
Kinetics of decay of metastable polarized crystals 
Yu. Kagan, V. M. Smirnov, and G. V. Shlyapnikov 

I. V. Kurchatov Institute of Atomic Energy 
(Submitted 26 March 1979) 
Zh. Eksp. Teor. Fiz. 77, 1093-1 106 (September 1979) 

We develop a theory that describes the principal channels of the decay of metastable polarized 
crystals-crystals made up of atoms with parallel electron spins. It is shown that the decay of these 
crystals is connected principally with the production of unique spin waves (magnons) that carry negative 
energy. The principal decay channels, however, can be suppressed by using an external magnetic field 
directed opposite to the polarization of the electron magnetic moments. The leading decay channels, 
which cannot be eliminated by the magnetic field, turn out to be connected with the decay of the 
polarized state to one magnon and two phonons, on account of the dipoldipole interaction of the 
electron spins, and into one magnon and one phonon on account of a second-order process due to 
simultaneous hyperfine interaction and rnagnon-phonon interaction of exchange character. In the case of 
polarized alkali-atoms crystals the first type of interaction leads to a decay probability per particle - 10-3-10-4 sec-', and determines by the same token the rather long lifetime. The second channel turns 
out to be relatively faster with a characteristic decay probability, - l~-'-lO-' sec-'. It can, however, be 
suppressed by simultaneous polarization of the nuclear spins. 

PACS numbers: 75.30.Ds, 71.70.Gm 

1. INTRODUCTION 

The problem of metastable states of matter, which 
result from polarization of the electron spins of the at- 
oms in the system, has been attracting great interest 
of late. If the interaction between the atoms depends 
substantially on the exchange, then the spin configur- 
ation that appears upon polarization can lead to forma- 
tion of a metastable phase. Of greatest interest, par- 
ticularly from the point of physical clarity, a re  the at- 
omic phases of hydrogen and alkali metals. A prelim- 
inary analysis1 has shown1) that at low temperatures 
polarized atoms of alkali metals condense into a me- 
tastable crystalline phase that is  locally stable a t  a 
pressure P =O. The attraction between the atoms in 
this phase i s  due to van der Waals forces, and this, 
just as in the case of solidifying gases, leads to dielec- 
tr ic crystals with large interatomic distances and rel- 
atively small sublimation energy. 

A similar situation obtains in the case of atomic hy- 
drogen, the only difference being that in this case it 
may be necessary to have a finite pressure, to form a 
metastable polarized crystal. 

The decisive circumstance for the attaining and using 
such states is, naturally, the question of their life- 
times. We immediately encounter here the principal 
difference between the systems considered here and 
ordinary metastable states. In the standard cases the 
stable and metastable phases a r e  separated by a bar- 
r ier in configuration space, and the metastable phase 
can decay only via formation of germs of critical di- 

ly. Instead of being in a potential well, the atom turns 
out to be on a potential hump. If the difference between 
the interaction energy a t  total polarization (the bottom 
of the well) and in the presence of one flipped spin (the 
peak of the hump) i s  large enough compared with the 
Debye energy of the crystal, then the amplitude of the 
transition is exponentially small. Simultaneously with 
this, however, an important role i s  played by inelastic 
processes with phonon emission; these processes a r e  
due to the jarring experienced by the crystal lattice a t  
the instant of the spin flip. This leads to a noticable 
increase of the transition probability. The picture that 
arises in the case of local spin flip and the calculation 
of the summary transition probability in this case a r e  
the subject of the third section of the present paper. 
As will be seen from this analysis, a t  realistic values 
of the parameters of the problem the probability of the 
transition can be quite small, and then this decay chan- 
nel offers no danger. At the same time, the answer i s  
most sensitive to the values of the parameters of the 
problem, by virtue of which the corresponding lifetime 
can vary greatly from substance to substance. 

