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A new approach is suggested to the problem of the localized states of ions of a transition dm-metal with 
strong intra-atomic interaction in a semiconductor host. Essentially, the approach consists in first 
constructing the correct one-electron wave function in which the d states are mixed with the host 
continuum states, and then taking into account the strong electrostatic interact-ion between the electron 
and the inner electrons of the d shell. The state thus obtained retains the "atomic" statistics and the 
nominal magnetic moment, just as in the traditional ligand field theory. The canonical-transformation 
method used to determine the one-electron wave functions can be employed to demonstrate the 
equivalence of the Anderson and Wolf Hamiltonians in the case in which a localized impurity state is 
present in the system, and also to analyze the problem of the dielectric-metal phase transition in variable 
mixed-valence compounds (in the single-site approximation) without making recourse to decoupling of 
the mean field. It can also be demonstrated that the transition in this model may occur only in a gradual 
manner. 

PACS numbers: 71.55.D~ 

1. In the attempt to find the energy spectrum and absence of free carr iers  or  overlap of the wave func- 
the wave function of the impurity electron in the Ander- tions of the different centers. 
son model,' which describes the impurity with an un- 
filled electron shell in a metal or  dielectric, the com- 
plicated problem ar ises  of the construction of the 
superposition of states obeying various statistical dis- 
tributions, namely, the Fermi electrons of the contin- 
uum must be hybridized with the strongly correlating 
atomic states, which have the Gibbs distribution func- 
tion 

f G ( F p A ) - e x p [ - p ( E p L - p p )  I / ~ x P ~ - B ( E ~ - P P )  I (1) 
PL 

Here Em are  the atomic terms of a shell containing p 
electrons, g,, i s  the corresponding degeneracy factor, 
p i s  the chemical potential, and P the inverse tempera- 
ture. 

This problem has been stated almost nowhere. in 
general form. In a number of papers, Hirst established 
the general principles of "intersection of configura- 
tions" and found several sum rules; however, he did 
not consider the problem of the construction of the 
superposition state (see the review2). In all the prac- 
tical applications of the Anderson model, different 
variants of the molecular field approximation a re  used. 
The purpose of the present research was to demonstrate 
the inconsistencies that appear in the most frequently 
used mean-field approximations, and to suggest a s  an 
alternative a new approach, free from these inconsis- 
tencies, which we apply, at least in the semiconducting 
phase. It will be shown, within the framework of the 
suggested approach, that, in spite of the noticeable 
admixture of the Bloch states in the wave function of the 
localized electron, the localized state preserves the 
"atomic" quantum numbers and the distribution function 
of the type (1). For this reason, such thermodynamic 
characteristics a s  the impurity specific heat and para- 
magnetic susceptibility preserve the temperature de- 
pendence that i s  characteristic for an atom in the 
crystal field of the dielectric under conditions of the 

A s  examples, we consider the problem of the local- 
ized moment of the impurity atom of a transition metal 
in a s e m i c o n d ~ c t o r ~ ~  and the single-site variant of the 
theory of phase transitions semiconductor-metal in 
compounds of variable mixed ~ a l e n c e . " ~ ~  With the help 
of the proposed method, these problems can be re- 
solved without the introduction of aself-consistent field. 
The theory of chemisorption of hydrogen on the surface 
of metals and semiconductors can be one more object 
of its appl. icati~n.~*'~ 

2. The Hamiltonian of an impurity atom with an in- 
complete shell, placed in a continuum of Bloch elec- 
trons, has the form 

H=H,+H,+H.,+H' (2) 

in the general case. Here H, and H i  describe respec- 
tively the states of the electrons of the host in a per- 
iodic crystal lattice and electrolis of the free atom 
(ion) impurity; He* i s  the hybridization term, and H' 
contains all the interactions except the intra-atomic 
electrostatic interaction, which enters into H i .  We 
shall point out the inconsistencies that arise in the use 
of the mean-field approximation using the example of 
the simplest nondegenerate Anderson Hamiltonian HA,' 
in which 

(the notation i s  traditional). In this model of the Ham- 
iltonian, the term H' is not considered, H i  describes 
the unperturbed atomic levels, H i  I ~ x )  = E,, [ p ~ ) ,  where 
IpX) = lo), [ lo),  120) indicate the number of electrons 

and the spin state of the configuration dO, d' and d2 re-  
spectively. 

