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An asymptotically exact solution is obtained for the problem of the surface impedance of a metal with an 
arbitrary electron-reflection coefficient p from the boundary, in weak magnetic fields and under the 
conditions of the anomalous skin effect, when the characteristic arc of the electron trajectory in the skin 
layer is much longer than the effective mean free path length. The dependence of the impedance on the 
magnetic field and the singularities of cyclotron resonance (CR) are analyzed in detail for different ratios 
of the collision frequency v and the frequency w of the electromagnetic wave. The influence of the delay 
effect on the CR line shape is investigated in the entire interval of magnetic fields. It is shown that the 
amplitude of the cyclotron oscillations increases sharply near w = v on going into the low-frequency 
region w <v.  This increase is due to the fact that a at v > o  the delay effect does not manifest itself in 
the dependence of the impedance on the magnetic field. An asymptotic form, uniform in the delay 
parameter, is obtained for the current density for diffuse reflection of the electrons from the metal 
surface. 

PACS numbers: 76.40. + b. 73.25. + i 

1. INTRODUCTION wave, and they absorb the wave energy effectively only 
during a small  fraction of the entire time of stay in the 

Cyclotron resonance (CR), discovered more than skin layer. In other words, the electrons a r e  late in 
twenty years ago,' turned out to be quite useful and leaving the skin layer by the time a substantial change 
informative for the clarification of the physical picture occurs in the field. One speaks then of the delay ef- 
of the interaction between conduction electrons and the fect. 
electric field inametal .  Owing to the anomalous skin 
effect, the character of the interaction of the electrons 
with the skin-layer field, and therefore also the sin- 
gularities of the CR, a r e  determined by the relation 
between the free-path time l/v, the time TO = ( 8 ~ b ) ' ' ~ / v  
of flight of the electrons through the skin layer 6, and 
the half-life n/w of the high-frequency field. Here R 
is the radius of the electron orbit in the magnetic field 
H, and v is the electron Fermi  velocity. 

Cyclotron resonance is usually observed in the region 
of microwave frequencies and in relatively strong mag- 
netic field, when the time of flight through the skinlayer 
is much l e s s  than the half-period of the electromagnetic 
wave, which in turn is small  compared with the f ree  
path time, i. e., 

( 8 ~ 6 ) " / v ( n / o 9 i / v .  
(1.1) 

These inequalities mean that the resonant electrons 
move inside the skin layer without collisions in the 
static field of the wave. The conditions (1.1) a r e  the 
most favorable for the observation of the CR. The sit- 
uation of the "usual" cyclotron resonance has been in- 

1 

vestigated in sufficient detail in many theoretical papers 
and is described, in particular, in Ref. 2, where the 
pertinent references a r e  given (see a lso  Ref. 3). 

With increasing frequency or  with decreasing mag- 
netic field, the relation between the time of flight and 
the half-period of the wave is violated. The left-hand 
inequality of (1.1) is then reversed, 

nlo< (8R6) '" l~ ,  
(1.2) 

i. e. ,  during the time TO the electrons a r e  acted upon 
by the rapidly varying field of the electromagnetic 

The important role of the relation between TO and 
l w  t i v l - '  was f i rs t  indicated in Ref. 4, where the sur-  

face-impedance component that depends smoothly on 
H was obtained in the form of an expansion of the re-  
ciprocal powers of the parameter 1 w  + iv 1 TO. The 
change of the character of the interaction of the elec- 
trons with the high-frequency field at  wrO- 1 was used 
by Koch and ~ i ~ , ~  and later  by ~ r n i t h , ~  to explain the 
observed broad maximum on the plot of the derivative 
of the surface impedance with respect  to the magnetic 
field, a maximum that precedes the CR oscillations. 
Later Kamgar, Heningsen, and ~ o c h '  observed and in- 
vestigated CR in gallium a t  submillimeter wavelengths 
under conditions of the strong delay effect (1.2). In 
this case the CR amplitude decreases because of the 
decrease of the effectiveness of the interaction of the 
electrons with the high-frequency field. Somewhat 
earl ier ,  Drew 8 published a qualitative theory of the 
delay effect. 

