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Effect of surface waves on the reflection of sound by a 
rough surface 
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The reflection of sound incident from a liquid on the rough surface of an isotropic solid is considered. 
For angles of incidence corresponding to total internal reflection, the reflection codficient has a sharp 
minimum due to the excitation of surface waves. The minimum is deep for small (compared with the 
sound wavelength) and weakly sloping roughneses. Thii can be due to the competition of a roughness 
with a small ratio of the acoustic impedances of the liquid and the solid. The location and shape of the 
minimum have been studied as a function of the sound frequency and the parameters of the roughness. 
The considered phenomenon can serve as an experimental method for study of the structure of the 
surface of a solid. 

PACS numbers: 68.25. + j 

1. INTRODUCTION 

The problem of the sca t te r ing  of various waves by  a 
rough sur face  h a s  been considered in a l a r g e  number of 
r e s e a r c h e s  (see, f o r  example, Ref. 1). In one of the 
l a tes t  papers  on th i s  ~ u b j e c t , ~  the reflection of sound 
f r o m  the rough sur face  of a sol id body is described.  
Since the solid in th i s  r e s e a r c h  w a s  assumed to be ab- 
solutely rigid, the effect of any  waves propagating in it 
w a s  not taken into account. However, the problem d is -  
cussed  represen ts  g r e a t  p rac t ica l  i n t e r e ~ t , ~  in  particu- 
lar as one of the  methods of nondestructive testing. 
F igure  1 (taken f r o m  the work of Rollins3) shows the 
experimental  dependence of the  reflection coefficient 
of ultrasound incident f r o m  a liquid on the sur face  of a 
sol id as a function of the angle of incidence (the angle 
of reflection w a s  chosen equal to the angle of inci- 

dence). I n  the  region of total reflection, when volume 
sound waves cannot propagate in the  solid, t h e r e  e x i s t s  
a minimum, lhe location and shape of which depend on 
the proper t i es  of the surface.  

It is na tura l  to connect the  or igin of a minimum with 

FIG. 1. Dependence of the reflection coefficient R on the angle 
of incidence 0. The curve is constructed according to Eq. a), 
the points are  the experimental data from Ref. 3 for a water- 
aluminum interface and a frequency of 5 MHz. 
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the excitation of surface waves in the solid. These 
waves a r e  similar to Rayleigh waves, which propagate 
along the surface of a solid bounded by a vacuum. In 
the present case, when the solid borders on a liquid, 
the surface waves a r e  damped because of the radiation 
into the liquid. In spite of this radiation, the reflection 
coefficient for an ideally plane surface should go to 
unity even in the region where excitation of surface 
waves is possible. 

Actually, the amplitude of the wave reflected from an 
ideally rough surface is given by the well-known ex- 
pression4 

A, A (k) -iy (k) u4/c,' -- 
A. A ( k )  + i y (k )  m4/cf ' 

where 

o is the frequency of the sound, k is the component of 
the wave vector parallel to the surface, c,, c ,  and c 
a r e  the velocities of transverse and longitudinal sound 
waves in the solid and sound waves in the liquid, r e -  
spectively, p and p, a r e  the densities of the liquid and 
the solid. 

It is seen from Eq. (1) that the reflection coefficient 
R =I A, /A,~~  goes to unity in the region of total reflec- 
tion, when kt and k, a r e  purely imaginary. Along with 
this, the quantity h goes to zero  a t  some value of the 
angle. This condition determines the spectrum of the 
surface Rayleigh waves. Here the quantity 

actually represents in order  of magnitude the ratio of 
the sound impedances of the liquid and the solid; c, is 
the velocity of Rayleigh waves. The quantity y is usual- 
ly small, thanks to which the damping of the excited 
surface waves because of the radiation turns out to  be 
small. 

If the reflecting surface i s  not ideally rough, then the 
radiation into the liquid takes place at angles different 
from the angle of incidence, which should lead to the 
appearance of a minimum in the reflection coefficient 
under the condition of excitation of surface waves. 