The metastable crystal in question constitutes a pseu- 
doferromagnetic system described by a Heisenberg 
Hamiltonian. In such a system, the spin flip can be 
realized via production of collective excitations-mag- 
nons. The peculiarity in this case consists in the fact 
that the magnons will have negative energy. The next 
problem i s  therefore the analysis of the decay of the 
metastable polarized crystal via production of collec- 
tive excitations. 

mension. In the metastable polarized crystals the kin- 
It must be stated that the real danger is posed by the 

etics of the decay is connected with spin flip of indivi- 
production of relatively long-wave magnons, particular- 

atoms Or with the appearance Of sing1e 
ly together with phonons. A detailed analysis of the de- 

spin excitations. There i s  no surface energy here, and cay of the crystal in this case and a determination of the 
a large lifetime can be reached only on account of a low 

corresponding lifetimes, a r e  given in Secs. 4 and 5, 
probability of spin flip of the atoms. For this, how- where arguments that demonstrate the possibility of 
ever, there a r e  special grounds. 

closing the most dangerous decay channels a r e  also de- - - 
When the spin of an individual atom flips, the poten- veloped. It should be noted in this connection that a 

tial relief in which this atom i s  situated changes rapid- recently published note2 contains the statement that a 
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crystal made up of polarized hydrogen atoms has a 
"fast" decay channel connected with production of one 
o r  two magnons. It will be shown below that this decay 
channel can be suppressed. 

2. INITIAL PREMISES 

Consider a crystal considering of univalent atoms with 
the electron in the S state. The interaction of an iso- 
lated pair of such particles a t  distances R large com- 
pared with the atomic distance a, can be expressed in 
the form 

;(R) = U ( H )  +A ( R )  ('/,+s,s,). (2.1) 

Here U(R) is the long-range multipole interaction be- 
tween the atoms and corresponds to their attraction. 
The second term in (2.1) describes the exchange inter- 
action due to overlap of the electron shells of the atom. 
A(R) is equal to the difference between the energies of 
the triplet and the singlet states of the considered pair 
of atoms, and 2, and g, a r e  the electron-spin operators. 

The main contribution to A(R) is made by the electron 
density localized near the axis joining the nuclei.314 
Consequently, if the interatomic distance in the crystal 
is  large compared with a,, then the multiparticle in- 
teraction between atoms in the crystal lattice can be 
represented a s  a sum of pair interactions of the form 
(2.1): 

In a system of atoms with parallel spins, the second 
term corresponds to repulsion. The minimum of the 
potential energy (2.2) is realized a s  a rule in a lattice 
of the fcc o r  hcp type. In all the cases of interest to us, 
a t  distances a between the nearest atoms, the following 
inequality turns out to be realistic 

aBao. (2.3) 

Thus, for a crystal made up of polarized Na atoms a 
direct calculation yields a=4.9 A, and accordingly the 
sublimation energy per atom i s  & = 2000 K. Values of 
the same order a re  obtained also for crystals of other 
alkali atoms (all the calculations that follow a r e  based 
on the Na crystal parameters obtained by Shlyapnikov 
and Shmatov). 

The calculation of the phonon spectrum, starting from 
the interaction (2.2), yields in all cases for the mean 
squared displacement of the atom the relation 

so that the crystal remains classical and we can con- 
fine ourselves in the estimates that follow to the har- 
monic approximation. 

3. LOCAL SPIN FLIP 

In the considered metastable polarized crystals there 
exist two types of interaction that can lead to the flip of 
the electron spin of an individual atom. The first  i s  the 
hyperfine interaction with the spin of its own nucleus, 
and the other is dipole-dipole interaction with electron 

spins of neighboring atoms. The large value of the in- 
teratomic distance leads in general to a situation where- 
in both interactions a r e  comparable in magnitude. 

We assume first  that the surrounding atoms a r e  rig- 
idly fixed. Then, according to (2.2), the atom with the 
flipped spin turns out to be in a potential relief deter- 
mined only by the multipole part of the interaction, 
while the potential energy changes by an amount 

i f  we confine ourselves to interaction with only the 
nearest neighbors (index g). The vector R character- 
izes the position of the atom whose spin was flipped, 
and is reckoned from the equilibrium position R =O. 
The energy gap between the bottom of the potential well 
in which the atom i s  located prior to the spin flip and 
the peak of the resultant potential hump at R = O  (see the 
figure) i s  

where Z i s  the number of nearest neighbors. 

To estimate the matrix element of the transition, we 
choose the wave function of the initial state in the usual 
oscillator form: 

which is the wave function of the ground state of a three- 
dimensional oscillator (M i s  the mass of the atom). 