A consistent asymptotic theory of the delay effect was 
constructed in Ref. 2, with account taken of the real  
distribution of the electromagnetic field in the metal, 
and in particular i t s  dependence on the character of 
the scattering of the electrons by the sample surface.. 
In Ref. 2, however, the resonance was assumed to be 
quite sharp, v<< S2 (S2 is the cyclotron frequency), and 
only the immediate vicinity of the resonances ( Iw  
- n Q  1 v, n is the number of the resonance) was in- 
vestigated. This approximation corresponds to rep- 
resenting the current density in the form of a sum of 
two terms, one corresponding to the current in the 
absence ofamagnetic field, and the other to the reso- 
nant current. Actually, however, the asymptotic ex- 
pansion of the current density in terms of the para- 
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meter lw + iv l rO contains also other less  strongly vary- of w and v within the framework of the inequalities 
ing terms, which were not taken into account before. (1.5). In the case of diffuse reflection of the electrons 
They exert a strong influence on the impedance and on from the metal surface, we obtain, fo r  the f i r s t  time 
the shape of the resonance line. ever, an asymptotic current density that is uniform 

Summarizing the foregoing, i t  must be stated that a t  
present the delay effect has been theoretically investi- 
gated only near a sharp resonance. It is therefore of 
interest to study the dependence of the impedance on 
H and the CR in weak magnetic fields and a t  other re-  
lations between the parameters 70, 1/w, and l/v. 

We obtain in this paper an asymptotically exact so- 
lution of the problem of the surface impedance of a 
metal a t  an arbitrary coefficient of electrons from the 
sample boundary in weak magnetic fields and under the 
conditions of the anomalous skin effect. By weak mag- 
netic fields we mean those in which the parameter 

(1.3) 
independently of the ratio of the wave frequency w to 
the collision frequency v.   he condition for the an- 
omaly of the skin effect is a s  usual 

v/lv-i01 w8,  
(1.4) 

i. e. , the effective mean f ree  path v/ Iv - io 1 is large 
compared with the skin-layer thickness 6. I t  follows 
from inequalities (1.3) and (1.4) that '2 << I v - iw ( 
<<v/6, and they can be written in the form of the fol- 
lowing chain: 

In the high-frequency region, where w >> v, the con- 
dition (1.3) coincides with (1.2) and means that a strong 
delay effect takes place. At low frequencies w <v, the 
interaction of the electrons with the wave in the skin 
layer takes place on a small segment, compared with 
the a rc  length vrO, of the order of the mean f ree  path 
1 = v/v. During the time of this interaction the change 
of the phase of the electromagnetic field is negligible. 
This means that the delay effect plays no role a t  low 
frequencies. Therefore that part  of the impedance 
which depends on the magnetic field turns out to be 
proportional to the probability of a single return of the 
electrons to the skin layer e-2rv without collision in the 
interior of the metal. In addition, the amplitude of 
such damped harmonic oscillations is independent in 
this case of the parameter A. It follows directly f rom 
this physical picture that there should exist near w = v 
a transition region in which the interaction with the 
wave during the free-path time gives way to interaction 
under conditions of the delay effect. The analysis 
presented below shows that the characteristic width of 
such a transition region is of the order of l/rO, i. e . ,  

10-v I -i/~~, (1.6) 

and is small compared with w and v by virtue of (1.3). 
The presence of the region (1.6) manifests itself in an 
abrupt change of the amplitude of the damped harmonic 
oscillations, of the type e-"'. 

In the next section we obtain the asymptotic Fourier 
component of the current density for different ratios 
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relative to the parameter A. In Sec. 3 is calculated 
the surface impedance and an analytic description is 
obtained for the entire dependence of the surface im- 
pedance of the metal on the magnetic field at any s h a r p  
ness of the resonance. In the concluding fourth section 
we analyze the results. 