In the present work, we consider the reflection of 
sound incident from a liquid on a random rough solid 
surface. In the mean, the surface is assumed to be 
planar, and the mean amplitude of the roughnesses is 
assumed to be small both in comparison with the nor- 
mal (relative to  the surface) component of the sound 
wavelength and in comparison with the distance along 
the surface over which the roughness changes ap- 
preciably. These conditions allow us to expand the 
boundary conditions in powers of the deviation of the 
surface from an ideally plane one, a s  is usually done 
in the well known method of small perturbations (see 
Ref. 1). 

The difference from other similar problems con- 
sidered earl ier  lies in the fact that, owing to the pres- 

ence of the other small parameter y the effect of the 
surface is large here  and one must ca r ry  out summa- 
tion of the principal terms of the perturbation theory 
series.  The method that we have used is analogous to 
that applied by us earlie? for the study of the propaga- 
tion of Rayleigh waves on a rough surface separating 
a solid from a vacuum. 

2. THEORY 

We now consider a sound wave of frequency w inci- 
dent from a liquid on an isotropic solid, the equation 
of the surface of which we write in the form 

where s is a two-dimensional vector lying in the tan- 
gent plane. We assume the surface to be plane on the 
average, i.e., we assume that (5(s)) =O. The averaging 
is carried out here over some distribution of random 
functions. Since we limit ourselves to the case in which 
the quantity ( t2 )  is  small  in comparison with the square 
of the normal component of the wavelength, the result 
of the calculations will be expressed in terms of the 
correlation function 

This correlator is the only characteristic of the surface 
in the considered approximation and we shall assume 
it to be known. For  estimates we shall specify W ( s )  
as usual by two parameters: the value W(0) =(t2) =a2 
a t  s =0, and also the radius d of the region in which 
W(s) is basically different from zero. For  a surface 
having a cross  section in the form of a saw with teeth 
of variable height and different distances between them, 
d is the mean distance between the teeth. 

We represent the displacement of the medium u(r), 
expanded in a Fourier integral in the coordinate s, in 
the form of a sum over vibrations with definite po- 
larization: 

where e&k) a re  unit vectors, and the definition of k 
is given following Eq. (1). For  the solid, towards which 
is  directed the x axis, the summation in (5) is carried 
out over three values of y, corresponding to two trans- 
verse (A,,, A,,) and one longitudinal (A ,) polarizations; 
for the liquid, there a r e  two waves in (5): incident 
A, and reflected A,. In contrast with the vector k, the 
frequency w is preserved in the scattering from static 
roughnesses and we shall not write it a s  an argument 
of A. 

For  the determination of the four unknown amplitudes, 
we use the boundary conditions, which consists of the 
equality of the surface forces and (upon neglect of the 
viscosity of the liquid) of the normal components of the 
displacement. The first  three conditions can be written 
a s  the condition of continuity of matter: 
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where n -(I, - 8 5/8y, - 85/82) is a vector normal to the 
surface (3). 

The boundary conditions a r e  satisfied on the rough 
surface (3). In the approximation that we have used, 
we expand them in a ser ies  in 5. The conditions ob- 
tained in such fashion should be satisfied a t  x =O. 

Expanding the quantity (6) in a Fourier integral in s, 
and using (5), we write down the boundary conditions 
with accuracy to  within terms of f i rs t  order in 5: 

where 5 (k) is the Fourier component of the function 
Z(s). On the left side of (7), we have retained the terms 
with the reflected and transmitted waves, and sum- 
mation is carried out over the index j, which runs aver 
the corresponding four values. 

The matrices H and V have the following form: 

where nO, = (1,0, O), v =pcw/ps c:, have reduced the 
columns 2-4 (the index y = 1, t , ,  t2) and rows (2-4) 
(a = x ,  y, z )  to a single representation. The columns 
Hi, and Voi a re  obtained from the first  columns of the 
matrices HI, and Vlj by change of sign and by the sub- 
stitutions e(1q)-e(Oq), ql -- q,. 