A deep level can be expected to appear in the for- 
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bidden band of a semiconductor when the energy of the 
addition of a single electron (or hole) to the atomic 
shell amounts to a quantity of the order of the chemical 
potential of the host, i.e., the Hirst condition of con- 
figuration crossing i s  satisfied:' 

Epr-Ep-,, ~.=p. (4) 

It is simplest to obtain the localized levels in the Har- 
tree appr~ximat ion.~ The Green's function of the atomic 
electron in this case i s  determined by the expression: 

For the Green's functions of the Bloch electrons we 
have 

We find from (5) and (6) that the electrons at the im- 
purity level obey the Fermi distribution f, 

Here &ie> and kt) determine the contributions from the 
d- and k-states to the total number of electrons with 
spin projection a on the site in the localized state. It 
is  seen that the Hartree approximation completely ig- 
nores the above-mentioned complexity of the problem 
of the mixing of the states, reducing HA to a single- 
electron effective Hamiltonian and considering both 
the band and the quasi-atomic states a s  ordinary fer- 
mions with doubly filled levels, which contradicts the 
general requirement imposed on the rule for filling 
localized states: each level can be occupied by only 
one electron. 

In this sense, another variant of the molecular field 
approximation i s  more reasonable, f irst  proposed by 
~ewson." This approach uses the atomic picture for 
impurities a s  the zeroth approximation, taking H, into 
account exactly, and takes the "atomic" Green's func- 
tions 

a s  the zero Green's functions. In the zeroth approxi- 
mation, we find from (8) 

which gives an atomic distribution function 

that i s  spin-independent, if we set p = 2 in condition (4). 
Taking H,, in the mean-field approximation, in accord 
with Hewson, we have for the impurity level6 

E,,=Ed+U+ (nd-.)M(Ei.) .  (10) 

The occupation numbers a r e  determined by the ex- 
pression6 

hio) i s  the contribution from the states of the contin- 
uum. Here we have explicitly used the sign of the der- 

ivative, since a!M/dE<O in the forbidden band. In the 
case M '<< 1, which i s  realized for a sufficiently deep 
level E, ,  we find from (10) the approximate expression 
for (nk). For the nonmagnetic solution 

(the spin index i s  omitted). Although this expression 
does not differ greatly from the atomic distribution 
function, i t  reamins unsatisfactory for a number of 
reasons. In particular, it gives a non-integer number 
of electrons a t  the impurity level which, in addition, 
varies a s  a function of the position of the level relative 
to the edge of the forbidden band. 

The reasons for the appearance of "non-integer" oc- 
cupation numbers of localized states a r e  quite evident. 
The atomic Green's function (8) gives the correct value 
n,= at  p= m thanks to the exact account of the repul- 
sion U, which does not permit two electrons with op- 
positely directed spins to be found close to the impurity 
atom. On the other hand, for Bloch electrons, within 
the framework of the Anderson Hamiltonian (3)' such a 
prohibition is lacking, and n,= 1 at  E,< p ,  P = - .  As a 
result of the mixing of states, prepared "according to 
different recipes," we obtain a fractional occupation 
number for the localized level. This result does not 
have physical meaning, from our point of view, but i s  
a consequence of the accepted scheme of uncoupling 
and the incorrect choice of the reduced Hamiltonian in 
the form (3) (see below). For filling the states of the 
continuum, which have an admixture of atomic states, 
we also obtain an incorrect picture. Mathematically, 
this i s  expressed by the fact that, for the density of 
states determined by the imaginary part of the Green's 
function with the components (9) and (6) i t  is impossible 
to formulate any sort  of sum rule in place of the rule 
of Friedel for one-electron states6 (for the Anderson 
model in the Hartree approximation, the sum rule of 
Friedel, a s  is well known, is satisfied automatically). 
Thus, in the Hewson approximation, we cannot calculate 
the real  chemical potential of the system and, conse- 
quently, all the remaining thermodynamic and kinetic 
characteristics. In particular, the Anderson model 
cannot be used in the given form for the description of 
compounds with mixed valency (rare-earth chalcogen- 
ides) in the semiconducting phase. 

