
2. At a fixed frequency of the wave, the relaxation eralized, however, to include the case of an arbitrary 
frequency v increases with rising temperature and may Fermi surface, in analogy with what was done earlier 
turn out to be of the order of w. Then the contribution in Ref. 2. 
(3.5) to the oscillating part of the impedance decreases In conclusion, we a r e  greatful to V. A. ~ a m ~ o l ' s k i c  
much faster than (3.3). Consequently in the region for interest in the work and for useful discussions. 

the CR manifest itself in the form of the damped har- 
monic oscillations from (3.3): 

3. On going to the low-frequency region, where v >  w ,  
the delay effect ceases to play any role, a s  a result of 
which the amplitude of the CR oscillations increases 
sharply. In the limit 

v-O) (2kouB)'" 
(4.4) 

the oscillating part of the impedance does not depend on 
the parameter A and is determined, according to (3.9) 
by 

2 - cos (nzd3) AzOK. ( H )  = ---------- 
3 cos2(nzo/2) 

(4.5) 
The foregoing results were obtained for a quadratic 

and isotropic dispersion law. They can be easily gen- 
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An exact formula is obtained for the wrrection, which depends on the wave vector and on the frequency 
and must be introduced into the dielectric constant of a homogeneous system of interacting electrons to 
account for the local field G(q,o). The simplest approximation for the exact result for G(q,o), which 
taka into account both two-particle and three-particle exchangecorrelation effects, is considered. A table 
is presented of the numerical values of the approximate wrrection for the local field in the static limit 
o=O.  

PACS numbers: 05.30.R 

1. INTRODUCTION 

A homogeneous system of N interacting electrons 
that move in a volume Ct against the background of a 
uniformly distributed neutralizing postive charge was 
considered in physics more than 40 years ago1 a s  the 
simplest model of the metallic state of matter. Cor- 
responding to such a state is a Hamiltonian 

where p, and r, are  respectively the momentum opera- 
tor and the coordinate of the j-th electron, and 

is the Fourier component of the electron-electron 
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interaction, determined with account taken of the fact 
that the system a s  a whole is electrically neutral. 
Despite the considerable progress reached in the qua- 
litive understanding of the general properties that 
such a system should possess a t  various densities 
N/Q, no unambiguous answers have been obtained so 
f a r  to many important questions concerning the details 
of i t s  behavior precisely in the range of densities ty- 
pical of conduction electrons in real  metals (see, e.g., 
the revie+). The key to the answers to most of the 
unanswered questions might be a reliable practical 
formula for the dielectric constant ~ ( q ,  w) , which de- 
pends on the wave vector and on the frequency and char- 
terizes the linear response of the system to an exter- 
nal perturbation in the form 

It is known that to solve this fundamental physical 
problem use was made of a great variety of theore- 
tical methods, the usual starting point of the calcu- 
lations being the exact formula for the dielectric 
function 

f -  
e-'(q, a)=i -- v ( q )  dt e'[m+id)f<[n(q, t ) ,  n+ (=,o) I),  

o 
(3 

where 

is the Fourier component of the electron-number 
density operator, and the quantity 
([n(q, t), n'(q, 0)) i s  the statistical mean value of the 
commutator of the operators n(q) and n'(q) in the 
Heisenberg representation. Equation (3) can be easily 
obtained in first-order perturbation theory and 
essentially is a formal expression of ~ ( q ,  w) in terms 
of the exact eigenfunctions and eigenvalues of the mul- 
tielectron Hamiltonian (1). The latter do not lend 
themselves to direct calculation a t  typical metallic 
densities, when the contribution from the potential 
energy of the electron interaction in the Hamiltonian 
(1) turns out to be comparable with the contribution 
from their kinetic energy. Consequently the approach 
based on Eq. (3) frequently does not make i t  possible 
to estimate the accuracy of the approximations that 
must be inevitably introduced into the theory a t  some 
intermediate stage of the calculation of e(q, w ) .  