Using crystals of alkali-metal atoms a s  an example, 
we can easily ascertain that always 

where w, i s  determined in terms of the modulus of the 
second derivative of the potential hump. In fact we al- 
ways have 

o,<oo. (3.5) 

Therefore the motion of the particle with the flipped 
spin near R = O  has a quasiclassical character and the 
corresponding wave function for the S state can be writ- 
ten in the form 

(at small R we assume the potential to be spherically 
symmetrical). Here g (E) = dn/dE is the quasiclassical 
state density, E i s  the particle energy in the final state 
and is reckoned from the peak of the potential hump, 
and P,(R) i s  i ts  classical momentum. The wave func- 
tions (3.3) and (3.6) a r e  normalized by the condition 

j y . , , ( R ) ~ z ~ 2 d R = ~ .  
0 

The matrix element of the transition with local spin 
flip contains as- a factor the overlap integral 

(3.7) 
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FIG. 1. The potential energy of the interaction of an individual 
crystal atom with its surroundings ( R  is the displacement of 
the atom from its equilibrium position). The potential well 
corresponds to the state of total polarization of the electron 
spins, while the potential hump corresponds to a state in which 
the spin of the given atom is flipped. 

Substituting here the expressions (3.3) and (3.6), we get 

We denote the matrix element of the interaction that 
leads to the local flip of the electron spin by (H,,),, . 
We then have for the probability of such a transition, 
after integrating over the final states of the atom with 
the flipped spin, 

In the case of the hyperfine interaction, an estimate 
yields (lo6-10') sec-' for the pre-exponential factor in 
(3.9) for alkali-atom crystals. In a rigid lattice, a 
dipole-dipole interaction, owing to symmetry, does not 
lead a t  all to local spin flip of an individual atom. The 
matrix element (H,),, turns out to be different from 
zero only when account i s  taken of the displacement of 
the atoms, and this leads to an additional small factor 
(2.6), so  that the pre-exponential factor in (3.9) does 
not exceed in this case the values given above. 

In all cases, with the exception of atomic hydrogen, 
which i s  not considered in the present paper, the argu- 
ment of the exponential in (3.9) is very large 

Thus, for a sodium-atom crystal A, /Ew,  = 12. Values 
of the same order a r e  obtained also for crystals of oth- 
e r  alkali atoms. The transition probability in this case 
i s  s o  small, that in the absence of excitation of the pho- 
non subsystem the polarized crystal turns out to be 
practically stable to  spin flip of an individual atom. 

We now dispense with the assumption that the lattice 
is rigid and consider the jarring effect, which inevitably 
takes place when the potential energy changes by 6V 
(3.1). This additional interaction leads to a shift of the 
positions of the phonon-field oscillators. Neglecting the 
renormalization of the phonon spectrum and retaining 
the representation corresponding to the initial undis- 
torted lattice of the crystal, the allowance for such a 

force impact in the lattice, as is well known, i s  equiv- 
alent t o  introducing the shift operator 

Here g B  and 6; a r e  the operators for the annihilation 
and production of a phonon with index fiq, a! charac- 
terizing the value of the wave vector q and the branch 
number a, while o0 i s  the phonon frequency. The coef- 
ficients AB a r e  obtained directly from the linear expan- 
sion of (3.1) and the displacements of the nearest atoms. 
Taking symmetry into account we have 

AO1=dA (a) /da, 

where g = R: , e0 is the phonon polarization vector, and 
N is the number of crystal atoms. The matrix element, 
diagonal in the phonons, of the operator (3.11) i s  equal 
to 

where TTO i s  the average temperature value of the oc- 
cupation numbers and T i s  the crystal temperature. 

In the Debye approximation for the phonon spectrum 
we have 

The probability of a local spin flip elastic in the pho- 
nons reduces in this case to expression (3.9) multiplied 
by Tg . For metastable polarized crystals of alkali at-  
oms we have 

@OBI, (3.15) 

and this probability acquires an additional smallness. 

Now, however, the inelastic processes become im- 
portant. For the probability of spin flip accompanied 
by transfer of an energy E ,  -E  to the phonon subsystem, 
using the known transformations, we have 

where 

p s ) ( v )  is the equilibrium phonon density matrix, E ,  is 
the energy of the phonon subsystem in the state v. The 
energy E is reckoned from the peak of the potential 
hump (see the figure). 