Another source of possible ambiguities is the depen- 
dence of the energy spectrum on the average occupa- 
tion numbers (n,), arising in the molecular-field ap- 
proximation. Thanks to i t s  presence, we can be tempt- 
ed to obtain "magnetic" solutions &,)# or  to use 
this molecular field for "amplification" of other phase 
transformations (for example, transitions of the Fal- 
icov-Kimball type13). Yet, it i s  not difficult to see that 
the form of the dependence of the spectrum on (n,) i s  
greatly altered in the transition from one type of mean- 
field approximation to another. It manifests itself in 
the resonance level (7) or  in the hybridization term of 
second order (9) and can be referred to the fourth or- 
der in g, by means of a small  improvement in the pro- 
cedure of decoupling of the Bogolyubov chain. In or- 
der to demonstrate this instability, we write down the 
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chain of equations of motion for the operator nu-,c,, 
which describes the configurational transition d2 - dl: 

Rather than following ~ e w s o n "  and decoupling the first  
of these equations, we break the chain a t  the second 
step. Then, in f i rs t  order in g,, we have, in place of 
(9), E, = Ed+ u+M(E,) .  The corrections of fourth order 
ar ise  from the mean values 

the basic contribution to which i s  made by the residues 
of the corresponding Green's functions a t  the pole E,. 
These corrections have the form ( ~ , , ) M ( E , ) M  ' (E , ) .  

3. In view of the ambiguity of the results obtained by 
the method of introduction of molecular fields into the 
Hamiltonian HA (3), it i s  necessary to find more real- 
istic grounds for the construction of the localized states 
in the forbidden band. In this section, such grounds 
a r e  proposed within the framework of the Hamiltonian 
of general form (2). We assume that in those cases in 
which there is a localized level in the spectrum, the 
use of the impurity Hamiltonian in the reduced form 
(3) is generally not entirely correct (although one can 
obtain the correct distribution function for the local- 
ized state, a s  will be shown below, even within the 
framework of the Anderson Hamiltonian). Actually, the 
wave function of the localized electron, corresponding 
to the representation (5), (6) for the Green's function, 
has the for me 

q (r) =v, (r) +q2 (r) ,  ql (r) = (1+M1) -'h$dr)9 

Here rlr, and $, a r e  the atomic and Bloch wave functions, 
respectively of the electron. The well arguments of 
Anderson' on the importance of taking into account the 
intra-atomic Coulomb interaction refer to a strongly 
localized function cp,(r). However, the function cp,(r) 
also falls off exponentially at distances of several lat- 
tice constants: cp,(r) - r"e'=, )c= (2m*Ei)'/2 (El is mea- 
sured from the edge of the nearest allowed bandb6 
This means that the Coulomb interaction corresponding 
to this part of the wave function also plays an impor- 
tant role in the formation of many-electron states. It 
should be taken into account in the construction of the 
impurity wave function. The first  step in this direction 
was made in Ref. 6, in which, by solving the problem 
of multiple-charge impurity states, we have taken the 
dd interaction into account exactly and, the ss and sd 
interactions in the molecular-field approximation. 
Such an inconsistent approach has led to the result that 

all  the disparities of the model considered in the pre- 
vious section of the present paper were preserved. 
Here we set  forward a new approach, in which the en- 
t i re  Coulomb interaction of the states localized on 
the impurity site i s  taken into account exactly. 

We f i rs t  consider the nondegenerate variant of the 
Hamiltonian (2), in which, the electrostatic interaction 
of valence electrons with one another and with the elec- 
trons of the unfilled shell of the impurity i s  taken into 
account along with the intra-atomic interaction of An- 
derson-Hubbard: 

In the Hamiltonian (l5), we transform from the represen- 
tation of non-interactingstates I go), ]do), to the repre- 
sentation of hybridized states (ka), Ida): 

The coefficients u, a r e  determined from the condition 
of vanishing of the matrix element of hybridization in 
the effective Hamiltonian H ( E )  (see the Appendix): 

arctg (M') '" gt 
Ut = -. 

