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A system of carriers is considered, having an anisotropic energy spectnun and scattered by randomly 
disposed attraction centers of f ~ t e  radius a Il(1 = ( ~ f i ) / l e ~ ) " ~  is the magnetic length) in a 
quantizing magnetic field H. A new type of oscillations of the kinetic coefficients as a function of the 
magnetic field is observed. The oscillations are due to the dependence of the one-dimensional (on account 
of the magnetic fteld) scattering potential of each individual center on H and to the anisotropy of the 
effective mass of the carriers. The longitudinal and transverse conductivities of a gas of interacting 
electrons with soroidal equal surfaces (m, = m, = m,, m, = mil > m3 in a weak electric field E, and in a 
quantizing magnetic field parallel to the spheroid axis Hl(mll(lz are calculated. It is shown that both the 
longitudinal and transverse conductivities oscillate with changing magnetic fields, and the period is 
mainly aH '". For definite values of the magnetic field intensity, this effect leads to a negative 
longitudinal magnetoresistance [L. S. Dubinskaya, Sov. Phys. JETP 29, 436 (1969); M. M. Aksel'rod et 
al., Phys. Stat. Sol. 9, k91, 196511. The possibility of experimentally observing the oscillations is 
d i s c d .  

PACS numbers: 72.10.Di 

1. We consider  the spec t rum of the states of an elec- axial s y m m e t r y  of the problem, at U#O, the projection 

t ron whose m a s s  is highly anisotropic, m ,  =m,  =m, m of the orbital angular momentum of the electron on 

<< m,, =m,, in a quantizing magnetic field ~ l ( m , , ) l z  and in the direct ion of H is conserved. If the  mixing of the 

a spherically symmetr ica l  a t t ract ion field U ( r )  < 0 of levels ~ = n + i ( I m I  + m )  a n d ~ = k + + ( l m I  + m )  (Ref. 3) 
finite rad ius  a 5 1. In the absence of a cen te r ,  the mo- by the cen te r  is small4: 

tion of the electron in the ( x , y )  plane perpendicular to H - 
is quantized, and the energy difference between any two urnk= = j p dpR,,(p) I U ( p ,  0 )  IR,,(p) A@J., 

neighboring levels  is KwL (w, = e ~ / m , c ) .  By v i r tue  of the 
(1) 

* 
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where R a r e  the radial wave functions, n and k a r e  the 
radial quantum  number^,^ and p =(x,y), then the poten- 
tial U can be regarded a s  a perturbation for the motion 
in the (x ,  y ) plane. 

The electron motion (in the Landau band N with defi- 
nite angular-momentum projection m )  along H is deter- 
mined by the potential averaged over the radial func- 
tions R,, (Refs. 3,4): 

which can be represented a t  a < I in the form 

The potential Urn@) is an even function of z and de- 
creases along z a t  characteristic distances on the order 
of the effective radius a of the field. If the well (3) is 
deep enough, 

then the one-dimensional potential (3) contains many 
levels. The right-hand side of the inequality (4) follows 
directly from (1) and is a more stringent condition than 
(1). With decreasing magnetic field intensity, the depth 
of the well (3) decreases in proportion to -H""'", i.e., 
the levels leave the well. When a level with zero  ener- 
gy appears in the well, the one-dimensional well be- 
comes t r a n ~ p a r e n t . ~  It follows therefore that al l  the 
kinetic coefficients determined by the scattering should 
oscillate when H is varied. The effect is more pro- 
nounced the better the inequalities (1) and (4) a r e  satis- 
fied. 

For an isotropic ca r r i e r  mass,  m, =m,, =m*, the 
condition (4) is violated: i f  u sfi2/m*a2, then the mixing 
of the levels i s  weak, but the one-dimensional well (3) 
is shallow and contains only one state,4 and the corre- 
sponding level does not leave the well when H is chang- 
ed, but i f  the center is strong, i.e., u >> ti2/m*az, then 
the well (3) is deep, but the radial-motion levels a r e  
strongly intermixed in this case. In either case there 
a r e  no oscillations. One should therefore expect these 
oscillations to be realized for a strongly anisotropic en- 
ergy spectrum of the carr iers ,  for example in semicon- 
ductors of the fourth group (see See. 5). 

