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We calculate the longitudinal differential conductivity of a semiconductor in a strong constant magnetic 
field, when the dominant electron-scattering mechanism is spontaneous emission of optical phonons of 
frequency oo by the electrons. It is assumed that the scattering in the passive region, where the electron 
energy is c < h 0 ,  is weak, and that the penetration of the electron into the active region is also small 
(c-tio,). In this approximation, the differential conductivity differs from zero only in the resonant 
regions, at frequencies that are multiples of the "tly through" frequency o, = 2?r/r, (7, is the time of 
fight of the electron to the boundary of the passive region). The shape of the resonance line is obtained. 
It is determined by a competition between the weak resonance in the passive region and the finite 
penetration of the electrons into the active region. The conditions under which negative differential 
conductivity can occur are determined. 

PACS numbers: 72.20.D~ 

1. INTRODUCTION 

In pure semiconductors at low temperatures (kT<< Rwo, 
wo is a limiting frequency of the optical phonon), the 
dominant electron-scattering mechanism may turn out 
to be spontaneous emission of optical phonons? Since 
this scattering occurs in the active region of momentum 
space, where the electron energy is E > A W ~  and only 
weak scattering mechanisms are possible in the passive 
region (~<fw,) ,  there exists an electric-field interval - " ,  

Ea-CEKEo+, Eof -polet", (1 .I) 

in which the electron distribution function in momentum 
space deviates considerably from equilibrium. The no- 
tation used in (1.1) is the following: po=(2mAwo)1~2 is 
the electron momentum at the boundary of the passive 
region; T+ and 7- are  the characteristic electron scat- 
tering times in the active and passive regions, respec- 
tively, with 7' << T-. When the conditions (1 .l) are sat- 
isfied, the electron moving under the action of the ex- 
ternal field does not have time, on the one hand, to be 
scattered in the passive region, and on the other hand it 
does not manage to penetrate in it to a sufficient depth. 
Therefore all the kinetic properties of the semiconduc- 
tor are determined mainly by the dynamics of the elec- 
tron motion in the passive region. The electron system 
is not only strongly heated (the average electron energy 
is of the order of fw,,) but is essentially anisotropic, 
since the electrons can be located only on some of the 
so-called invariant trajectories. 

That this situation is realistic is attested by the ob- 
served increased anisotropy of the distribution of the 
carriers in p-Ge at nitrogen  temperature^.^ Particu- 
larly encouraging, however, were recent experiments 
performed with AgBr at helium temperatures? The sa- 
turation of the drift velocity, the characteristic depen- 
dence of the Hall angle of the current on the field, and 
the linear field dependence of the cyclotron-resonance 
line width all indicate that scattering by optical phonons 
predominates, and the kinetic properties of the semi- 
conductor are determined by the dynamics of the motion 
of the electrons in the passive region. 

The presence, in momentum space, of a region with 
a clearly pronounced dynamics of the electrons gives 
rise to a number of interesting phenomena. First, 
threshold effects, which were considered in detail in 
Ref. 1, appear on the current-voltage characteristics. 
Second, resonance effects due to the presence of a 
characteristic time of flight T, of the electron from the 
point p = O  to the boundary of the passive region, (in the 
case of a constant electric field we have r,=p/eE). 
Thus, it is indicated in Ref. 4 that the noise spectra 
should have peaks at frequencies multiples of the "fly- 
through" frequency w, = 2n/~,. The longitudinal differ- 
ential conductivity u,,(w), in contrast to the current- 
fluctuation spectral density (Gj,Fj,) calculated in the 
lowest approximation in the scattering in the passive 
region, is equal to zero. Thus, relations of the Callen- 
Welton type, which are satisfied under thermodynamic 
equilibrium conditions 

. - 

are strongly violated in the present situation. 

