological theories :-5 renormaliza- 
tion-group calculations, high-tempe rature expansions 
a s  well as  on exactly solvable m~dels?""~ P r  incipal 
attention is being paid to the study of the influence of the 
defects on the global characteristics of the system, 
such a s  the transition temperature, the free energy, the 
specific heat, etc. No less interesting, however, is the 
study of the influence of the defects on local character- 
istics such as  the local magnetization and the correla- 
tion functions. The reason is, first, that the influence 
of the defects on the local characteristics is stronger 
than on the global ones, and second, that in a number 
of experiments it is precisely the local characteristics 
that are measured. 

This paper presents a rigorous analysis.of the influ- 
ence of linear defects of two different types on the local 
magnetization of a plane Ising lattice. Fragments of the 
lattices considered are shown in Fig. 1. The local 
magnetization is calculated exactly for these models, 
and a study is made of its dependence on the distance 
to the defect and on the size of the defect. The most in- 
teresting feature of the solution is the dependence of the 
critical exponent of the local magnetization on the in- 
te raction parameters. 

The systems considered simulate real objects in 

which the defects are due to'the presence of one dislo- 
cation. They constitute the linear approximation in the 
analysis of objects having a low dislocation density. 

2. FORMULATION OF PROBLEM 

The interaction energy of the considered lattices can 
be represented as  a sum of two terms 

E=Eo+AE, 
(1) 

where E,  is the energy of the interaction of the defect- 
free lattice: 

Y N 

A E  is the energy of the perturbation due to the presence 
of the defects. For the lattice of the first type 

FIG. 1. Fragments of plane lattice with line of defects located 
between two neighboring columns (a) and inside one column (b). 
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