We a re  interested in the mean square of the ampli- 
tude of the reflected wave. It is  easy to show (this will 
be done below) that in the case in which the angular 
width of the incident sound wave is small in comparison 
with the width of the minimum shown in Fig. 1, the 
mean square can be replaced by the square of the mean 
amplitude of the reflected wave. Here we assume that 
the reflected wave is observed a t  an angle equal to  the 
angle of incidence. 

We shall solve Eq. (7) by iteration in 5, carrying out 
the averaging a t  each stage. In zeroth order we get the 
expression (1). The first-order term vanishes by vir- 
tue of the condition ( 5 )  =O. In second order, we have 
the mean ([(q)5(q1)), which, because of the uniformity 
of the surface in the mean [this has already been used 
in the definition (3)] can be reduced to the form 

(E(n) E(q') )-w(9)2nNn+q') 
where w (q) is the Fourier component of the function 
W(S) L E ~ .  (4)1. 

It is impossible, however, to  restrict  oneself to the 
term of second order, since the small factor w has a 
denominator which is small only in comparison with the 
term of zero order and which is proportional to the 
determinant of the matrix Hi, and equal to the de- 
nominator of the fraction (1). The summation of the 
dangerous components is accomplished in a way simi- 
l a r  to what is done in the theory of alloys6 and is de- 

scribed in Ref. 5 a s  applied to the similar problem of 
the damping of Rayleigh waves. 

The condition that is necessary for separating the 
principal terms is smallness of the damping of the ex- 
cited surface wave, i.e., of the quantity y. A certain 
additional condition is due to  the fact that near the 
Rayleigh spectrum ~ ( k )  = O  the numerator of the fraction 
(1) is also small. This leads to the necessity of taking 
into account the terms with 5 in the right side of Eq. 
(7). 

As a result of the described calculations we get 

We now give the explicit form of the matrices Hand 
V (8). Inasmuch as the boundary conditions involve 
polarization of the waves even in the zeroth order in 5 ,  
and in the case of scattering from roughnesses, the 
plane of propagation changes, there is no necessity of 
being concerned with the orthogonality and normaliza- 
tion of the vectors e(yk). The only condition which 
these vectors must satisfy is that the corresponding 
wave be longitudinal o r  transverse. Therefore, we 
choose them for the solid state in the form 

where the index y enumerates the columns, and the 
f i rs t  column corresponds to longitudinal polarization. 
We recall that the yz plane is the mean boundary of the 
solid, while k,,, a r e  the normal projections of the wave 
vector corresponding to the given tangential projection 
of k, polarization Y ,  and frequency w. The vectors e 
corresponding t o  the liquid a re  obtained from the f i rs t  
column of the matrix (10) by substituting c for  c ,  in k, 
and reversing the sign of kl for the reflected wave. 

The matrix V,, is determined by the expression 

In the basis (lo), the matrix Hi, is equal to 

1 
kq-w/e* wkl- kq kuqt 

a b  q,,(a+kq)+kuqt' 1,(5+ kq)+kZqt8 
"$1 lkgti (ku-a,,) 6 qp-k,,B -q,(o;+ tZqz) (12) 

(ki-qz) b qp-kz f l  k,,qzat 

where 
a-az/c,'-2kq, ~ -a ' /~ l" -2a~ /~r l .  