We calculate below the static conductivity of a gas of 
noninteracting electrons with ellipsoidal equal-energy 
surfaces in a quantizing magnetic field parallel to the 
spheroid axis, Hllm,,, in a weak electric field Eo and in 
longitudinal (E~I~H) and transverse (Eo 1 H) fields. I t  is 
assumed that the electrons a r e  scattered by randomly 
disposed attraction centers U(r) of radius a S 1. We shall 
show that both the longitudinal and the transverse com- 
ponents of the conductivity tensor oscillate with chang- 
ing H, and that the oscillations a r e  in the main periodic 
in H"', in contrast to the Gurevich and Firsov magneto- 
phonon r e s o n a n ~ e , ~  where the period of the oscillations 
is linear in H-'. For different values of the magnetic 
field intensity, the effect indicated in the present paper 
leads to the negative longitudinal magnetoresistance in- 

vestigated by ~ u b i n s k a ~ a '  for scattering by a long-range 
Coulomb potential, and by Aksel'rod et aL2 for scatter- 
ing by acoustic phonons, but i t  is of an entirely different 
character. 

2. We assume that the scatterer concentration no is 
small  enough: 

llorxyai 
(5) 

(A,, =E/(~,,T)"', T the electron temperature), so  that the 
neighboring centers do not influence the interaction of 
the electron with any scatterer.  Inasmuch a s  in a quan- 
tizing magnetic field fiw >> T i t  is the lower Landau band 
n =0, m S 0 which is mainly populated, the analysis that 
follows pertains only to this band. A Boltzmann dis- 
tribution function is assumed hereafter for the electrons 
with respect to the longitudinal energy in this band.6 

The SchrBdinger integral equation that describes the 
scattering of the electron of the ground L,andau band N 
= 0 in homogeneous magnetic field A, =-Hy ,A, =A, = 0 
by the potential U(r) is  given by (in the isotropic case 
m,, =m, =m*, s e e  the paper by ~ k o b o v v  

where 

is the wave function of the electron in a magnetic field 
with momentum P ~ ! H , ~  A i s  the vector potential, k ,  p, 
and yo a r e  the Landau numbers, 

In the case of weak mixing of the Landau levels by the 
center i t  suffices to retain in (7) only the term pertain- 
ing to the zeroth band with k =O. 

For the probability per unit time of the transitionfrom 
the state yoPo into the state y i p  we have from (6) and (7) 

(8 
In the derivation of (8) we must change over from a 
delta-function normalization of rp to a normalization 
with one electron in the volume. 

For a spherically symmetrical potential U(r), Eq. (6) 
can be reduced to a system of uncoupled integral (or 
differential) one-dimensional equations, which describe 
the scattering of an electron with a definite momentum 
p,IIH and with different m by a one-dimensional potential 
Urn(z) (3):. We change over to a new function gp,(z;p;pl): 

. - 
g,, (2, p, p,) = J dy&,p z(z, P)xo;.(P~) 1 

- - (9)  
meaning physically a transition to a wave packet that 
describes an electron concentrated in a region of order 
I and with center at the point p i .  Such a packet consti- 
tutes a superposition of states with different projections 
m of the orbital angular momentum of the electron on 
the direction of H. 
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The inverse transformation is of the form 

r p , . ~ ~  (r) - f d Z ~ l ~ O y . ( ~ t ) g P ,  (2, P, PI).  
(10) 

Multiplying (6) by xQYo(p,) and integrating the resultant 
equation over all yo, we arrive a t  the equation for the 
function gp,(9), whose solution, as can be easily verified 
by direct substitution, can be written in ser ies  form'' 

where the coefficients C, satisfy the equations 

u, (z) = u:-O(z). 

The integral equation (12) describes the one-dimen- 
sional problem of the scattering of a particle with mo- 
mentum p, and mass m,, by a potential U,(z) < 0. To 
solve this equation we must specify the concrete form 
of the scattering potential U(r). We solve below this 
equation for a model potential U(r) specified in the form 
of a screened Coulomb potential. 