We confine ourselves to the case of sufficiently low 
temperatures when, in particular, iP -  iP, . When (3.15) 
is taken into account, the minimum of the integral in 
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yield (3.16) occurs in the region E, -E -EoDiho. Therefore 
the effective values of t in the integral correspond to 
the condition oDt<< 1, and we can use the expansion of 
~ ( t )  at small t: 

We have introduced here the notation 

Substituting (3.18) in (3.16), we get 

We now determine the total probability of the inelastic 
transition, a t  which the particle remains in states 
above the barrier: 

I% 

w, = ~ ~ E ~ ( E ) w ( E ) .  (3.21) 

We substitute in (3.16) the expression (3.8) and con- 
sider first the most characteristic case, when 
E0>*,EwD. Taking (3.15) into consideration and using 
the saddle-point method, we obtain 

Here 

is the position of the extremum of the argument of the 
exponential in the integrand of (3.21). The result is  
valid under the condition 

In the Debye model we have 

With increasing @, , the probability of spinflip in- 
creases continuously because of the inelastic processes 
accompanying the jarring. However, if iP, remains 
smaller than E, /RoD, then under the condition (3.24) 
the crystal lifetime, defined as  the reciprocal of (3.22), 
turns out to be very large. For a crystal made up of 
Na atoms we have *,= 15 and the condition (3.24) is sat- 
isfied quite well. The argument of the exponential in 
(3.22) is  -lo2, i.e., the crystal is  practically stable at 
low temperature relative to a local spin flip. A similar 
situation obtains apparently also for metastable polar- 
ized crystals of other alkali atoms. 

In the general case, when *, increases the value of 
x* (3.23) shifts towards the lower limit in the integral 
of (3.21) and then reverses sign. With further increase 
of iP,, the main contribution to this integral is due only 
to the region near the lower limit. Direct calculations 
at 

(3.26) 
In the considered region of the values of the param- 

eters, when ~ Z W ~ @ ~ > E ~ ,  transitions of a particle in 
states lying below the peak of the potential hump can 
become substantial. In this case by virtue of (3.25), 
the value of the overlap integral (3.7) is connected with 
the behavior of the wave function \k2(R) in the region 
below the barrier. Determining *,(.) in the quasiclas- 
sical approximation for a parabolic potential hump, we 
easily obtain by taking (3.3) and (3.5) into account 

Substituting this expression in (3.16) and calculating the 
total transition probability for the region E <O 

o 

w,= J ~ E ~ ( E ) w ( E ) ,  
- m 

we can easily verify that the main contribution to this 
integral is made by an energy interval near the upper 
limit, thereby predetermining the appearance of the 
same exponential a s  in (3.26), but with a substantially 
pre-exponential factor. A s  a result, the total transition 
probability W i s  determined in practice by the value of 
W, (3.26). 

If tiwD*,>E0 and the condition (3.25) is satisfied, then 
the argument of the exponential in (3.26) is large and the 
lifetime of the metastable polarized crystal relative to 
a large spin flip of an individual atom can be very large. 
Thus, in both limiting cases the crystal turns out to be 
sufficiently stable to the considered decay channel. At 
the same time if E ,  /Ew, is  close enough to iP, [see 
(3.22) and (3.25)], this decay channel can present a sub- 
stantial danger. 

4. SPIN WAVES IN  METASTABLE POLARIZED 
CRYSTALS 

A small probability of local spin flip still does not 
mean that the metastable polarized crystal i s  long- 
liyed. There can appear in such a crystal nonlocalized 
spin excitations-peculiar spin waves (magnons) that 
carry negative energy. The last circumstance means 
that the magnon production i s  a transition of the crystal 
to a lower energy state. The energy released thereby 
goes to phonon excitation. The greatest danger is  pre- 
sented by the production of long-wave magnons. This 
i s  due to two causes. On the one hand, there is no need 
for the production of a large number of phonons, which 
would lead to a sharp decrease of the transition prob- 
ability. On the other hand, the long-wave magnons in- 
teract relatively weakly with the phonons, and this 
leads to a weak damping of these magnons and elimi- 
nates the problem of their formation. It must be stated 
that for the parameter ratio assumed in this paper we 
can make a much stronger statement, namely, that 
weak damping does in fact take place for magnons of 
arbitrary wavelength. To a decisive degree this is due 
to the inequality (3.10). 
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In the second-quantization representation the Hamil- 
tonian (2.2) for the magnons can be written in standard 
form 

Here 4; and zf a r e  the operators for the creation and 
annihilation of a magnon with wave vector f, whose en- 
ergy is 

The Hamiltonian of the interaction of the spin waves 
with the phonons i s  obtained directly from (2.2) if the 
exchange interaction A i s  expanded in the relative dis- 
placements of the atoms. Confining ourselves to the 
linear term of the expansion, we have 

where A; i s  defined in accordance with (3.12). 