2. CURRENT DENSITY 

To solve Maxwell's equations and to calculate the sur-  
face impedance i t  is necessary to know the connection 
between the Fourier components of the current density 
j,(k) and the electric field I,(k). In the case of a 
spherical Fermi surface this connection takes the form 

1 - 
j , (k)=K,(k)eP,(k)-  - Jdk' Q,(k, k f ) 8 , ( k ' ) .  

0 

(2.1) 
Here a =y o r  z, the x axis is directed towards the in- 
terior of the metal, and the z axis is parallel to the 
magnetic field H; ~ , ( k )  a r e  the tangential components 
of the conductivity of the unbounded metal: 

xh(6, A-2) cos[kR,,  (cos b-cos (A-t) ) I ,  
(2.2) 

where wo = ( 4 n ~ e ~ / r n ) ' ' ~  is the plasma frequency, N, 
m, and e a r e  respectively the concentration, effective 
mass and the absolute value of the charge of the elec- 
tron, R, = R sin8 is the radius of the electron orbit in 
the magnetic field (R =v/SZ), v is the Fermi  velocity, 
SZ = e ~ / m c ,  9 i s  the polar angle with the plaro axis z, 
and n,(9, X) a r e  the components of the velocity unit vec- 
tor (n, =sin8 cosX, n, =cos9). 

The integral part  of the conduction operator takes into 
account the influence of the surface and is given by9*" 

where 
i 

12 ( z . z J )  - - j dm .np j a na ( a ,  a - v c h  ~h COS[Z(COS T+COS A) I 
shnY" 0 

16' ( z ,  z') =j d q s i n p J  dh n.(6, h ) e - ~ L c o s [ z ( c ~ s  9-cos A) 1 

^ d v s i n q  ' 
1;" (e, z f )  = 5 r J  dA n. ( 0 ,  h)ch fi cos[z(cos  cp-cos A) I 

, P o  

X j dA' n, (6, h') ch yh' cos [z' (cos 9--cos A') 1, . (2.6) 
(I 
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and the parameter p is the probability of specular re- 
flection of the electrons from the metal boundary 
( O Q P Q ~ ) .  

We must f i rs t  find the asymptotic current density 
(2.1) under the conditions of the normal skin effect 

and in the region of weak magnetic fields (1.5). The 
asymptotic form of K,(k) was calculated before a num- 
ber of times (see, e. g. , Ref. 9) and is given by the 
known formula 

300' 
K. ( k )  = -cthny. 

16kv 

We emphasize that this result does not depend on the 
parameter (1.3) and is valid of only the inequality 
(2.7) holds. 

The calculation of the asymptotic form of Q,(k,  k') 
is much more complicated because i ts  form depends 
explicitly on the parameter (1.3). We use f i r s t  only 
the condition (2.7) that the skin effect be anomalous. 
We s tar t  with the calculation of l:'(z, 2'). If we f i rs t  
integrate with respect to cp by parts, then i t  is easy to 
verify that the matter reduces to finding the asymptotic 
forms of Bessel-type integrals 

We use for the calculation the stationary phase method 
and expand the cosine in the argument of the exponential 
in the vicinity of the stationary points x = 0 and x = n up 
to quadratic terms inclusive. The integral is then ex- 
pressed in terms of the e r r o r  function 

@ ( x )  =2n-" jd t  exp (- tz)  
0 

by the following formula: 

~ d x c h p e x p ( i z c o s z ) ~  
0 

iy' in 
+exp(-iz+-*-)[chny-shnyQ 22 4 

(2.9) 
where the signs + and - correspond to positive (upper) 
and negative (lower) values of z. 