3. We calculate now the longitudinal component o, of 
the electric conductivity tensor in a magnetic field, fol- 
lowing Ref. 1. The density of the longitudinal current in 
the magnetic field is 

+- 
j.=-eg f d p . k i i ( p . )  = o . . ~ ~ ,  

-" m  (13) 

where f ,  is an increment, linear in the field Eo, to the 
equilibrium distribution function, while g is defined by 
the equation 

and n, is the concentration of the conduction electrons; 
f,,(&) is the equilibrium distribution function with respect 
to the longitudinal energy c =py2m1,. The function f, is a 
solution of the kinetic equation 

where No=nOV is the total number of scatterers in the 
volume V. 

In the right-hand side of (14), after substituting (10) 
and (11) in Eq. (8), we can carry out the integration, in 
general form, with respect to the coordinates of the 
center of the electron orbit in the initial and final states 
yo and y;. The integration with respect t o p  can also be 
carried out, owing to the presence of the 6 function, af- 
ter which Eq. (14) reduces to an algebraic one whose 
solution enables us to write the function f, in the form 

Substituting (15) in (11) we obtain for the longitudinal 
conductivity 

+" 
gm(p) - fhz e-'pZrn~,(z) u,(z), 

-- (1 7) 
lg,(-p,) l 2  coincides, apart  from a factor, with the re- 
flection coefficient of an electron with a definite projec- 
tion of the angular momentum rn on the direction of H 
and with a momentum p,lIH from the potential U. On the 
other hand, the sum 

n, 

contained in (16) is, accurate to the same factor, the 
coefficient of reflection, from the potential U(r), of a 
broad beam of electrons situated a t  the ground Landau 
level. 

We now calculate the conductivity for the case E, 1 H, 
Eolly. The transverse-conductivity tensor component 
connected with the current j,llEo is due to jump-over of 
the center of the electron orbit yo a s  a result of colli- 
sion of the latter with the scattering centers. 

The probability of the transition yap,-yip due to col- 
lisions with individual centers depends on the electric 
field intensity Eo and can be obtained, in analogy with 
(8), from the integral equation for the wave function of 
the electrons in the field of the individual center and in 
mutually perpendicular electric and magnetic fields: 

where cpEo is the eigenfunction of the electron in mutual- 
ly perpendicular electric and magnetic fields,' and Po 
is the exact wave function of the electron in the field of 
the center U(r) and Eo 1H. 

In the approximation (5), the scattering of the electron 
by different centers is independent. Following Davydov 
and ~ o m e r a n c h u k ~  and ~ i t e i c a , "  we calculate the cur- 
rent along the field Eo as  the algebraic sum of currents 
connected with the transitions y = y ;p, 

In the approximation linear in the field E,, the only 
terms contributing to the current a r e  those obtained by 
expanding the 6 function (18) in powers of the electric 
field.' In this approximation, the functions qBO and cpEo 
in (18) can be replaced by their expressions a t  Eo = O  
and J ,  can be found from Eq. (6). The transition to the 
function gp, (9) enables us to integrate the expression 
for the current density with respect to the initial and 
final coordinates yo and y; of the center of the orbit. 
Next, multiplying the current from one scatterer by the 
number of scatterers No, we obtain for the diagonal 
component of the transverse-conductivity tensor 

Amf =kmr 1' +2(m+l) [ I g ~ l l z - ~ e ( g ~ + , g , f ~ )  I ,  g,*=gm(fp.). (19) 

4. We now analyze the derived expressions. The 
transverse conductivity of the electron gas with isotrop- 
ic spectrum in a quantizing magnetic field, due to scat- 
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tering by centers of small  radius a << 1, was calculated 
by ~kobov." Replacing in (12) and (17) the potentialU(4 
by a delta function in z ,  i t  is easy to calculate the func- 
tions gm.4 Next, retaining in (19) only the term with m 
=0, putting m, =mi, =m*, we obtain for the transverse 
conductivity an expression that coincides with the result 
of skobovii for shallow ( ~ < < f i ~ / r n * a ~ )  centers. For suf- 
ficiently deep centers, U zti2/m*a2, agreement with the 
result of (11) can also be easily obtained by taking into 
account the higher Landau bands; this leads to renor- 
malization of the constant of the interaction between the 
electron and the center. 