As a result of the interaction (4.3) the spin wave i s  
accompanied by a change in the state of the lattice. The 
scale of the corresponding jarring effect can be esti- 
mated in this case by finding the overlap integral be- 
tween the crystal vibrational wave functions \k, and \kof 
corresponding respectively to total polarization and to 
the presence of one magnon with conservation of the 
phonon occupation numbers. 

We determine the function in second-order per- 
turbation theory in the Hamiltonian fi, (4.3). Then 
(TEO) 

Comparing Gr with expressions (3.13) and (3.14) and 
taking relations (4.4) and (3.12) into account, we can 
easily obtain the following estimate for a magnon with 
arbitrary f : 

As we hzve seen in the preceding section, +,>>l. For 
crystals of alkali-metal atoms, however, the ratio 
tio,/A, turns out to be so small that it cancels out the 
value +, and we have in (4.6) 

for spin waves with arbitrary f. Thus, for the Na crys- 
tal we have Gf - lo-' 1 ct 1 /A,. In the case of long-wave 
magnons (fa<< 1) we have 

and the parameter Gf acquires an additional smallness. 

Actually A, and Rw, (and consequently also +,) a re  
not independent parameters. Thus, oi -ZA~/M.  Rec- 

ognizing that A;2/AoA{- 1, we obtain the estimate 

Consequently, a t  an inverse ratio of the parameters 
(tiw,>>ZA,) the quantity +, becomes less than 1. At the 
same time, in this limit it follows from (4.5) and (3.14) 
that 

GI-4% I et 1 lZAo 

and again Gf<< 1 for magnons of arbitrary wavelength. 
In a noticeable parameter interval, however, when tiw, 
-ZA,, the value of Gf can be of the order of unity. 
Nonetheless, even in this case Gf<< 1 at fa<< 1, so  that 
for long-wave magnons the "polaron" effect i s  weak and 
effects of excitation of the phonon subsystem can be tak- 
en into account by perturbation theory. 

We note that for the same reasons the magnons a r e  
long-lived collective excitations. A direct estimate of 
their lifetime yields 

For long-wave magnons there is added to the right-hand 
side of (4.9) a small factor min ( ( f~ )~ ,  (R~,/A,)~]. 

5. DECAY OF CRYSTAL VIA EXCITATION OF SPIN 
WAVES 

A. Single-magnon and two-magnon excitation 

Production of spin waves in a metastable polarized 
crystal i s  due to two types of interaction: hyperfine 
interaction 

(I is  the nuclear spin operator, (m= R,,), and dipole- 
dipole interaction of the electron spins 

We note that in the crystals under consideration a/a, - 10, and consequently the interactions (5.1) and (5.2) 
turn out to be comparable in magnitude. The interac- 
tion (5.2) contains the terms responsible for the pro- 
duction of one and two magnons, and also terms that do 
not change the number of magnons. The latter, how- 
ever, a r e  small compared with the corresponding 
terms in the Hamiltonian fi, (4.3). 

Transitions with excitation of one magnon can be pro- 
duced by either interaction (5.1) o r  (5.2). In the ab- 
sence of phonon excitation, the energy conservation law 
can be satisfied in the presence of an external magnetic 
field. If the magnetic moments of the electrons a r e  
polarized along the field, then 

The dipole-dipole interaction (5.2) does not lead to 
production of one magnon without simultaneous exci- 
tation of phonons, by virtue of the momentum conserva- 
tion law. In the case of the hyperfine interaction (5.11, 
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the local spin flip of the nucleus eliminates the momen- 
tum-conservation problem and leads to production of 
one magnon with a wave vector determined from the 
condition E (  =O. In first-order perturbation theory we 
have for the probability of one-magnon decay per par- 
ticle 

[averaging over the projection of the nuclear spin is 
carried out in (5.4), and 0, is the volume of the unit 
cell]. 