More detailed calculations5" have shown, however, 
that the differential conductivity differs from zero. 
Moreover, in the resonant regions the conditions are 
favorable for the appearance of negative differential 
conductivity (NDC). Thus, in Refs. 5 and 6 there were 
solved model problems in which account was taken of 
only the finite penetration of the electrons into the ac- 
tive region. The problem in a quantizing magnetic field 
was solved numerically in Ref. 7, with account taken of 
both the penetration of the electrons into the active re- 
gion, and the scattering in the passive region. These 
studies have revealed regions in which NDC conductivi- 
ty accurs. The calculations show that the NDC is very 
sensitive to the intensity of the weak scattering of the 
electrons in the passive region, a s  well as  to the mag- 
nitude of the penetration of the electrons into the active 
region. But since the numerical calculations are al- 
ways restricted to some single concrete set of material 
parameters, we deem it advisable to carry out an an- 
alytic treatment of the longitudinal differential conduc- 
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t ivity in the presence of a constant electric field that 
satisfies the condition (1.1). In this paper we present 
the results of the calculation of the differential conduc- 
tivity in resonant regions, determine the shape of the 
resonance line, and obtain the conditions under which 
one can expect NDC to appear. 

2. FORMULATION OF PROBLEM 

To calculate the differential conductivity we shall 
solve the kinetic equation, assuming that besides the 
strong constant electric field E, directed along the z 
axis there is also a weak alternating field E,eiwtllE,. 
We assume that the only electron-scattering mechan- 
ism in the active region is spontaneous emission of 
optical phonons, characterized by the probability 

i 
wCo' (p ,  p') = - 6 (pz  - p'' - PO'), 

?+PO 
(2 .I) 

and in view of the small penetration of the electrons in- 
to the active region 7 +  can be regarded as  a constant. 
In the passive region we postulate the presence of weak 
scattering characterized by a probability w(p,p'). The 
electron concentration n is assumed to be so small that 
the interaction between the electrons can be disregar- 
ded. To simplify the derivations, the electron disper- 
sion law is assumed to be parabolic and isotropic. To 
take into account the real dispersion law it  is essential- 
ly necessary only to replace in (4.12) and (4.13) the in- 
tegration region by the region determined from the con- 
dition ~ ( p )  & Roo.  

We introduce the dimensionless variables 

r=p/pP, P=ozm,  W ( r ,  r') =poaz-w(p,  p'), 
(2.2) 

yl = T./T+, q = T ~ T - ,  a = E,/E., l / z -  - po-'j  dap j dap'w (p ,  p') . - .  

In the determination of 7 - the integration is carried out 
over the passive region of momentum space. Then, re- 
presenting the distribution function normalized to unity 
in the form 

f (r ,  t )  =F (r)+aei*lq(r) (2.3) 

and linearizing the kinetic equation with respect to the 
alternating field, we obtain a system of equations for 
the constant part of the distribution function 

( d l d z + y ) ~ + = o ,  (2.5) 

and for the alternating part of the distribution function 

A plus sign indicates that the particular function per- 
tains to the active region. In (2.4)-(2.7) we have used 
the following operator notation: 
- -- - - 

XF+ = yo I dar'6(r" - f - i ) F + ( r f )  = ' / , y o j  d'p' . 
,'>a (2.8) 
.F+ (p', (i+r'-p")")/(i+r'-pa) '' 

[in the last equality a change was made to the cylindri- 
cal coordinate system F(r)  =F(p,z)], 

We have also used the notation 

The differential conductivity can be represented in the 
form 

0 ( 0 )  ==JO dSrz(p ( r ) ,  am-nepolmEo, (2.11) 

where n is the electron concentration. 