To investigate the oscillations, we specify the con- 
crete form of the scattering potential U(Y) in the form of 
a screened Coulomb potential: 

The oscillations investigated here a r e  due to the finite 
effective radius of the one-dimensional potential Um(z) 
(3). They a r e  produced whenever a zero-energy level 
appears in one of the Um(z) wells. Since the physical 
picture of the oscillations is the same for all m, we 
confine ourselves to a calculation of the longitudinal and 
transverse conductivity, retaining only the term with m 
=O. In addition, the potential (3) decreases with in- 
creasing m like exp(-mil2), and this leads to a decrease 
of the depth of the one- dimensional well Urn with increas- 
ing m and to violation of the condition (4). Finally, a t  a 
< I the potential U, cc (a2/12)m'i becomes shallower with 
increasing m, and this likewise violates the condition 
(4). Substituting (20) in (3) we obtain a t  m = O  (al" 2 1) 

The solution of Eq. (12) with m = O  is expressed for 
the one-dimensional potential (21) in terms of Bessel 
functions. The integrals (17) a r e  evaluated in this case 
in general form and, omitting the intermediate results, 
we get for the longitudinal (16) and transverse (19) com- 
ponents of the conductivity tensor 

hZ 2 e'h af .. 
a ' . = - j e ( - - , ~ ) v s h n v / [ a ~ ( ~ )  2n~2znomll  I D I ~ + ~  I.--121de, 

n5-+1 

V S ~ ~ V  ' 2 J J -  i 1 . (24) 
))= T ~ e [ ( T r v r z ( i v )  [J:," ( P J )  I '  

J,,, a r e  Bessel functions. The spectrum of the bound 
states on the same potential (21) is determined by the 
equation 

Equations (22)-(26) become much simpler in the limit- 
ing case of sufficiently small  v << 1, at  temperatures T 
<<E?/ml,a2, and a t  large 6 >> 1 (we use the asymptotic 

forms of the Bessel functions2': 

- 
d f o  (I-sin 2@)nZva 

anv (H)  =8neznol' j dc (- -) 
de c0s'2~+n%~ ' 

0 (28) 

I t  follows from (27) that for magnetic field intensities 
satisfying the relation 

the longitudinal conductivity increases. The condition 
(29) corresponds to the appearance of a level with zero 
energy in a one-dimensional well (21), a s  can be easily 
seen from (26). The amplitude of the oscillations is 
limited because of the contribution made to the scatter- 
ing by states with m '- 1. The functions g,, a s  indicated 
above, decrease rapidly with increasing m. Confining 
ourselves in (27) to the term with m =1, we obtain for 
the maximum amplitude of the longitudinal conductivity 

The transverse conductivity (28) also oscillates; a,, in 
(28) vanishes a t  values of H (29) corresponding to even 
n = 21, and reaches for odd values n = 21 + 1 a maximum 

This behavior is due to the different parities of the wave 
functions of the bound states of the one-dimensional well 
for successive n. In contrast to the magnetophonon os- 
cillations of Gurevich and ~ i r s o v ~  and to the Shubnikov- 
de Haas  oscillation^,'^ which a r e  periodic in H-', the 
period of the investigated oscillations a t  a < I i s  propor- 
tional to 

At a - 1 this relation does not hold and the period of the 
oscillation is a complicated function of H. 

Next, for values of H satisfying (29), the longitudinal 
magnetoresistance is minimal: p , , - ( ~ ~ ~ ' ) . ~ .  This can 
lead to a negative longitudinal magnetoresistance: 

which was previously observedi' in scattering of elec- 
trons by ions and acoustic phonons. We emphasize that 
the negative longitudinal magnetoresistance,i'2 not being 
due-to oscillations, is of different physical origin than 
in our case. 

The scattering of carr iers  with spheroidal equal-en- 
ergy surfaces by neutral atoms was investigated by 
~ r o o k s . ' ~  According to Brooks, the momentum relaxa- 
tion time due to the scattering of the electrons by such 
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atoms is of the form 

where x i s  the dielectric constant. 