The result of these basically straightforward but 
somewhat cumbersome calculations takes the form 

(2.10) 
When performing the operations Re and Im the pa- 
rameter y must be regarded a s  real. We neglect in 
(2.10) the terms containing rapidly oscillating expon- 

e n t i a l ~  such a s  exp[* i(z * z')], exp(* 2iz), and expG 2izt). 
An exception is the term with exp[2i(z - zt)]/(z - z'), 
which in fact lead to the term with the delta function 
6(z - 2'). 

The determination of the asymptotic form of I:'(z, z') 
is somewhat more complicated because integration by 
parts with respect to cp yields, besides the already 
considered integrals, also double integrals in the form 

- ] z s i o s - c o s q ) ] - z ' ~ i n [ z ' ( c o s r - c w q ) ] ) .  
e 0 

(2.11) 
The distinguishing feature of this integral is  that the 
main contribution is made to i t  by small  g and by the 
entire interval of integration with respect to x.  I ts  
asymptotic form contains also logarithmic terms and 
is given by 

(2.12) 
After calculating the asymptotic form of Ik2'(z, z') 

we can obtain the following expression for the com- 
bination l t ' (z ,  z') - 12'(z, z ' ) :  

12' (z, z') - 1g' (z, 2' )  - na e-mv 3 + e-2nv z 
naa (@, 0) z2 1 - e-2zy ' ( Z  - " )  + 4 ( z Z  - &'2) In 7 

(tein14) + 2 - earrv 
8 (z + 2,)  (,'fin 

I t  must be emphasized that in the derivation of 
(2.13) we used only the condition (2.7) for the anomaly 
of the skin effect. In other words, this expression i s  
valid a t  all values of the parameter A (of the parameters 
y / ( 2 ~ ) ~ / ~  and y/(2z')'/2). In the case of diffuse scat- 
tering (p  = 0). when the last term with I;'(Z, z'), is 
missing from Eq. (2.3), the expression (2.13) provides 
the uniform asymptotic form of the entire integral part 
of the conduction operator Q,(k, k'). At 17 1 << ( 2 ~ ) " ~  
Eq. (2.13) goes over into a known expression. 

Equation (2.13) can be further simplified under the 
conditions (1.3) and (1.5). For this purpose i t  is nec- 
essary to replace the function Q ( x )  in (2.13) by its as- 
ymptotic form at large values of the argument: 

In all  the terms except the third we can then confine 
ourselves to the f i rs t  two terms in the parentheses of 
(2.14), and in the third one we must retain all the as- 
ymptotic terms written out in (2.14). As a result we 
get 
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I,"'(z, zi)-I:' ( 2 , ~ ' )  ln(z /z ' )  + i-e-asT + R (zz')-'& is the current density in the absence of the magnetic 
n.' (6 ,O) zz-Z1a 81' 2 e Z z ~ - i  field. It is due to the part of Ka(k) which is independent 

of H and is obtained by taking the limit y-- in (2.8), 
Z-z a s  well a s  to the f i rs t  (logarithmic) terms of the as- 

ymptotic forms (2.15) and (2.17). 

(2. 15) The quantity 

where 

(2.20) 
- L i e x p [ - q ( t - $ ) ] [ i t ~  Z-Z' 

(&e-'al')].  is the increment to the current j:'(k), and depends 
relatively smoothly on the magnetic field. It is made 

In the last expression we have neglected the non- 
resonant terms that oscillate rapidly relative to the 
parameter (1.3) (relative to y/(2z)'I2, y/(2z1)'Iz), 
which lead to terms of higher order of smallness in 
the calculation of the impedance. In the expression 
for (z,zl) the e r r o r  functions were not replaced by the 
asymptotic form (2.14) because the character of the 
asymptotic behavior of ~ ( z ,  z') is substantially different, 
depending on the ratio of w and v (i. e. , the phase of the 
parameter y). As will be shown below, this causes a 
strong change in the dependence of the impedance on 
w and v in the region where w- v. 

We proceed now to find the asymptotic form of 
!:'(z,-zl). The main contribution tb the integral (2.6) 
is made by the vicinity of the points X = cp and X' = cp. 
We obtain accordingly for I:'(Z, z') the expression 

up of the second term of (2.15) and of all terms but the 
f i rs t  of (2.17). 