We solve the system (2.4)-(2.7) in the following se- 
quence. We first  integrate the equations (2.5) and (2.7) 
for the active regions along the electron trajectories in 
momentum space. We represent the solution in terms 
of certain functions [9(p) and Q(p) respectively for the 
constant and alternating parts of the distribution func- 
tion) that characterize the distribution of the electrons 
across the trajectories of the motion on the boundary of 
the passive region. Substituting the indicated solutions 
into the equations for the passive region (2.4) and (2.6), 
integrating these equations, and matching the solutions 
on the boundary of passive region, we obtain integral 
equations for the function @(p) and Q(p). These integral 
equations a re  solved by methods of perturbation theory, 
using two small parameters 1 and yl1. To simplify the 
calculations we used inverse operators defined a s  fol- 
lows: 

G* (52 )  F = e-'"' I dz'e"'" F ( P ,  z ' ) .  
f(l-r.,'h 

(~-P'I'& 

G ( P ) F = e x p { - i Q ( i - p ' ) ' " )  I dze iD'F(p,z) ,  (2 -12) 
-(,-..;h 

G*=G*(O), G=G(O).  

3. CONSTANT PART OF THE DISTRIBUTION 
FUNCTION 

The solution of (2.5) can be represented in the form 

where 
r ( p .  Z )  =exp{-G+y}. 

Substituting (3.1) in (2.4) and integrating the latter, we 
obtain the solution in the passive region: 

F(p ,  z )  =G-Xr@.  (3.3) 

This solution was obtained using the boundary condition 
F[p, - (1 - $)112] =0 brought about by the absence of a 
scattering arrival term in the active region. We have 
also discarded the term 1;~ in (2.4), since iteration 
with respect to this term leads to higher degrees of 
smallness than those taken into account hereafter in the 
equation for the alternating part of the distribution 
function. 

Matching the solutions (3 .l) and (3.3) on the boundary 
leads to the following homogeneous integral equation: 

@=am (Q .4) 

with the operator 

117 - c a r ,  (3.5) 

the kernal of which can be represented in the following 
form: 

( r - p i ) %  

M(p, p') = '/*yo dz (1 f pz +a" p") -'" 
- ( , - e , '~~  

(,+p'+r=-o")'h 

. erp  - 2ny. j d z1 (p fZ  + 2''- i ) l h } .  1 (,-O,z)ll. (3.6) 
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The properties of the kernel (3.6) can be easily investi- 
gated, for owing to the presence d the large parameter 
yo>> 1 it i s  a sharp function of the argument p, whereas 
the dependence on the argument p1 i s  a smooth one. Ex- 
panding the kernel in powers of p' and constructing a 
perturbation theory in the parameter y,2'3, we can veri- 
fy that the spectrum of the operator M contains the level 
X,= 1 and the levels A,- (yi213)n,n 2 1. The function a( p) 
i s  thus an eigenfunction of this operator, corresponding 
to the eigenvalue X,= 1. It can be approximately repre- 
sented in the form 

In the approximation yo - .o it goes w e r  naturally into 
6(p), which corresponds to a needle-shaped distribution 
of the electrons on the principal trajectory. The eigen- 
function of the adjoint operator, corresponding tothe 
eigenvalue k,, = 1, i s  approximately equal to x,(p) = 1. 

4. ALTERNATING PART OF THE DISTRIBUTION 
FUNCTION 

We represent the solution for the active region (2.7) 
in the form 

q+(p, Z)  -exp(-i~a(z-~-))r(p, I )  w p ) + r ( p ,  z ) G + ( P ) ~ @ .  (4.1) 

We have used here the identity 

(ddz+iha+y)-lyr@=r~+ (P) yep, (4.2) 

the validity of which can be easily verified by applying 
to both sides of this identity the operator (d/dz+iQ+y). 