The longitudinal conductivity (at H =O) is given by 

and the effect of negative magnetoresistance can be ob- 
served a t  a ratio 

Taking (30) and (31) into account, the last relation takes 
the form 

5. The effects considered here a r e  realized in the 
groupIV semiconductors Ge and Si in which electrons 
interact with hydrogenlike neutral impurities. The mass 
parameter m,,/m, =19.5 is maximal for the electrons in 
n-Ge. The constant-energy surfaces of the electrons in 
n-Ge a re  ellipsoids of revolution with major axes in the 
(111) direction. The shallow-donor radius is a = 4 ~ 1 0 ' ~  
cm. The magnetic length i s  of the order 1% a for the 
magnetic-field intensity values H = 4x  lo5 G. The ion- 
ization potential of the shallow donors in n-Ge is U,, 
= 0.01 eV = 120 K. 

If the magnetic field is directed along the principal 
axis of one of the ellipsoids, then for the electrons of 
this valley the degree of mixing of the Landau levels by 
the center (1) is 

~ ~ ~ / ~ o , < ~ , / h o , = 0 , 2 4 ,  

and the depth of the one-dimensional well that deter- 
mines the number of bound states [see (4)] is 

Because of numerical factors, the last estimate is too 
low by a t  least a factor of two, i.e., a one-dimensional 
well contains according to (29) four bound states. When 
the magnetic field intensity i s  decreased to H =4x104 G 
we have a21-2 = 0.1, Uo(0) - ii2/m,,aZ, and one bound state 
remains in the well, s o  that three oscillations should be 
observed in experiment. 

The amplitude of the oscillations of the longitudinal 
conductivity turns out to be finite for the following rea- 
sons : 

1) the temperature is finite, leading to a thermal 
broadening of the one-dimensional well characterized by 
a parameter 

2) a contribution is made to scattering by states with 
higher m a 1 (27), a s  determined by the parameter 

3) other scatterers a r e  present, such as ionized im- 
purities, acoustic phonons, etc.. 

For temperatures T = 1 K and a t  magnetic field inten- 
sities H =6 x lo4 G and a21" = 0.16, the chopping of the 
amplitude of the longitudinal-conductivity oscillation, 
due to mechanisms (1) and (2), is of the same order: 
f l  =0.03-0.027 = 5; >> 51. 

In addition to scattering by neutral impurities, a con- 
tribution to the resistance is made by scatteringby other 
impurities, particularly by ionized donors, which en- 
sure  the presence of electrons in the conduction band. 
An estimate of this scattering mechanism shows that a t  
ionized impurity concentrations n+ satisfying the in- 
equalities 

m,T12 
n,, - B n+Bno - 

tr' 

the oscillations should be distinctly observed, but the 
amplitude of the oscillations is determined by the scat- 
tering from ionized impurities and is of the order of 

In the derivation of the estimate (33), the scattering of 
the electrons by the ionized impurities was considered 
in the Born approximation, which overestimates some- 
what the contribution made to the resistance by the ion- 
ized impur i t i e~ . '~  The parameter ( m , , ~ ) ~ ' ~ l / t i ,  which 
enters in (33), is of the order of unity for n-Ge a t  T = 1 
K, 1 = l o 4  cm, and a21"=0.16. 

We estimate also the contribution made to the resist- 
ance by the electron scattering from the acoustic pho- 
nons. Using the corresponding expression for eh," (Ref. 
16), we find that scattering by neutral impurities pre- 
vails a t  concentrations corresponding to the inequality 

where s is the speed of sound, co is the constant of the 
deformation potential, and M is the mass of the unit- 
cell atom. 

At T =1 K and H=6x104 G we have no 210"-10'~ cm3. 
The contribution made to the electron oscillations by 
the three remaining valleys, the axes of which do not 
coincide with the direction of the magnetic field a t  the 
same intensities H, is small. The magnetic length 1, 
for the electrons of these valleys is connected with the 
magnetic length 1 of the electrons of the principal rn,,llH 
valley by the relation' 

9 is the angle between the direction of the principal 
axes of the valleys. In Ge we have 9 = 120" and 1; = 212, 
by virtue of which the parameter (a2/l;) is small, and 
the corresponding potential turns out to be shallow and 
contains only one or two bound states. The electrons of 
these three valleys, just as the acoustic phonons, give 
r i se  to a conduction background. Measurements on de- 
formed samples amke i t  possible to "exclude" the ines- 
sential valleysi7 and by the same token decrease the 
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background. 