(M')" Et-E' 

The one-electron Hamiltonian Hi takes in this case the 
form 

The operator & describes the state of the electron at 
the impurity level E, in the forbidden band [cf. (14)], 
while t, corresponds to the Bloch wave distorted by 
resonance scattering." As a result of the canonical 
transformation (16), a part of the Hamiltonian, corres- 
ponding to states of the continuum, became nondiagonal, 
since k is not a better quantum number. We shall not 
write down the explicit form of the matrix element W,, 
here, since the diagonalization of the states of the con- 
tinuum, described by the Hamiltonian H,(c), does not 
enter into the problem of the present paper. Returning 
to Eq. (19) and substituting c,,(E,,) in the Hamiltonian 
(15), (18), we find that it is transformed to 

The prime on the sum indicates the absence in it of the 
term with (Y = p= y=d ,  which is associated with Hi. 

From the point of view of the statistics of impurity 
levels, which is of interest to us, the transformed 
Hamiltonian (20) possesses advantages in comparison 
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with (2) and is free of the inadequacies inherent in the 
effective Hamiltonian which uses the mean-field approx- 
i m a t i ~ n . ~ * % ~  The entire interaction of electrons local- 
ized on the impurity si te is taken into account in (20), 
in contrast with HA in (2.3). The "basis" states, de- 
scribed by the term H,, have the correct atomic sta- 
tistics in that the mixing of waves functions of the elec- 
trons of the unfilled shell with the continuum a r e  taken 
into account in them. The distribution function 

gives the correct occupation number C i a -  i a s  8- -. 
We now consider the correlation terms that enter into 

H'. First  of all  we call attention to the fact that H' con- 
tains the effective hybridization interaction 

These terms require discussion, since, along with the 
discarded integrals of the type (dd I W ldk) and (dk, I W I 
k&), they contain a contribution from the strong Cou- 
lomb interaction U, which transforms into H' a s  a re- 
sult of the canonical transformation (16) and a t  suf- 
ficiently large U the resulting hybridization can turn 
out to be comparable with the initial mixing, which we 
sought to eliminate by means of the transformation (16). 
The contribution of this can be estimated by transform- 
ing to the Wannier representation for the states of the 
continuum. W-e see from (19) that the d component of 
the functions $, transforms into 

+(r ,  Ri) =(i+M1)-'$d(r) x gk 
exp (imd 

Et-E, 
k 

(the impurity site is located a t  the origin). It i s  then 
seen that the maximum contribution to the effective hy- 
bridization gives R,= 0. Estimate of the Coulomb in- 
tegrals in (22) gives 

All the remaining integrals in H' can be estimated in 
similar fashion. 

We first  note that the first  of the hybridization terms 
in (22) basically affects the states of the continuum and 
the states with two localized electrons a t  the 
which we shall not consider and, in the renormalization 
of the level E l  it can give only a constant contribution, 
which does not violate the atomic statistics (21) [the 
latter can be shown by writing, for example, the chain 
of equations of motion of the type (13) for the operator 
c&(l -n,-,)I. In the same way we can establish the fact 
that the hybridization corrections from the second 
term in (22) ar ise  only in very high orders in g(-8) 
and can be discarded, in any case in those situations 
in which U 5 D. If U > D ,  the proposed method becomes 
ineffective. In this limit, along with the Coulomb hy- 
bridization, it is necessary to take into account also 
the strong interaction between states of the continuum, 
since the d-component of the scattered wave (23), local- 
ized near the impurity site, no longer can be regarded 

in the one-electron approximation, s o  that the d-com- 
ponent of the two-electron states, determined by the 
operator EiaE; ,  will be suppressed in the same measure 
a s  the state EL;O.C?L;-~ with two electrons, localized near 
the impurity site.=) 

Thus the effective Hamiltonian with account of the 
most important interactions between the continuum 
and the localized states has the form 

Without the last three terms, the form of (24) ac- 
tually represents the Hamiltonian of Wolf," in which 
the rearrangement of the continuum under the effect 
of resonance scattering is additionally taken into ac- 
count. This property is not accidental: the central 
point of the Wolf, model, a s  in our case, was the re- 
quirement that the Coulomb interaction between elec- 
trons in the localized states, produced by the impurity 
scattering, be taken into account. The difference i s  
that in the Wolf model, this state was created by the 
short-range Slater-Koster potential, while in our 
case, by the resonance Friedel scattering. 