Substituting (4 .l) in (2.6) and integrating, we get the 
following expression for the distribution function in the 
passive region: 

cp(p, z) =G- (P) (X exp[-~(z-Yi--p')]rY 

+Rr[G+(Q)y-l]@-qBF+qBq}. 
(4.3) 

We now use the smallness of the parameter q and car- 
ry out one iteration of the term q . 9 ~  in (4.3). Since the 
third term of the expression already contains the small 
parameter q, while the second term, a s  will be shown 
below, contains the small parameter Qy213, we substi- 
tute in Srp only the first term of the right-hand side of 
(4.3). Then the matching of the solutions on the bound- 
ary leads to the following integral equation for the func- 
tion 

{I-G(9) R exp[-iP(z-1l-p') IF-qG(62)SG-(P)R exp[-iP(z 
-I-) ])Y-(G(Q) R~[G+(B)~-~]-~G(P)SG-R~)@. (4.4) 

In the zeroth approximation in q and at Q = O  this equa- 
tion takes the form 

(1-iV) Y =GRl?[G+y-1]@, (4.5) 

whose operator coincides with the operator of (3.5). 
Multiplying this equation by the eigenfunction of the ad- 
joint operator x,(p) and integrating with respect to p, 
we obtain the following identities: 

We have introduced here the notation 

It follows from (4.6) and (4.7) that the right-hand side 
of (4.4) contains the small parameters 7 ,  yei3, o r  
h22yo"lS. If we assume that the solution * is sought in 
the foAm of expansion in the eigenfunctions of the oper- 
ator M, then it is easy to verify that the action of the 
operators of the left-hand side of (4.4) on * also leads 
to  the appearance of small parameters, with the excep- 
tion of the action of the first  operator on the zeroth ei- 
genfunction, which makes a contribution of the order of 
unity. Therefore in the lowest nonvanishing approxima- 
tion in the parameters 17 and y2I3 the function *(p) can 
be represented in the form 

Y (P) -Ao@ @I, (4.9) 
and the coefficient A, can be obtained by averaging Eq. 
(4.4) with the function x,, and this leads to the expres- 
s ion 

do=((xo,  G(P)R~[G+(P)~-~~@)+~(x~, G(P)SG-RI'@)). 
. (l-(xo, ~ ( 6 2 )  R e x p [ - i P ( z - 1 W )  ] r ~ ) - ~ ( ~ ,  (4.10) 

G(P)SG-(P) R e ~ ~ [ - ~ ( z - - 1 l - - p ' ) ] r @ ) } - ~ .  

In this expression, it suffices to confine oneself in the 
terms containing q to the approximation x,(p) = 1,9(p) 
=B(p). In the remaining terms it is necessary to use 
expression (3.7). Because of the identity (4.6) i t  is 
necessary to take into account in the numerator of 
(4.10) only the terms that do not vanish at Q=0,  and 
this simplifies greatly the calculation of the integrals. 
Confining ourselves to the indicated approximations 
and substituting the obtained *(p) in (4.3) and next in the 
definition (2.11) of o(w) we obtain the final expression 
for the differential conductivity 

where 

and 

I 

B, = d'r L' W(0, z', r) (exp[iP(zl - 1) ] 
r<l 0 

Expression (4.11) was obtained accurate to terms 
and q .  Therefore it is valid only in the reson- 

ance region, where 6 2 ~  Q,=2rn, when ein= 1, and the 
entire fraction assumes a value of the order of unity. 

5. DISCUSSION OF RESULTS 

We investigate the behavior of o( w) determined by ex- 
pression (4.11) in the resonant region. We put for this 
purpose SZ =a,+ ASZ and expand the exponential in the 
denominator of the expression. We then get 

where the expressions for the coefficients a, b,  c, and 
d can be easily obtained in terms of the parameters B,, 
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B,, 7 ,  and yo. 

The dependence of the differential conductivity on the 
frequency is easiest to trace by mapping (5.1) in the 
complex plane o=  u, + io,, as shown in Fig. 1. Then AS2 
ranges from -*to +*and u(Q) traces in a clockwise di- 
rection a circle that passes through the origin 0 and 
whose center is located at the point 

while the point diametrically opposite to 0 corresponds 
to the shifted resonant frequency AS2 = -d. The detuning 
AS2, of course, can not be too large (A0 << I), inasmuch 
a s  at AS2 - 1, on the one hand, the exponential cannot be 
expanded in a series, and on the other hand it is incor- 
rect to retain only the resonant term in (4.11). 