We now examine the possibility of observing in n-Ge a 
negative longitudinal magnetoresistance due to the os- 
cillations. As indicated above, a t  a < 1 the one dimen- 
sional potential U,(z)-(a2/12)"+' is shallow for all m a  1 
and can be replaced by a delta-function potential in z. 
The corresponding one-dimensional equation is then 
easily solved4 and the function gi can be calculated. The 
estimate (32) (for a Boltzmann distribution function fo) 
then takes the form 

from which we get p,, (H)/~,(o)-5 10- for T=  1 K and H 
=6x10d G. 

The possibility of observing oscillations in Si is much 
worse than in Ge. The mass anisotropy parameter in Si 
is m,,/m, =5.15. For shallow donors in Si we have a 
= 1.5 ~ 1 0 ' ~  cm. The magnetic length is l = a  a t  H =  27 
X lo5 G. At these values of H we have u,/(K~/~,+z~) = 3 
even for the deepest impurities Bi, but the mixing of the 
Landau levels by the center is much more substantial 
than for Ge, where u,,/Eu, =0.64. 

.? - 

It i s  also of interest to observe the oscillations when 
electrons a r e  scattered by deep impurities in semicon- 
ductors. In germanium such impurities are,  in particu- 
lar, Se and ~ e . "  For these impurities, a =  1.7x10'~ 
cm, the magnetic length is I = a a t  H = 22 X lo5 G, and at 
these magnetic-field intensities the parameters charac- 
terizing the mixing of the Landau levels by the center 
and the number of levels in the one-dimensional well a r e  
respectively ~a/Ew, = 0.44, ~ d ( E ~ / m , , a ~ )  = 11.3. From 
the last estimate i t  is seen that the number of bound 
states produced in the one-dimensional well by the deep 
impurity is approximately double the number of states 
in the one-dimensional well of a shallow donor. 

We must now point out the following circumstances. 
First, the inequality ( I ) ,  which ensures smallness of 
the mixing of the Landau levels by the center, reduces 
at a < 1, a s  already indicated, to U0<<K2/m,a2 and is in- 
dependent of the magnetic field intensity. There is, 
however, a lower bound on the permissible values of H 
at which the Landau level mixing is small. Shallow neu- 
tral H-impurities in the absence of a magnetic field can 
be attached to an electron, forming ff centers with 
binding energy Ef - K2/m*f (f >> a is the amplitude of 
scattering of an electron with energy E-- 0 by a neutral 
center). So long as the binding energy Ef is small 

the electron of the Landau ground band with m = O  is lo- 
calized in the region -1 << f determined by the magnetic 
field, and the mixing of the Landau levels is small. At 
small H, when I >> f >> a, the region of the localization of 
the electron is determined by the center, and the Lan- 
dau- level mixing is substantial. Thus, inclusion of only 
one Landau band is correct for fields 

lz<f, i.e. HBchlIel f'. 

In the case of a strongly anisotropic carr ier  mass a t  
H=O, the energy of the bound state of the electron on 

the center i s  close to the binding energy of the electron 
with mass m, on a shallow two-dimensional potential 

The corresponding bound state exists for an arbitrarily 
shallow potential, is exponentially small,3 and the in- 
equality (35) must be replaced by 

Second, the oscillations can become enhanced because 
of the increase of the concentration of the carr iers  in 
the conduction band with decreasing depth of the one- 
dimensional well and with appearance of a zero energy 
level. The corresponding calculation was carried out 
for a model in which the neutral centers, which a r e  re- 
sponsible for the oscillations, a r e  deep impurities with 
concentration no, and the electrons a re  supplied to the 
conduction band via thermal ionization of the shallow 
donors whose concentration is n,. The neutral centers 
in a magnetic field play the role of acceptors and allow- 
ance for the change of the carr ier  density is essential 
in the case of strong "compensation" n, - no >> no. In this 
case, however, the electron density in the conduction 
band is small, making i t  difficult to observe the oscilla- 
tions in experiment. In the case of weak compensation 
n, >> no, the change of the carr ier  density in the conduc- 
tion band following the appearance of a zero energy level 
can be neglected. The corresponding parameter is 
exp(-li2/m,,a2~). 