In present paper is proposed a better method of calcu- 
lating the dielectric function; i t  yields for ~ ( q ,  w) an 
exact formula that does not contain explicitly the eigen- 
values of the Hamiltonian (1) and connects ~ ( q ,  w) direct- 
ly with the mean values of the products of the electron 
creation and annihilation operators, in the form 
(c'c+c+ccc), taken at one and the same instant of time. 
These mean values can be approximately estimated by 
expressing them in terms of the occupation numbers of 
the single-electron states, as a result of which we ob- 
tain for ~ ( q ,  w) a formula that is perfectly suitable for 
practical calculation. There is also a realistic pos- 
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sibility of systematically improving the indicated simp- 
les t  approximation for  ~ ( q ,  w). 

2. EQUATION FOR PERTURBED SINGLE-PARTICLE 
STATES 

We denote by )a) and E, the eigenfunction and the cor- 
responding eigenvalues of the energy of the Hamiltonian 
(1). In the general case the eigenfunction of a system of 
interacting fermions can be formally expressed as a 
linear superposition of an infinite number of Slater 
determinants constructed on some orthonormal basis 
of single-particle states #~'k0,' (r, 6). Here 6 is the spin 
coordinate of the electron, and k and a a r e  respectively 
the orbital and spin quantum numbers. 

In the presence of an external perturbation the 
system of interacting electrons is described by wave 
functions rEr(t) determined by the Schr'ainger equation 

ay ( t )  ih--[R+V,. t ( t ) ]Y ( t ) .  
B t  

The external perturbation (2) is adiabatically turned 
on with a time constant 6 - +0, therefore the solutions 
of Eq. (4) a t  t - -a should go over into the stationary 
states I a) exp(- iE,t/ti) of the Hamiltonian H. This 
makes i t  possible to classify the wave functions rEr(t) 
with the aid of the index a.  

We seek solutions of (4) in the form 

Y , ( t )  = l a ( t )  ) exp (-iEat/h), (5) 

where the wave function I a(t)) is obtained from the 
exact eigenstate [a) of the Hamiltonian H by replacing 
the corresponding basis # ~ P X )  by some new orthor- 
normal basis $,$x, t) of single-particle states (here 
x = r, 6). In other words, assuming that the wave func- 
tions [a(t))  and l a )  have the same se t  of occupation 
numbers of the single-electron s ta tes ,  but a re  
constructed with the aid of different bases. At 
t = -a we should obviously, have Jl,,(x, - a ) =  #:'(XI. 
This requirement ensures satisfaction of the initial 
condition la(-a))= la). 

The problem now consists of finding the equation that 
must be rigorously satisfied by the perturbed single- 
particle states A,(x,t). To this end we write down the 
multielectron wave function Jr,(t) in the form 
\ka(x, xz, x3, . . . , XN, t), multiply the schr<dinger equation 
from the left by Jrz(t), and then integrate with respect 
to the coordinates rz, r3, . . . , rN and sum over the spin 
variables. We write down this operation arbitrarily in 
the form 

which constitutes implicitly the sought equation for 
$k,(~,t). 

We now consider the left- and right-hand sides of (6) 
separately. Changing over to  the second-quantization 
operation, we obtain for the left-hand side 
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The first  term stems here from the differentiation of 
the exponential factor in (5) with respect to time, while 
the two remaining ones a re  due to direct differentiation 
of the wave function 1 a(t)). We note that by virtue of 
the definitions of the states I a@)) and I a )  we can not 
distinguish between them when we calculate in (7) the 
matrix elements of the products of the electron crea- 
tion and annihilation operators c,,+ and c,,. Thus, for 
example, 

(a) 
< a ( t )  lcv.+c~.la(t))=<alcp.+ek.la)=n~. 6v.t, 

where n l",) are  the exact occupation numbers of the 
single-electron states in the eigenstate I a) of the sys- 
tem of interacting electrons. 

As to the right-hand side of (6), i t  contains in es-  
sence the complete Harniltonian of the system, aver- 
aged over the exact perturbed wave function under the 
additional condition that at the instant of time t there 
is present in the system and electron with spatial and 
spin coordinated x =  r, 5 .  In this averaging i t  is con- 
venient to break up the Hamiltonian into a sum of the 
following contributions: 

As a result, Eq. (6) takes the following explicit form 

The terms in the right-hand side of (9) are the result 
of successive averaging of each of the separated con- 
tributions in the Hamiltonian (8). 