The columns of Hi, and Vio have the form 

Equation (9) acquires integrals of the type 

' (11) Hjj(k) 

694 SOV. Phys. JETP 50(3), Sept. 1979 

where 6 =pw2/pscf. The f i rs t  row in (11) corresponds 
to  the condition of continuity of the normal components 
of the displacements in Eq. (7) 

kl kl ku kz 
-6  kte - kg Wl %fit 
0 2k,,kl ku' - k , V z  
0 WI k&z k,P- kt' 
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the definitions of A and y a r e  given in (1). We a r e  in- 
terested in the vicinity of the minimum (see Fig. I), 
where ~ ( k )  =O. The roots of this equation-the spec- 
trum of the Rayleigh waves-we write in the form 
w= cRk. As is known,' c, = fct, where the number 5, 
which depends on the modulus of the elasticity, l ies in 
the range 0.87-0.96. 

The real  part of the integral (14) determines the 
small  displacement (proportional to  the roughness) of 
the minimum from the position correspoding to a 
planar surface: w/cR = k = (w/c)sine, i.e., c/cR =sine, 
where 6 is the angle of incidence. 

Of most interest is the width of the minimum, which 
depends on the imaginary part of the integral (14). If 
the function w (k - q) is sufficiently steep, the imaginary 
part is due only to  the bypass of the pole in (14). The 
pole contribution takes into account the excitation of the 
surface waves. Upon increase in the radius d-I of the 
circle in which w (k - q) is  different from zero, an 
imaginary part ar ises  also from that region where the 
q, o r  q, become real  (see, for  example, ~ ( q )  in (lo)]. 
This term represents the contribution of the volume 
waves excited in the solid. 

In the linear approximation in (kay, y, and ~ ( k ) ,  the 
contribution of the roughness to  the numerator and de- 
nominator of the fraction (9) is the same. Thus, we 
find the mean amplitude of the reflected wave: 

<A,):A,=[A(k)+i(r-y)04ct-']/[A ( k )  + i ( ~ f  y)@'ct- ' ] ,  (15) 

where 7 =- ImZ(k). It can be seen that the omitted 
terms lead to  the appearance in A and y of (15) of fac- 
tors that differ from unity by an amount of the order of 
(akp. 

The functionf(kq), which determines the integral ~ ( k )  
of (14) has a very cumbersome form in the general case. 
On the Rayleigh wave spectrum, i.e., a t  q = k = w/~c , ,  
we have 

At Iq- k( << k this expression is still further simplified: 

We estimate 7, using (14), (17) and the parameters 
a and d introduced earlier .  The estimate depends on 
the relation between the wavelength 2r/k of the excited 
waves, the length (yk)-l of their damping due to the 
radiation into the liquid, and the scale of roughness d ,  
which determines the change of Iq - kl -d-I of the wave 
vector of the waves scattered by the roughnesses. 

For extremely gently sloping roughnesses (fad >> I), 
only the surface waves make a contribution: 

the quantity y is given in (2). The proportionality con- 
stant C in formula (19) for the case y << can be 
calculated with the help of (17) if we assume that the 
correlator W ( s )  has  Gaussian shape: 

W ( s )  -a' exp(-s'/dY) . 

We find 

Finally, f o r  a sufficiently ribbed surface (kd << I), 
when the contributions of the surface and volume waves 
have the same order, we get 

The graph of 7 (18)-(20) is shown in Fig. 2. We note 
again that, along with the conditions determining the 
regions of applicability of formulas (18)- (20), we have 
assumed that the inequalities 

ak,=ao cos B i c c l ,  a<d , 

a r e  satisfied. These a r e  necessary for expansion of the 
boundary conditions in a series.  

3. DISCUSSION OF RESULTS 

It is seen f rmo Eq. (15) that the reflection coefficient 

can be significantly different from unity: 

R,..= (.r-y)'l(.r+y)' 

at  small  roughnesses T - y. Figure 1 corresponds to 
7 =O.ly, and, according to the data of roll in^,^ a very 
deep minimum is often observed. It is curious that 
under the condition ykd/2<< 1 the minimum is deepest 
a t  some definite value of the frequency, a s  follows from 
the relations (19)-(20). This conclusion agrees with 
e ~ p e r i m e n t . ~  In the region yM/2 >>I the width of the 
minimum does not depend on the frequency (18). The 
fact that the effect of the roughness turns out to be 
greatest a t  a certain relation among its parameters 
a , d  and the relative impedance y has a simple physical 
meaning. It is understood that the reflection coefficient 
(21) should, with decrease in the roughness, approach 
unity in the region of internal reflection. On the other 
hand, a s  the liquid density decreases, R approaches 
unity independently of the quality of the surface, simply 
because of the large difference in the acoustical im- 
pedances of the liquid and the solid. 