Before going on to the consideration of the thermody- 
namic and magnetic properties of the system described 
by the Hamiltonian (24), we generalize the proposed 
approach to the case of real ,  polyelectronic atoms with 
an unfilled shell, when, along with the interactions in- 
cluded in (24), there is also an interaction with the core 
states of the impurity. For  definiteness, we shall have 
in mind the 3d-shell of a transition metal of the iron 
group and assume that the orbital momentum 1 = 2 and 
the addition of the momenta is carried out according 
to the Russel-Saunders scheme. Generalization to 
another case does not represent any difficulty in prin- 
ciple. In the traditional theory of transition metals, 
the core states a r e  those of the inner, filled shells. 
However, in recent years, an approach has been in- 
tensively developed, f i rs t  clearly formulated by Hub- 
bard," which considers the elementary excitations in 
the d(f) shells a s  a change in the atomic configura- 
tions. Taking this approach, we must re-examine the 
concept of core states. 

The method developed in the present paper, a s  in the 
conceptually similar approach of H i r ~ t , ~ * "  essentially 
revives, on a new basis, the idea expressed in their 
time by Pauling and Goodenough, who proposed to sep- 
arate the electrons of the unfilled shell into a local- 
ized core which determines the magnetic moment of the 
atom, and the collectivized electrons which a r e  hy- 
bridized in our case with the valence electrons of the 
semiconductor host. As a criterion for  such a separa- 
tion, we use here the relation (4), i.e., the core elec- 
trons a r e  those whose binding energy in the shell is 
much greater than the chemical potential of the system, 
and the valence electrons a r e  the last one or  two elec- 
trons in the shell. Thus, the mechanism that gqverns 
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the possibility of division of the electrons of the un- 
filled shell into two groups is in our case the intra- 
atomic Coulomb interaction of van-Vleck-Anderson- 
Hubbard. 

The proposed approach reduces to the following. In 
contrast to schemes based on a purely atomic, zeroth 
approximation for all the configurations of the d elec- 
trons,8en we shall f irst  separate the valence electrons 
and construct for them a correct wave function that 
possesses the point symmetry of the crystal and i s  hy- 
bridized with the Bloch electrons of the host, and then 
pair this superposition state with the many-electron 
core according to the usual scheme of addition of mo- 
menta. Thus, let E, be the energy of the p-th electron 
of the d shell in the self-consistent Hartree field of the 
core db-', and zJ7 be the corresponding wave function. 
For semiconducting systems A,,Bv, and AIIIBv of 
V, Cr ,  . . . , Ni alloys, p = 1,2,  ... ,7: correspondingly 
for SmS we have p = 6 and s o  on. It i s  convenient from 
the first  to take into account the splitting of the d levels 
of the impurity in the crystal field, s o  that the ground 
state of the ion dP-' i s  characterized by the term E,,,, 
r,, contains the indices of the irreducible representa- 
tion of the point group of the crystal and the total spin 
of the shell. Then E,  = E,, -E,,_, , y = t ,  o r  e. The 
wave function of the p-th electron and the energy and 
the energy of the deep level a re  determined by the ex- 
pressions6 

V i s  the crystal field of the host. Than, taking into ac- 
count the intra-atomic exchange interaction, we add to- 
gether the momenta of the p-th electron and the ion 

according to  the scheme of the mean crystal field. 
This scheme can be applied to our "quasi atom" without 
any changes, since the hybridization (or  covalent chem- 
ical bond) of the d electron of the impurity with the 
electrons of the semiconductor host does not change 
its point ~ y m r n e t r y . ~  As a result, we obtain the level 
energy and the wave function of the impurity quasi 
atom, in which all the covalent (hybridization) effects 
a r e  taken into account, but the atomic classification of 
the levels is maintained: 

Here (I?,/ W I  I' ),, is the matrix element of the exchange 
i interaction, C, Pl?p,l is a coefficient determining the 

scheme of vector addition. 