Third, we have considered the scattering of slow elec- 
trons by neutral atoms in a magnetic field. It is known19 
that H = 0 the polarization of the atom by the incident 
electron is significant. The polarization potential, a t  
distances larger than atomic, decreases in proportion 
to rd. The presence of such a tail in the three-dimen- 
sional case (at H=O) does not influence the very exist- 
ence of the bound states, but leads only to their shift.'' 
In a magnetic field, for slow particles, the situation is 
similar, does not affect the very existence of the oscill- 
ations considered in this paper, and leads only to differ- 
ent values of H a t  which the oscillations take place. At 
a < 1 ,  however, and a t  sufficiently high temperatures, 
the contribution of the polarization potential to the scat- 
tering turns out to be small. The point i s  that the cor- 
responding one-dimensional polarization potential U,(z) 
is determined by the matrix element of the polarization 
interaction, averaged over the radial motion, i. e., 

ol is the set  of quantum numbers of the excited state of 
the atom, Eo is the energy of the ground state of the at- 
om, and r is  the radius vector of the atomic electron. 

We can approximately express UJz) in the form 
eZ ( a )  l z l a I  e" 

l J P ( Z )  = ={ - = Uo. 
(alz)', l z l > l l  ax 

lf the electron temperature is such that 
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then in the solution of the one-dimensional sca t te r ing  
problem the polarization potential U,(z) can  b e  omitted. 

Finally, the conditions fo r  the applicability of the sin- 
gle-center approximation ( 5 )  is usually well  sat isf ied in  
semiconductors. Thus, at H =6 xlo4 G and T =1 K the 
es t imate  ( 5 )  yields no << lo1* cm" i n  Ge. 
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High-frequency properties of ErFeO, in the ordering region 
of rare-earth systems 
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Magnetic resonance at frequencies 10-37 GHz is used to investigate the behavior of the spin-wave 
frequency in the vicinity of the low-temperature spin flip in a zero magnetic field. A decrease in the 
frequency of the "soft mode" down to 15 GHz at a temperature 4 K is observed, in correspondence with 
the ordering of the spin system of Er. 

PACS numbers: 75.3O.Ds, 76.50. + g 

One of the distinguishing fea tures  of a definite class 
of ordered  magnets is the presence  of an energy  gap 
i n  the spin-wave spec t rum even in a zero ex te rna l  mag- 
net ic  field H (see, e.g., Ref. 1). T h i s  c i rcumstance  is 
connected with the presence of a nonzero anisotropy 
field HA. Among these magnets  is included, in  par -  
t icular ,  the ra re -ear th  (FU3) orthoferr i te  ErFeO,, which 
is a weak ferromagnet  with a residual  moment m. 
When n o  account is taken of the magnetoelastic inter- 
action and of anisotropy of o r d e r  higher  than the fourth, 
the  field HA vanishes in  various kinds of phase transi- 
tions (KT), including orientational PT which take place 
in  this crystal .  This  means that  the frequency vo of the 

"soft mode" of the spin-wave spec t rum should also van- 
i sh  in the PT ( v 0 - H A  at H =0).2 A d i r e c t  method of de- 
termining t h e  spin-wave frequency is the method of 
homogeneous ant i ferromagnet ic  resonance (AFMR). 

It is known that  in  ErFeO,  t h e r e  t ake  place a number 
of orientational PT with change of only the tempera ture  
@I =0), and these  were investigated in  sufficient detai l  
by  var ious   method^.^-^ Two such P T  occur  in  the t em-  
pera ture  region 90-100 K and manifest  themselves,  
with decreasing tempera ture ,  in  a smooth rotation, of 
the magnetic moment of the i r o n  sublattice by a n  angle 
n/2-from the a axis to the c axis. T h e  change.of orien- 
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