Finally, al l  the remaining terms of the asymptotic 
forms (2.8) and (2.15) make up the increment 
j f ) ( k ) .  The latter differs in form and changes sub- 
stantially, depending on the ratio of w and v. We 
present f i rs t  an expression for j E'(k) in the high-fre- 
quency region w >> v, when a strong delay effect takes 
place. In this case the term containing I(z, z') + I(zl, z) 
in (2.15) can be disregarded and 

(,) 3oog i - dk' 1. ( k ) =  --j d6 naz(6, 0 )  -&,(kt) 
4nzu eZnT-i  a (kk')" 

- Aces [& (+++) + ~ ~ i ~ ] ]  
. " 

dg, sinrp nmt(6, g,)shz 1~ 
1:' ( ~ 1  z ')  =1'J 

( z 2  sini g,+.,2) (zfz  sin: q+72) ' 
(2.21) 

(2.16) atw'>V. 
We next expand the integrand in powers of p and cal- 
culate the integral with respect to cp. The latter is 
determined by small regions cp- l/y 1 and r - cp- l/ 
( y  1 near the lower and upper ends of the integration 
interval. An exception is that term of the ser ies  in 
powers of p, which does not contain exponentials of the 
type e'znT' and is due to integration over small  regions 
of scale I y  1 /z near the points cp = 0 and cp = r. This 
term of the ser ies  yields a logarithmic asymptotic 
form. The final result for I L ~  '(2, z') is 

Thus, all the formulas needed to  write down the as- 
ymptotic current density have been obtained. The as- 
ymptotic form of ja(k) in the region of the anomalous 
skin effect and in weak magnetic fields (1.5) is rep- 
resented by a sum of three terms: 

j.(k)=jJw (k)+j i i '  (k)+ji2' ( k ) .  (2.18) 

Here 

300" PP.(k) 2 
- 

1n(klk1) 
j '  ( k )  = - [ - - ( I - p )  jdkl&= (k ' ) - ]  

1Gu xz I k  -k= 
(2.19) 

The dependence on the magnetic field (both resonant 
and smooth) under the conditions of the delay effect is 
contained in the last  two terms of (2.181, whereas the 
f i rs t  term is independent of H.   here fore jz and 
jt (k) must be taken into account, even though they a r e  
small  compared with j:) (k). The smallness of 
jz (k) in the high-frequency region w >> v is ensured by 
the fact that the rapidly oscillating term (the term with 
the sine function) is subtracted from the delta function, 
but is the near-limiting expression for this function 
relative to the parameter (1.3). 

I t  is of interest to compare the obtained formulas with 
the previously known results. Equation (2.21) gen- 
eralizes, to the case of an arbitrary ratio of v and a, 
the expression previously obtainedZ in the case of sharp 
resonance. The term (2.20) is not contained in Ref. 2. 
Although i t  is large compared with (2.21), in the case 
of sharp resonance this term is a much smoother func- 
tion of the magnetic field than jt (k) and describes the 
far  wings of the resonance line. Equation (2.20) gen- 
eralizes the result obtained in Ref. 4 to include the case 
of an arbitrary reflection coefficient p. In addition, in 
contrast to Ref. 4, where the oscillations of the current 
relative to the magnetic field were neglected, expres- 
sion (2.20) does take these oscillations into account. 

At low frequencies, when w is smaller than o r  of the 
order of the collision frequency v, the correctian 
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j? (k) is given by parameter. 
3,,, 2 'It' jL" ( k ) -  O e-2"' 

- dk' j do nGz (6,0) 1 -ga(k') 
i6nzv o (kk 

(2.22) 
a t  w s V .  The symbol ( k  -k ') m e a n s  Mdition, in the 
curly brackets, of the terms obtakfied from those 
written out by interchaning k alld kt. To obtain (2.22) 
i t  is necessary to expand the third term of (2.15) in 
terms of e-'" and neglect the cosltle in the curly brackets. 
In the approximation linear in e'2ry we arrive a t  (2.22). 
It must be noted that the asymptotic form of the current 
density in this nonresonant low-frequency region was 
not investigated previously with account taken of os- 
cillations of the type e-*". 