The effective impurity Hamiltonian can be written 
down with the help of the operators of change of the 
atomic configurations, introduced in Ref. 17: 

In contrast to Refs. 17 and 4, the effect of the crystal 
field in the Hamiltonian (27) was taken into account 
from the very beginning. In the language of crystal 
field theory, the results obtained in this section mean 
that, in contrast with the states of the core,  which a r e  
determined by the ordinary electrostatic field of the 

ligands, for the "valence configurations," p, p + 1 the 
resonance component of this field (25) i s  also impor- 
tant: and, furthermore, the effect of hybridization of 
the valence states with the continuum reduces com- 
pletely to the formation of the crystal field. The Ham- 
iltonian (27) corresponds to the Gibbs distribution func- 
tion (1). 

4. In this section, we consider a s  the proposed 
method of canonical transformation two physical prob- 
lems which can be solved with i t s  help, without the 
introduction of self -consistent molecular fields. 

A. Localized momenta and the paramagnetic susceptibility 
of impurities of transition metals in semiconductors 

It i s  not difficult to see that in a system described 
by the Hamiltonian (24), (27), in the absence of free 
carr iers ,  there is always a magnetic moment and i t  
preserves i ts  nominal value, corresponding to the free 
state of the paramagnetic ion of configuration dp in the 
ligand field. In this sense, our model is greatly differ- 
ent from the approximate mean-field scheme," in 
which, a s  is well known, the conditions of the existence 
of a localized moment a re  very stringent.=' We then 
immediately obtain the Curie law for the paramagnetic 
susceptibility in the case of an impurity in the S state 

and for the multiplet, split by the crystal field and the 
spin-orbit interaction-the formula of Van Vleck: 

X(P~"z-l E e x p ( - p ~ ,  y)  pair^+ 2alre1. 

"# 

(29) 

Here 4, and 4~ are  the coefficients in the case of H 
and H2 in the effective spin Hamiltonian for the ion dp, 
and Z i s  the statistical sum in the distribution on (1). 

The measurements of the paramagnetic susceptibility 
in the semiconducting alloys A,,BV, and AI1,Bv doped 
with transition metals give satisfactory agreement with 
the formulas (28) and (29) (see,  for example, Refs. 19, 
20). The departure from the Van Vleck curve obtained 
by the method of effective spin Hamiltonian is brought 
about, in our view, by the effect of the resonance co- 
valent part of the crystal field: which distorts the 
structure of the levels, split by the electrostatic li- 
gand field; this can change the value of the g factor and 
even lead to inversion of the terms. 

B. Semiconductor-metal phase tramitioh with change in 
va tence 

The s o  called "single-site approximation" is frequent- 
ly used for the description of phase transitions will 
change in valence. 

Here the real  periodic structure of atoms with unfilled 
f shells i s  approximated by a set of noninteracting "im- 
purity" atoms (see, for example, Refs. 8, 13, and 14). 
The system is described by the Anderson Hamiltonian, 
while the phase transition is assured by the Coulomb 
interaction between the conduction electrons and the f 
electrons (the Falicov mechanism). If in the descrip- 
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tion of the metallic phase of variable mixed-valence 
compounds (VMC ), the single-site approximation can 
be used only as a rough qualitative estimate of the 
thermodynamic and kinetic characteristics of the sys- 
tem, then this approximation should, a t  f irst  glance, 
work much better in the semiconductor phase, since 
upon replacement of the independent centers by a per- 
iodic lattice, only a smearing out of the level takes 
pace in a narrow band that is unimportant for the prob- 
lem of the phase transition. However, the description 
of the semiconducting phase of VMC with the help of 
the Anderson Hamiltonian usually requires the intro- 
duction of self-consistent fields and meets with the in- 
consistencies considered in Sec. 2. In particular, in 
order to avoid the problem of the lifting of spin degen- 
eracy in the filling of the localized level, i t  is approp- 
riate to return to the spinless 