The dipole-dipole interaction leads to  a decay ac- 
companied by the production of two magnons with op- 
positely directed momenta. For the probability of this 
process, a direct calculation yields 

The presence of analogous decay channels in a metas- 
table polarized crystal of atomic hydrogen was first  
pointed out by Berlinsky et a1.' In the case of crystals 
of alkali atoms, formulas (5.4) and (5.5) yield close 
estimates 

Although the probabilities (5.4)-(5.6) contain a small 
parameter P ~ H / A ~ ,  they correspond to channels of a 
relatively fast decay, for in the case of polarization 
along the magnetic field H can realistically not be 
chosen to be lower than the intrinsic field of the sam- 
ple. The corresponding lifetimes turn out to be in this 
case T - 10-1-10-3 sec. 

However, these channels will be in general forbidden 
if there i s  a sufficiently external magnetic field direct- 
ed opposite to the polarization of the magnetic moments. 
An experimental realization of such a situation entails 
no difficulties in principle. In particular, it is usually 
realized in a film of polarized atomic hydrogen pro- 
duced by deposition of an atomic beam on a cold sub- 
strate. 

B. Decay via excitation of magnons and phonons 
The problem of energy conservation is eliminated to 

a considerable degree if phonons a r e  emitted simul- 
taneously with the magnons. We consider transitions 
of this kind, due to dipole-dipole interaction. The 
simplest mechanism is the simultaneous production of 
one magnon and one phonon. The linear term of the ex- 
pansion of the Hamiltonian (5.2) in the atom displace- 
ments, which corresponds to this decay channel, can 
be easily reduced to  the form 

h dvd'd(R,) 1?,1-=-2i C (,) 'la sin ql- 
2Mo 

6.1 
dR, 

where 

(z  i s  the axis along which the electron magnetic mo- 
ments a r e  directed). 

The momentum conservation law f =q [it was used to 
obtain the explicit form of (5.7)] and the energy con- 
servation law result, under the condition (3.10) in the 
production of only a long-wave magnon and a long-wave 
phonon in the process under consideration. Taking this 
into consideration, we obtain in first-order perturbation 
theory for the decay probability 

An estimate of this expression for alkali-atom crystals 
yields T - 10'-lo4 sec. 

We note that the probability of simultaneous produc- 
tion of two magnons and one phonon on account of 
dipole-dipole interaction turns out t o  be much less than 
the probability (5.8). This process ar ises  also in sec- 
ond-order perturbation theory when the Hamiltonians 
(5.2) and (4.3) a r e  used. Although in this case the prob- 
ability of the transition is larger than when account is 
taken of only the dipole-dipole interaction, for the 
crystals considered by us  it i s  always less  than the 
probability (5.8). 

In principle, any single-phonon decay channel can al- 
s o  be suppressed by a sufficiently strong external mag- 
netic field directed against the polarization of the mag- 
netic moments. Thus, in the case of a process with 
simultaneous production of one magnon we can usually 
obtain from the energy conservation law 

an estimate for the corresponding value of the field 

A, iio 
w>H=.- _(e) 

In crystals made up of alkali-metal atoms, the critical 
field turns out to  be relatively weak: 

The possibility of suppressing the decay channels 
caused by the dipole-dipole interaction is limited to 
the case of single-phonon excitations. If a larger num- 
ber of phonons is involved in the decay process, then 
the conservation laws can be satisfied in fact at an a r -  
bitrary value of H. The greatest danger here, natural- 
ly, l ies in the decay channel corresponding to  produc- 
tion of one magnon and two phonons. The interaction 
Hamiltonian corresponding to  this process i s  obtained 
by taking into account the terms quadratic in the atom 
displacements in the expansion (5.2): 

,,,= C f i  ( I fcos  (q,+q,) 1 - cos q,l- cos q*U 

61 6 2  1 
3M(oe,a~,) ' .  