We a re  interested in the linear response of the sys- 
tem to an external perturbation, s o  that it suffices to 
obtain solutions of the integro-differential equation (9) 
accurate to terms of first  order in V,,,. Since this 
equation is cumbersome, the task seems at f i rs t  glance 
very complicated, but i t  will be shown in the next 
section that the problem has a very simple solution. 

3. EXACT FORMULA FOR THE DIELECTRIC- 
FUNCTION CORRECTION FOR THE LOCAL FIELD 

Since the total Hamiltonian does not depend on the 
spins of the individual particles, i t  is natural to choose 
the sought single-electron states in the form of prod- 
ucts of orbital and spin wave functions 

The presence of the spin functions x,(L) a s  factors has 
no effect whatever on the values of the single-particle 
matrix elements in Eq. (9), so  that we shall take the 
wave functions i),,(x, t )  in this equation to mean simply 
their orbital parts i)*(r, t). As to the unperturbed sing- 
le-electron states Jlio)(r), we identify them for sim- 
plicity with ordinary plane waves: 

We seek the solutions of (9) in the form 

d o  Veff (q ,  o)e'q'e-'("+'a)' 
,k(r,t)=v:"(r) [ I +  EJ - 

2n h o ~ q t + q + q k + i 6  1. (10) 
q 

Here q, = E%'/2m, and Veff(q, w) is the Fourier com- 
ponent of the effective interaction of the electron with 
the external charge. This component is to be deter- 
mined, and is of the same order of smallness a s  
VeXt(q, w) and, just as the latter, i t  possesses the prop- 
erty V*(q, w) = V(-q, -w).  

Substituting (10) in (9) we arrive after fundamentally 
straightforward but technically quite cumbersome 
algebraic transformation a t  the following equation for 

s. ( q )  v.,, ( q , o )  =& ( q )  [ v=t(q,  0 )  +v ( q )  $' ( 9 . 0 )  V a l 1  (93 U )  1 

Here S,(q) is the static structure factor of the system 
in the state 1 a): 

by ~ ' $ ' ( ~ , w )  we denote the function 

which goes over into the known Lindhard function4 if 
the exact occupation numbers n, are  replaced by the 
usual Fermi steps f,; next 
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is the operator of the Fourier components of the elec- 
tron-number density in the unperturbed system, finally, 
A(q) is an operator in the form 

We note that Eq. (11) does not contain the eigen- 
value E,; the corresponding term a r e  strictly can- 
celled out in the course of the transformation from (9) 
to (11). We shall henceforth take I a) to mean the 
ground state of the system of interacting electrons and 
will not write out the index a explicitly. 

Solving Eq. (11) for Vsff(q, w), we get 

v.,, (9, o)  =v,; (q,  o )  le(q, 0 )  , (15) 

where the effective dielectric constant z(q, w) is defined 
by 

c(q, @ ) = I - v ( q )  tI-G(q,  (0) lxo(q? a ) .  , (16) 

Here G(q, w) is the so  called correction for the local 
field and is given by the following exact formula: 

The angle brackets in this expression mean averaging 
over the ground state of the system of interacting elec- 
trons. We note that in accordance with our result (I?), 
the correction for the local field is inversely propor- 
tional to the static structure factor-a circumstance 
not discerned in other known theories of the dielectric 
constant. 

Using the explicit form (10) of the single-particle 
states and taking (15) into account, we obtain the Four- 
ier  component of the averaged induced density. 

kod(ql -xa(q, @I v-t(q,  o ) /g (q9  @I. (18) 
In turn, the longitudinal dielectric function E(q, w) of the 
system is connected with q,,Jq, w) by the relation 

e-'(q, a) =[Vat(q, o ) + v ( q ) n ~ ( q ,  a) l / V ~ . r ( q ,  a). 

When account is taken of (15), (16), and (l8), this re- 
lation leads to an equation for c(q, w) in the usual form: 

As seen from (I?), to calculate the corrections for 
the local field i t  is necessary to known, besides the 
function xo(q, w) also the static structure factor S(q), 
whose behavior a t  all values of q has not yet been 
reliably established so far. This, however, is no 
fundamental obstacle, since S(q) is connected with the 
dielector constant by the relation 

Formulas (17), (19), and (20) make i t  possible to carry  
out a self-consistent calculation of both the correction 
for the local field and of the static structure factor. 