It is seen from Fig. 1 that the NDC region (q<O) is 
always present when << 0. To be able to discern the 
DNC against the background of the nonresonant terms 
at uf<O it is necessary to satisfy the condition 

I ozC I Z> I orC I max (8Zyo-"s, 11). (5.3) 
It follows from (4.11) that two weak phenomena compete 
in the formation of the frequency dependence of a(S2), 
scattering in the passive region and penetration of the 
electron into the active region. If the penetration into 
the active region is decisive, then, putting 17 = 0 in 
(4.11), we get 

The center of the circle lies in this case in the fourth 
quadrant and NDC should be observed at frequencies ex- 
ceeding the resonant frequency, a s  was in fact deter- 
mined in Ref. 5. According to (5.3) the conditions for 
the appearance of the NDC become worse with increas- 
ing number of the resonance. 

If scattering in the passive region is decisive, 
then the frequency dependence of u(S2) is determined 
by the coefficients Bo and B,. We have estimated these 
coefficients numerically , assuming that the scattering 
in the passive region is elastic. For the scattering 
probability we have chosen the standard expressions 

wr(p, p') = ~ O ~ P - P ' ~ " ~ ( P ' - P ' ~ .  (5.5) 

We recall that an exponent n = 1 corresponds to defor- 
mation scattering and n = -1 corresponds to pohriza- 
tion scattering by acoustic phonons. Scattering by neu- 
tral impurities corresponds to n = -1. To estimate the 
effect of scattering by ionized impurities we chose the 
expressiong 

wo 
w r r ( ~ , ~ ' ) = ' ( ~ ~ - ~ ~ ~ z  f q o z ) z  6 (p" p f 2 )  . 

FIG. 1. Frequency dependence of Eq. (5.1) in the complex 
plane a=a1+ia2.  

FIG. 2. Position of the center of the circle uC (in units of 
uo/2d: 0-scattering of type (5.5), the numbers indicate the 
values of n; +scattering of type (5.61, I-qD =pa,  II-qD 
=o.  5po, m-qD=o.25po, ~ - q D = o . 0 6 p o .  

The results of the calculation for the first resonance 
= 2 n  are shown in Fig. 2 in the form of the position of 

the circle cf as  a function of the exponent n for w,(p,  pr) 
and of the screening momentum %for w,,(p, p'). The 
plot is in units of u,/O,. The results indicate that the 
most favorable conditions for the determination of the 
NDC are negative values of n or  small q,, i .  e., when 
the scattering is most effective at small momenta. 

We present for comparison also an expression for 
o(S2) in the case of quantizing magnetic field, for which 
numerical calculations were made in Ref. 7. In the 
single-band approximation, the calculation can be per- 
formed in accordance with the proposed scheme with 
the only simplification that, because of the dimension- 
ality of the problem, Eq. (4.4) becomes algebraic. The 
final expression for u(O) agrees in form with (4.11), 
the only difference being that the expression 1/3%yb1' 
in the numerator must be replaced by 2yiz, and 
l/2a0y;2/3 in the denominator must be replaced by yb. 
If we confine ourselves again to elastic scattering in 
the passive region, assuming that 

then the coefficients Bo and B, take the form 

1 1 

B, = - J dzv ( z )  sin Slz, B, = 2i J dzv (z) sin ~ze-" ' .  (5.7) 
0 0 

If the contribution of the scattering in the passive re- 
gion prevails over the contribution of the penetration of 
the electrons into the active region then, recognizing 
that (5.7) means ReB, > 0 and ImBo = 0, we can conclude 
that the necessary condition for the onset of NDC is 
B, < 0. Thus, just a s  in the three-dimensional case, the 
favorable factor for the onset of NDC is scattering that 
prevails at small momenta. 