,. .. (5.9) 
e,,'e6,1a^~+s.bs,+ bs.+. x- 

dR,' dR," 

In this expression the momentum conservation law is 
taken into account in the form 

The energy conservation law again leads to  excitation 
of only long-wave magnons. Now, however, there a re  
no substantial limitations on the phonon energy, and the 
principal role is assumed by phonons with large mo- 
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menta, and q, +%= 0. Using in the calculations the 
Debye model of the phonon spectrum, we obtain for the 
transition probability 

In the case of alkali-metal crystals an estimate of this 
expression yields 

~-10~-10'  sec. 

The involvement of a large number of phonons in the 
decay process leads to the appearance of a small factor 
PZ/a2 for each additional phonon. Therefore the char- 
acteristic lifetime is precisely the one determined by 
formula (5.10) which turns out, as  follows from (5.11), 
to be quite large. 

Attention should be called to the fact that two-phonon 
processes appear when account is  taken of higher or- 
ders of perturbation theory, when the virtual produc- 
tion of two magnons or of a magnon and a phonon on ac- 
count of the dipole-dipole interaction i s  accompanied 
by a rescattering of the magnons and by the emission of 
a phonon as  a result of the interaction (4.3), which is of 
exchange origin. Direct calculations of the probabili- 
ties of such processes show that in the case of crystals 
of alkali-metal atoms it is  lower than the probability 
(5.10). 

The hyperfine interaction (5.1) does not depend on the 
displacements of the atoms and in itself does not lead 
to phonon excitation. It can, however, lead to the pro- 
duction of a virtual magnon, which then decays into a 
magnon and a phonon on account of interaction (4.3). 
The result is  a real process with production of one 
magnon and one phonon, but now without equality of the 
momentum of the two quasiparticles. This increases 
greatly the final phase volume in comparison with the 
case (5.8). The corresponding expression for the decay 
probability, determined in second-order perturbation 
theory, is 

An estimate of this expression for alkali-atom crystals 
leads unexpectedly to a noticeable magnitude of the de- 
cay probability. The corresponding value of r fluctu- 
ates in the interval 10-lo3 sec and is  different for dif- 
ferent isotopes. This decay channel is not suppressed 
by an external magnetic field. In principle, however, 
it can be suppressed if in addition to electron polariza- 
tion one can ensure polarization of the nuclear spins. 

6. CONCLUSION 

As shown by the foregoing analysis, good excitations 
in metastable polarized crystals are  unique spin waves 

that carry negative energy. It is  precisely the excita- 
tion of these spin waves, particularly simultaneously 
with phonons, which determines the principal channels 
of the decay of the metastable crystal. By using an ex- 
ternal magnetic field of direction opposite to the polar- 
ization of the electron magnetic moments it is  possible 
to suppress completely the single-magnon and two- 
magnon decay without phonon excitation or with excita- 
tion of one phonon, on account of the dipole-dipole in- 
teraction (see Sec. 5). The leading channels of the de- 
cay, which are  not eliminated by the magnetic field, 
turn out to be connected with the decay of the polarized 
state into one magnon and two phonons via the dipole- 
dipole interaction, and into one magnon and one phonon 
via a second-order process connected simultaneously 
with the hyperfine interaction and with the magnon- 
phonon interaction of exchange origin. In the case of 
polarized crystals of alkali atoms, the first of them 
leads to a decay probability per particle -10-3-10-4 
sec-', and determines by the same token a rather large 
lifetime. The second channel turns out to be relatively 
faster, with a characteristic decay probability in the 
interval -10-1-10-3 sec-'. This probability varies sub- 
stantially from element to element and from isotope to 
isotope, so  that a suitable optimal selection can be 
made for experimental purposes. It must be emphas- 
ized that in the case of simultaneous polarization of the 
nuclear spins this decay channel can also be suppressed. 

We have considered also another limiting case, cor- 
responding to local spin flip with jarring of the phonon 
subsystem. As shown in Sec. 3, the probability of this 
decay is  usually small compared with the value of W 
given above. We note that for polarized crystals of the 
type considered in the present paper, the situation cor- 
responding to local spin flip is  apparently not realized 
because of the large width of the spin-wave band com- 
pared with the Debye energy of the phonons. 

"1n Ref. 1 the parameters of the polarized alkali-atom crystals 
were obtained on the basis of asymptotic interatomic-inter- 
action potentials. A subsequent analysis has shown that this 
approach yields in reality only an order-of-magnitude esti- 
mate. 
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