We first  recall that, considering the Coulomb sf 
interaction in the self-consistent field approximation, 
we can obtain both continuous and jumpwise transitions 
from the state with (nf) = 1 to (nf)= 0, depending on the 
relation of the parameters. For the chalcogenides of 
Sm and Tm, this will be simultaneously a semicon- 
ductor-metal transition; but if we take hybridization 
into account, then the transition takes place between 
states with non-integer valence.7~8~21*22 However, the 
choice of method of introduction of the mean field very 
strongly affects the behavior of the system. In addition, 
there exists an exact solution of the Falicov problem at 
g,= 0 which gives only a continuous t r a n ~ i t i o n . ~ ~  

We can investigate the behavior of the system in the 
case of a final hybridization from the side of the die- 
lectric phase, not introducing the self -consistent field, 
but making the approximations in the effective Hamil- 
tonian (24) which a re  made in the initial Hamiltonian 
in the framework of the standard VMC theory, i.e., 
discarding the fourth and sixth terms in it.4' As a re -  
sult, we have the Hamiltonian 

Here E, and E,,, correspond to the actual states of the 
continuum which can be obtained by the method of dia- 
gonalization of Hc (18). This Hamiltonian is identical 
in form with the Falicov Hamiltonian, but the sf -hy- 
bridization is taken into account exactly in i ts  deriva- 
tion. In it we have made the approximation of,the con- 
tact character of the sf -Coulomb interaction that is 
usual in UMC theory, and have set U, = const, although 
in reality this integral depends on the level E , :  with 
decrease in the depth of the level, the fraction of the 
f -states in G,(r) falls off but the fraction in (Z, ( r )  in- 
creases, which can be seen already from (19). This 
simplification is not basic, since one can show that 
the ground term in Uix(1.m9) is actually factored out and 
the problem of the Green's function of the x electrons 
admits an exact solution of the same type a s  the Hew- 
son-Riseborough solution.23 

Thus, using the Hewson-Riseborough method for the 
Hamiltonian (30), we obtain an expression for the av- 
erage number of electrons in the localized state as  a 
function of the chemical potential at T = 0: 

Here So is the density of states of the free continuum, 
and S, is the additional density of states arising from 
Coulomb scattering. The quantities So and S, generally 
depend on the location of the level E,  in the forbidden 
band, but for qualitative consideration of the problem 
this is again unimportant. It is important that, a s  in 
the Hewson-Riseborough case, Eq. (31) allows only a 
continuous transition to the metallic state, which rep- 
resents simply a "squeezing out" of the f level from 
the gap, unaccompanied by any discontinuities or ex- 
citon effects, 

Thus, our consideration confirms the conclusion that 
in the Anderson model there is no "stripping" of the 
level E,,  and its appearance in the theory is connected 
exclusively with the splittings in the Coulomb term of 
the Hamiltonian (30).7*8~21*22 However, it should be 
noted that a more accurate account of the "exciton" 
averages also gives only a svmooth transition to the me- 
tallic phase (D. I. Khomskii , private communication). 
All these arguments can be added to the arguments 
against the use of the mean field approximation in VMC 
summed up in Sec. 2. 

In spite of the apparent similarity of the Hamiltonian 
(30) with the Hamiltonian of Falicov, our "exact" solu- 
tion differs from the similar solution of Hewson-Rise- 
borough because it is not the bare level but the actual 
localized level that is squeezed out into the band (in 
Eq. (31), we have (N,) and not (nf)) .  Thanks to this, 
non-monotonicity in the occupation numbers still takes 
place, although it differs from the usual dependence in 
cases of continuous (Fig. a)  and jumpwise (Fig. b) tran- 
sitions in the mean field approximations. The number 
of electrons at the level E ,  apparently changes jump- 
wise from 1 to 0 a s  E - Ec (the dashed line in Fig. c). 
But the average number off -electrons here at the site 
(nf) falls off monotonically with breakup of the level and 
generally approaches zero in correspondence with (14) 
and (19) a s  E - E,. (The solid curve in Fig. c;  on the 
drawings, the occupation numbers of a r e  plotted a s  a 
function of the location of the bare level E,). How- 
ever, strictly speaking, our description is suitable 
only for the case in which the level E, is occupied and 
there are  no free carr iers  in the band; therefore the 
immediate vicinity of the transition and, in addition, 
the metallic region cannot be described. Furthermore, 
the transition of carr iers  into the band is accompanied 
by the appearance of charged f -ions and, consequently 
a departure from the bottom of the conduction band of 
the shallow impurity levels to which the carr iers  a re  
attracted. In any case, it is clear that first ,  at  suffi- 

FIG. 1. 
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ciently large values of E f  in the allowed band the de- 
pendence (nf)  ( E f )  should be approximately the same 
as in drawing b, and second, all the non-monotonic- 
ities around the point E,  are  essentially connected with 
the single-site model and have no direct relation to the 
phase transitions in the rare-earth metal chalcogen- 
ides. 