As is  seen from the formula (la), the transition to  an 
ideally smooth surface takes place according to the 
law d-2a2. The factor a2, which is common to all  the 
formulas, is  the result of the expansion over the rough- 
ness. It i s  a lso  c lear  that upon smoothing of the sur-  
face, i.e., a s  d - 00, the effect of the roughness should 

FIG. 2. Dependence of r 
on the scale of roughness 
d. 

T - ( a k ) a m a ~ { y ,  (kd )  -3) at 7/2c ( k d ) - ' a i ,  (1 9) 
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decrease. 

The factor d-2 ar ises  in the following manner in 
other problems of surface roughnesses. Any physical 
quantity in such cases represents some mean square, 
and together with the square of the mean there is a 
second term, which cancels out the f i rs t  a t  small 
transfers of the wave vector, when d - *. What has 
been said is possibly better illustrated by an  analogy 
with the transport time in kinetics, which takes ex- 
plicitly into account the ineffectiveness of the small- 
angle scattering. However, in the given problem, this 
second term, as has already been remarked, is small. 

In fact, in second order in the roughness, for ex- 
ample, along with the expression 

(A!" (k) )A,O(k) -H-'(k) j d2qw(k-q) 
XV(kq)H-'(q) V(qk)H-'(k)A~(k.) .H-'(k)AO(k), 

which represents the second-order correction to  the 
mean square (the superscripts denote the order of per- 
turbation theory, matrix indices a r e  omitted), there is 
the term 

The ratio of the second to the first  is determined by the 
ratio of -. the angular width of the incident wave to the 
width of the minimum of the reflection coefficient. For  
observation of the minimum, this quantity should be 
small and on this basis the second term was omitted in 
the calculations. 

The ineffectiveness of the scattering processes with 
small  transfer of the wave factor manifests itself al- 
ready here in the square of the mean. As is seen from 
formulas (14)- (I?), the probability of scattering tends 
t o  zero  a s  q -  k. In this case, the function f (kq ) ,  being 
a scalar, vanishes according t o  the law (q - k, k)2, and 
i t  is this which leads to  the factor d-2 in T. 

Finally, there is still one question needing explana- 
tion. The result of expression (15) is determined by the 
quantity w , which is quadratic in the roughness f .  In 
this same approximation, terms of second order in 5 
would have to be retained in the expansion of the 
boundary condition (7). However, the direct calculation, 

which is analogous to that carried out here, shows that 
these terms lead only to a shift of the minimum, and 
do not make a contribution to  i ts  width and depth. In- 
cidentally, we note that the reflection coefficient from 
an absolutely rigid surface, obtained by Howe: is given 
by formula (9) with the same degree of accuracy. In 
this case, there is only the single conditionof continuity 
of the normal displacements [it is  described by the 
f i rs t  rows of the matrices (11) and (12)] and there a r e  
no transmitted waves lacking. Therefore the quanti- 
t ies (11)-(13) reduce to a single element: 

Hq(k)-Hm(k) -kl, Vu(kq) =-V~(kq) =i(kq-o'lc'). 

With help of (91, it is easily shown that 

where 

ID (k-q) (Itq- $1' "-I- 
We note in conclusion that, similar to  what was con- 

sidered here  for the reflection coefficient, we can in- 
vestigate the effect of roughness on the transmitted 
wave. This effect is most important near the angle of 
total internal reflection, where there is no transmitted 
wave for  an ideal surface. 
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