3. SURFACE IMPEDANCE 

The dependence of the impedance z,(H) on the mag- 
netic field can be obtained by perturbation theory, 
using a s  the zeroth approximation the impedance Z,(O) 
determined by the current density j:' (k) in the absence 
of a magnetic field. In the approximation linear in 
j$ and j:' the increment to the impedance is 

where $,(k) is the Fourier component of the electric 
field E b )  in the zeroth approximation (i. e. , a t  H = 0), 
and EL(0) is the derivative with respect to the argument 
on the surface of the metal. 

The surface impedance Z(0) a t  H =  0 and a t  arbitrary 
reflection of the electrons from the metal boundary is 
given byii 

where ko = 6-I is the reciprocal thickness of the skin 
layer a t  H = 0, and 0 = cosrzo. 

To calculate the impedance due to the current j;' we 
do not need the explicit form of the distribution of the 
field iY,(k), since the current jv' does not depend on 
k and is proportional to  E,(O) ~0 Z(0). Accordingly, 

(3.3) 
We have introduced here the complex parameter 

which in the case of a sharp CR or  near i t  (wZnS1, 
w>> .>O <<v) coincides with the previously obtained delay 

The calculation of the impedance resonant component 
AZ':'(H), connected with the currentjF'(k), is per- 
fectly analogous in the case w>> v with that given in 
Ref. 2. We therefore write down directly the final 
formula for the resonant part of the impedance a t  an 
arbitrary reflection of the electrons from the sample 
boundary: 

AZ~' ( H )  - -",, 2 n  ch' ny . nz . nz, -- 
e2"7-l s,n2 2- sin- -A-' Z(0) 2 3 

i+aae-:W,oaa(nzJ2) A-I+b=,-nl/8 cw4(n*i2) A - Z ]  (3. 5) 
sina(na0/3) sin' (nz,/3) 

a t  w >> v. The values of the constants A,a,, and b,, 
taken from Ref. 2, a r e  the following: 

Equation (3.5) differs from the analogous equation of 
Ref. 2 in the form of the resonant factor and in the 
definition of A. Therefore Eq. (3.5) is valid not only 
near resonance, but also fa r  from it. In the case of 
specular reflection, owing to the relatively simple form 
of the function . (k), i t  is possible to find impedance 
corrections that have not only a power-law form but also 
an exponential form in terms of A. They can play an 
important role if the delay effect is not strong, when 
IA 1 is not very large. The corresponding expressions 
a re  obtained by using the already indicated change of the 
form of the resonant factor and of the parameter A in 
Eqs. (3.9) and (3.10) of Ref. 2. 

We proceed now to calculate the impedance in the 
region of low frequencies w s v. Since the asymptotic 
form of the current j:' does not change in this region, 
the impedance AZ',"(H) has likewise the same form 
(3.3) a s  in the region of high frequencies w - v. Owing 
to the change of the character of the asymptotic be- 
havior of j',2'(k), the corresponding impedance A Z ~ ) ( H )  
changes, too. To calculate the latter we must sub- 
stitute (2.22) in (3.1). We take into account the fact 
that the main contribution to A Z ~ ' ( H )  is made by the 
first  term of (2.2) with the function 