Evidently, within the framework of the single -node 
model, the VMC problem cannot be solved. One must 
consider a periodic system, for which there is a simple 
canonical transformation both in the semiconducting and 
in the metallic phase. The approach to the semicon- 
ducting phase, proposed in the present paper, i s  gen- 
eralized without difficulty, and if the intra-atomic 
Coulomb interaction of the hybridized electrons in the 
narrow band originating from the level Ef it becomes 
the Hubbard approach but i ts  width increases upon ap- 
proach of Ef  to E,. It is clear that this picture has 
little in common with the single-site case. Thus, as 
a qualitative conclusion, one can note that the exact so- 
lution of the problem of the semiconducting phase of 
VMC in the single-center approximation demonstrates 
the weakness of this model no less clearly than the ap- 
proximate consideration with the help of splittings of 
the self-consistent field demonstrates i ts  worth. 

The authors express their deep gratitude to 9. F. 
Barabanov, L. A. Maksimov and D. I. Khomskii for 
numerous discussions of the work and valued critical 
comments. 

APPENDIX 

The canonical transformation (16) gives 

cd-h cos y+ C u k ~ r - ~  sin y, 
k 

~r=Er+y-~ (COB 7-1) h z uk.Et--y-' ain yud, 
k'  

(for simplicity, we assume the coefficients u, to be 
real, generalization to the case of complex u, is triv- 
ial; the index o is omitted, since the operator eSdoes 
not mix states with different spin projections). Substi- 
tuting (A.l) in H, (15), we find 

uky-'{(Ed-Z)sin y cos y- (Et-Z)sin y+T(cosa y-sin' 7) 

-T cos y}+gk cos 7-0, 
(A.3) T=~-'C ~kg,, Z=r-' C u t ' ~ r .  

k k 

The left side of Eq. (A.3) is the coefficient for tic, in 
H,. Multiplying (A.3) by u, and summing over k ,  we 
get 

T (i-tg' 7) + (Ea-Z) tg 7-0. (A.4) 

With account of (A.4), the expression (A.3) transforms 
to 

7gk+~uk-U~(E~-Z)  tg 750. (A.5) 

Simultaneous solution of (A.2), (A.4). and (A.5) gives 

and also (17) and (18). 

It must be emphasized that in the derivation, essen- 
tial use was made of the condition of the existence of a 
localized level in the forbidden band [ ~ q .  (~ .2 ) ] ;  there- 
fore the canonical transformation in the given form is 
applicable only to the case of Anderson impurities in 
the semiconductor. 

"Since the matrix element g,.projects the state of the continu- 
um on the space corresponding to the symmetry of the bare 
wave function of the electron of the unfilled shell6, the dis- 
tortion affects only the components with Z= 1.2  for impurities 
of transition metals in tehagunal semiconductors and with L 
= 3 systems of the type SmS (cf. Ref. 14). 
 o ow ever , even in this case, a t  low density of the free car - 
r i e r s ,  when one can make use of the gas approximation to 
take into account a strong, short-range potential, the effec- 
tive single-site interaction turns out to be small. l5 

3 ) ~ n  solving numerically the problem for the model of semiel- 
liptic density of the states in the nondegenerate model and in 
the Hewson approximation, we have not found solutions with a 
localized moment. 

4"!3e conditions under which these terms are  insignificant 
were discussed in Sec. 3. We add to this disscussion the re-  
mark that discarding the hybridization with polar states in the 
presence of free carr iers  can turn out to be a not entirely 
harmless operation, since Hamiltonians of this type are non- 
analytic in the hybridization constant (see, for example, 
Refs. 24 and 25). However, this remark should be addressed 
to all authors engaged in the CVV problem. 
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