As already indicated in the introduction, the most 
favorable experimental conditions for the realization of 
the model investigated above occur in silver halides at 
helium temperatures. In Ag, Br, for example to the 
mobility changes from 50 to 20 000 cm2/Vosec when the 
temperature changes from 300 to 6 K. This points to a 
rather intense scattering of the electrons by optical 
phonons in the active region. The ration q / E ;  estirna- 
ted from the mobility is of the order of 400, and condi- 
tion (1.1) is easily satisfied. ~s t imates '  yield T-- 5 
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X lo1' sec, which corresponds to E i -  50 v/cm. At 
helium temperatures, scattering by ionized impurities 
predominates in the passive region, and at n-2.5 X 1014 
cmJ the value of qdp, is of the order of 0.25, so  that 
good conditions are  obtained for  the observation of NDC 
in a frequency region slightly exceeding the fly-through 
frequency. The fly-through frequency is v,- 30 GHz at 
E,- 74 v/cm. 

We note in conclusion that despite the strong disequil- 
ibrium in the electron system in this case, the spectral 
density of the current fluctuations, defined in Ref. 4, i s  
closely connected with do). Both quantities differ sub- 
stantially from zero only in resonant regions, where 
both have Lorentzian shapes. Therefore in the vicinity 
of each resonance the Callen-Welton relation (1.2) can 
be suitably defining the proportionality coefficient T, 
which is interpreted a s  the noise temperature. In the 
present situation T is large and is proportional to either 

o r  7-/rg; this indicates that the electron sy- 
stem is strongly heated. In addition, T must be chosen 
complex and written under the Re sign. The phase of 
T defined in this manner is equal to the phase of aG and 
is directly connected with the onset of the NDC or, in 
other words, with the possibility of development of un- 
stable fluctuations. The electron system for which a 
complex T follows from (1.22) is a unique intermediate 
case between a stable system with real positive T and 
unstable fully inverted system with negative T for which 
NDC exists in the entire resonance region. 

The authors are  sincerely grateful to I. B. Levinson 
for a discussion of the work and for helpful remarks. 
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Current fluctuations in a strong electric field under 
conditions of frequent interelectron collisions that ensure a 
Maxwellian distribution with drift 
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Physics Institute. Lithuanian Academy of Sciences 
(Submitted 5 April 1979) 
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A quantitative description is presented of noise in strong electric fields at high carrier densities when the 
fom of the electron distribution both in energy and in momentum is governed by the collisions between 
the atoms. It is shown that under these conditions, in the general case, neither the longitudinal nor the 
transverse noise temperatures are equal to the electron temperature which fluctuates in a Maxwellian 
distribution with drift. The difference is due to an additional correlation of the occupation numbers of 
the electronic states which results from (and only from) the collisions between the electrons. The 
corresponding expressions are obtained for the spectral density of the current fluctuations in a wide 
temperature interval. 

PACS numbers: 72.10.Di 

1. INTRODUCTION 

In nonequilibrium systems the current fluctuations and 
the carrier diffusion coefficients are  no longer connec- 
ted with the conductivity by the Nyquist and Einstein re- 
lations. These quantities contain new information, and 
their investigations provides a method for the diagnos- 
tics of the nonequilibrium electron gas in a semicon- 
ductor. 

quist theorem nor the Einstein relation holds in the non- 
equilibrium state, there nevertheless remains in force 
a simple relation between the diffusion coefficient and 
the spectral density of the current fluctuations. Price's 
"nonequilibrium fluctuation-diffusion relation" is widely 
used, since it makes it possible to extract, from meas- 
urements of noise in a spatially homogeneous nonequil- 
ibrium system, the information on the response of a 
nonequilibrium system to a spatial gradient produced in 
it, and vice versa.a4 

Price1 was apparently the first to call attention to the 
important circumstance that although neither the Ny- The foregoing, however, is incontrovertibly true only 
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