4. SIMPLEST APPROXIMATION FOR THE FUNCTION 
G(q,w) 

To gain an idea about the character of the correction 
for the local field (I?), we estimate all the quantities 
that enter in this formula in the very simplest approx- 
imation, namely, as if we were dealing with a system 
of non-interacting electrons. In this approximation we 
take the function xo(q, w) to mean the usual Lindhard 
function, while for the static structure factor S(q) we 
assume its Hartree-Fock value 

where k, is the Fermi wave number for a system of 
non-interacting electrons of the same density. As a 
result we obtain for the correction for  the local field 

It is easy to establish the limit to which the correc- 
tion (22) for the local field tends as q - 00. To this 
end i t  is convenient to break up G(q, w) into a sum of 
two contributions 

G(q,  o )  =G'" (q,  o )  +G'" (q,  o )  . 

The f i rs t  of these contributions corresponds to those 
terms of (22) which contain products of only two Fermi 
distribution functions, and this contribution can be 
represented in the form 

The remaining terms.of (22) make up the contribution 
G") (~ ,  w), which is somewhat more complicated in 
structure : 

. . 
I - ) -  (ho-np+np+q+i6 lr-nk*.+nk+i6 

As seen from (24), the function G ' ~ ' ( ~ ,  w) vanishes a t  
q 2k, and consequently in this region of wave-number 
values the correction for the local field is determined 
completely by Eq. (23). In particular, in the limit 
of large q we have 

In the important static case w = 0 the expression (22) 
for the correction for the local field takes the form where w,= (41r~e~/rn~2)"~ is the plasma frequency. 
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TABLE I. Values of the functions G(q, 0) a s  functions of the 
ratio q / k p  

-- 

./kp I .,.. I ' i t  I .1*. 01 I 'ikF 1 G('*O) 

4.50 0.53286 
I 5.00 0.52606 
I 5.50 0.52122 

6.00 0.51763 
6.50 0.51489 
7.00 0.51276 
7.50 0.51105 
ROO O..i0967 

The sextuple integral over momentum space in (25) is 
analytically converted into a double integral, the cal- 
culation of which calls already for the use of numerical 
methods. A plot of the function G(q, 0) is shown in the 
figure, which shows also for comparison the corres- 
ponding results obtained in Refs. 5-7. We note that 
in the long-wave q - 0 the function (25) behaves in ex- 
actly the same manner as the correction for the local 
field in the known self-consistent Hartree-Fock ap- 
proximation for the dielectric constant. The limit $ 
to which the function (25) tends asymptotically at large 
q is typical also of static corrections for the local 
field, obtained by Hubbards and by Geldard and ~ o s k o , ~  
and it  is located exactly half-way between the cor- 
responding limits in the theories of Toigo and ~ o o d r u f p  
and Tripathy and Mandal. In the wave-number region 
near 2k, the function (25) has a maximum, whose ex- 
istence is confirmed also by other dielectric-constant 
theories that a r e  regarded as the most reliable. We 
see thus that even the simplest approximation (22) of 
the exact expression (17) for the function G(q, o) is 
quite satisfactory in light of the information available 
a t  the present time concerning the true behavior of the 
correction for the local field. 

It is known that to calculate the phonon spectra of 
metals in the adiabatic approximation, in which i t  is 
assumed that the conduction electrons align themselves 
synchronously to each new configuration of the rel- 
atively slowly moving ions, calls for knowledge of the 

FIG. 1. Behavior of the static correction (25) for  the local 
field a s  a function of the wave number (curve 1). The dashed 
curves show the analogous functions obtained by Toigo and 
Woodruff, (curve 2). Tripathy and Mandal, (curve 3). and of 
Vashishta and singwi7 (curve 4, ca se  r= 4). 

static dielectric constant ~ ( q ,  0) of the system of in- 
teracting electrons, and the results of such calculations 
a re  extremely sensitive to the dependence of G(q, 0)  
on the wave number. lo Bearing in mind the possible 
practical applications of the approximate dielectric 
function, obtained in the present section, in calcula- 
tions of similar kind, we have tabulated the numerical 
values of the correction (25) for the local field. 

In conclusion, the author is grateful to N. A. Cher- 
noplekov for constant intzrest in the work, and V. G. 
Kon and V.V. Pokrovskii for help with the numerical 
calculations. 
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