The other terms of the asymptotic form (2.22) make 
a contribution that is small  in the parameter A. In 
fact the next term contains a s  a factor the difference - 
6(k - k') and expressions in the form of delta functions 
in k -  k'. Therefore the calculation of the integrals 
with respect to k and k' produces in this term a cor- 
responding smallness relative to A. The remaining 
terms of the asymptotic form (2.22) have no delta- 
function singularities a t  k = k' and vary rapidly a s  func- 
tions of k and k' over intervals proportional to ) A  1'. 
This leads to the appearance of additional small  factors 
in the parameter (3.4). Therefore the impedance 
A Z ~ ' ( H )  can be written in the form 
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4~ 1A1 JTp(a [i-D ( ( - )*et*+inf i  t sin 19 )]  
0 

at w s v. The function F(5) is here the dimensionless 
Fourier component of the electric field, 

and the phase shift B is determined by the ratio of v and 
0, 

The explicit form of the function ~ ( 5 )  is determined by 
the value of the reflection coefficient p of the electrons 
at  the metal boundary, and is given, for example, in 
Ref. 1. 

Equation (3.6) describes the effect mentioned in the 
preceding sections, that of the change of the surface 
impedance as  a function of the sign of the frequency dif- 
ference v- w. This effect is analogous to the known 
Stokes phenomenon and is due to the jumplike change of 
the asymptotic form of the error  function * (x) at large 
values of 1% 1 ,  when Re x goes through zero [see (2.14)]. 
The real part of the argument of the function @ in (3.6) 
is equal to (w - v)[ I A 1/2(w2 + v2)5. sinti]lf2. Inasmuch a s  
in the integration with respect to 9 and 5. all  the values 
of 9 a re  significant and F - 1, the abrupt change of 
AZz'(H) should occur in the transition region 

Far  from this transition region we can confine our- 
selves to the first  term of the asymptotic form of (2.14) 
for @(XI  and replace the square bracket in (3.6) by 
double the unit step function 2B(v- w). The integrals 
with respect to 8 and 5 can then be calculated explicity- 
and the final expression for AZ:'(H) becomes 

Thus, (3.9) plays an essential role when the collision 
frequency v exceeds the wave frequency w, and the dif- 
ference v- w> [(w2 + $)/(A The impedance (3.9) 
does not depend on a (on the polarization of the external 
wave) because of the isotropy of the Fermi surface. It 
described damped harmonic surface-impedance oscil- 
lations due to CR at frequencies w < v. Their amplitude 
is determined by the value of the reflection coefficient 
P. 

We note that in this region the analogous oscillations 
of AZg'(H) (the term proportional to e-2'y) a r e  small 
compared with (3.9). The distinguishing feature of the 
impedance (3.9) is that i t  does not depend explicitly on 
the parameter A. At low frequencies w < v the pa- 
rameter ( A  (=Rb/2l2 is the square of the ratio of the 
characteristic length of the arc  (8R6)lf2 of the electron 
trajectory inside the skin layer to the mean-free-path 
length I = v / v .  At 1 A 1 >> 1 the arc  length is large com- 
pared with I ,  i. e. ,  the bending of the electron orbit by 

the magnetic field inside the skin layer is negligible. 
Therefore the current density is independent of H in the 
first-order approximation and coincides with the current 
in the absence of a magnetic field. 

The impedance AZ "'(H) is due to electrons that execute 
a complete revolution in the magnetic field without col- 
liding in the interior of the metal. This is precisely 
why there is no delay effect a t  w < v, and the dependence 
of AZ'2) on H is given by the factor e'2'7, which is the 
probability of a single return of the electron to the skin 
layer (with account taken of the change of the phase of 
the electromagnetic wave). A dependence on the pa- 
rameter A can appear only a s  a result of a change in 
the form of the distribution of the electromagnetic field 
inside the skin layer. At I A 1 s 1 this leads to a change 
of a numerical factor and to a dependence of AZ"'(H) 
on the reflection coefficient p. Thus, as expected from 
physical considerations, the delay effect exists only in 
a region of sufficiently high frequencies w > v. 

4. DISCUSSION OF RESULTS 

In this section we discuss the expected dependence of 
the surface impedance on the magnetic field in the 
region of weak magnetic fields (1.5), a t  different ratios 
between o and v, which in turn is determined by the 
temperature. In accord with the results of the preceding 
section, the impedance component that depends on the 
magnetic field, AZ, (HI = Z, (H) - Z(O), canbe represented 
as a sum of a smooth part hZ?(H) and a partAZrC(H), 
that oscillates a s  a function of the field H and is due to 
the CR. 

I. The expression for the field part is obtained di- 
rectly from Eq. (3.3), if we let e'2r7 in it tend to zero: 

(4.1) 
Other smooth increments Ee.g., from u:' (H)] , a r e  
small in the parameter A. The expression for AZ.,'"(H) 
is valid for an arbitrary ratio of w and v and describes 
the quadratic change of the impedance with changing 
magnetic field; the sign of the change depends on f i  
= arctan (v/o). 

11. In contrast to the smooth part AZim(H), the 
impedance part A ~ ( H )  that oscillates because of the 
CR is determined essentially by the ratio of w and v. 

1. At sufficiently low temperatures in pure metals, 
when w >> v, the form of the resonant oscillations is 
described by the sum of expression (3.5) and the terms 
oscillating in H from (3.3) (proportional to e'2r"Y). These 
terms, while larger than AZ:' (H), a r e  smoother func- 
tions of the magnetic field H (or of the frequency w) .  
Therefore in the case of a sharp resonance C2 >> v the 
line wings a r e  described by AZ:'(H), and (3.5) plays 
the essential role in the immediate vicinity of the res- 
onant singularity ( I w - nJZ I s v). On the other hand if  
the resonance is not very sharp, it is necessary to take 
into account both terms a'," and ~ 2 ' .  The smallness 
of the CR amplitude in this high-frequency case is due 
to the strong delay effect. 
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2. At a fixed frequency of the wave, the relaxation eralized, however, to include the case of an arbitrary 
frequency v increases with rising temperature and may Fermi surface, in analogy with what was done earlier 
turn out to be of the order of w. Then the contribution in Ref. 2. 
(3.5) to the oscillating part of the impedance decreases In conclusion, we a r e  greatful to V. A. ~ a m ~ o l ' s k i c  
much faster than (3.3). Consequently in the region for interest in the work and for useful discussions. 

the CR manifest itself in the form of the damped har- 
monic oscillations from (3.3): 

3. On going to the low-frequency region, where v >  w ,  
the delay effect ceases to play any role, a s  a result of 
which the amplitude of the CR oscillations increases 
sharply. In the limit 

v-O) (2kouB)'" 
(4.4) 

the oscillating part of the impedance does not depend on 
the parameter A and is determined, according to (3.9) 
by 

2 - cos (nzd3) AzOK. ( H )  = ---------- 
3 cos2(nzo/2) 

(4.5) 
The foregoing results were obtained for a quadratic 

and isotropic dispersion law. They can be easily gen- 
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New approach to the theory of the dielectric constant of 
a system of interacting electrons 

V. D. Gorobchenko 
I. K Kurchatou Institute of Atomic Energy 
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Zh. Eksp. Teor. Hz. 77, 1197-1206 (September 1979) 

An exact formula is obtained for the wrrection, which depends on the wave vector and on the frequency 
and must be introduced into the dielectric constant of a homogeneous system of interacting electrons to 
account for the local field G(q,o). The simplest approximation for the exact result for G(q,o), which 
taka into account both two-particle and three-particle exchangecorrelation effects, is considered. A table 
is presented of the numerical values of the approximate wrrection for the local field in the static limit 
o=O.  

PACS numbers: 05.30.R 

1. INTRODUCTION 

A homogeneous system of N interacting electrons 
that move in a volume Ct against the background of a 
uniformly distributed neutralizing postive charge was 
considered in physics more than 40 years ago1 a s  the 
simplest model of the metallic state of matter. Cor- 
responding to such a state is a Hamiltonian 

where p, and r, are  respectively the momentum opera- 
tor and the coordinate of the j-th electron, and 

is the Fourier component of the electron-electron 
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