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no longer the case (see the figure). At m =0, the plot 
of the electron energy against its velocity along the 
dislocation has a kink a t  the point v =O. On the other 
hand, if m > 0 then the minimum of the energy is 
reached at the drift velocity -aw, and not a t  v =O. The 
numbers marked on the figure correspond to a = 0.5 
~ 1 0 - ~  cm, w =1.6x1OU rad/sec(H=lff G), and p =9.1 
X10-28 g. The depth of the bound state at m > 0 i s  very 
small (-1.8~10-lo eV). If x =0, then the screw dis- 
location exerts no influence on the electron. 

The subject touched upon here is related, for exam- 
ple, toRefs. 2 and 3. In Ref. 2 is considered the dy- 
namics of an electron near a linear defect with axisym- 
metrical potential V-l/r .  Such a potential offers no 
advantages to any of the two directions long the defect. 

In Ref. 3 i s  considered the case of a screw dislocation. 
Allowance for  the anisotropy of the conductivity tensor 
leads here to spiral  trajectories of the electron when 
moving along the dislocation, leading to the prediction 
that a weak magnetic moment appears, parallel to the 
dislocation when an electron is made to flow along the 
dislocation. This agrees with our results, since the 
states of the electron with m > 0 and m < 0 a re  not on a 
par a t  v + 0. 
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'L. D. Landau and E. M. Lifshitz, Kvantovaya Mekhanika 
(Quantum Mechanics, Nonrelativistic Theory), Nauka, 1974, 
p. 525 [Pergamon]. 

2 ~ u .  P. Boglaev and E. P. Vol'skli, FLz. Tverd. Tela (Lenin- 
grad) 18, 3288 (1976) [Sov. Phys. Solid State 18, 1916 (l976)l. 
097611. 

3 ~ .  Kondo and K. Kuroda, Sol. State Comm. 26, 61 0978). 

Translated by J. G .  Adashko 

Calculation of critical exponents by quantum field theory 
methods 

A. A. Vladimirov, D. I. Kazakov, and 0. V. Tarasov 
Joint Institute for Nuclear Research 
(Submitted 26 February 1979) 
Zh. Eksp. Teor. Fiz. 77, 1035-1045 (September 1979) 

The Gell-Mann-Low function and the anomalous dimensionalities of the quantum-field model 
Clnr = - ( 4 ~ ) ~ g ( ~ 3 ~ / 4 !  are calculated in a four-loop approximation in the dimensional renormalization 
formalism. They are used to determine the coefficients of the c expansion for the critical exponents up to 
the degree 8 inclusive. To reduce the series of the c expansion, a summation method is used that 
includes a modified Bore1 transformation and conformal mapping. The obtained critical exponents are in 
good agreement with experiment and with results of other theoretical approaches. 

PACS numbers: 64.60.Fr, 05.70.Jk 

1. INTRODUCTION 

The far-reaching analogies between statistical physics 
and quantum field theory' can be used effectively to ob- 
tain quantitative predictions concerning the character of 
the behavior of statistical systems in the vicinity of the 
phase-transition point.2 The decisive role in this ap- 
proach is played by the renormalization-group3 and E -  

expansion4 methods. On the basis of a calculation of the 
usual quantum-field Feynman diagram of the q4 model 
in a space of 4 - 2& dimensions, and of the solution of 
the renormalization-group equations, the critical ex- 
ponents of the phase transitions a r e  presented in the 
form of series in powers of c, with the physical (three- 
dimensional) case corresponding to a value & = 1/2. 

The greatest progress in this direction was made by 
Gurevich and ~ i r s o v '  and by ~ e v i n s o n h h o  succeededin 
calculating the contributions of the three-loop and some 
of the four- loop diagrams. However, in view of the as- 
ymptotic character of the obtained ser ies  in &, further 
progress in this direction presupposes not only inclu- 
sion of diagrams of ever increasing order, but also the 
use of methods for "improving" and summing the as- 
ymptotic series.  The realization of this program is the 
purpose of the present paper. 

Recently, a number of workers7' ' have developed sim- 
ple and quite effective methods of calculating contribu- 
tions of Feynman diagrams to the renormalizationgroup 
functions. The use of this technique has enabled us to 
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calculate in analytic form the contributions of all the 
necessary diagrams and to carry  through to conclusion 
the four-loop calculations in the (p4 model. This makes 
i t  possible to write down for all the critical exponents 
series in powers of & up to terms c4inclusive. We apply 
to these series a summation method developed by us pre- 
v i o ~ s l ~ , ~ w h i c h  includes a modified Borel transformation 
and conformal mapping under the sign of the Borel inte- 
gral. The critical exponents obtained in this manner a r e  
in good agreement both with the experimental data and 
with the results of other theoretical approa~hes . '~  

limiting transition (3) be possible. The quantities a,(g), 
bl(g), and c,(g) a r e  connected with the functions that 
enter in the differential equation of the renormalization 
group 

a a a 
[ p s - + B ( g )  - + F ( g ) m l - -  1 . (g ) ]  r R ( ( p ) .  ) ~ : m ~ ~ g ) = o ~  

apZ ag  am 
(7) 

by the relationsi3 

2. RENORMALIZATION-GROUP FUNCTIONS OF THE 
lp4 MODEL IN THE FOUR-LOOP APPROXIMATION 

This section is the purely quantum-field part  of our 
article. I t  is devoted to the calculation of the renormal- 
ization-group functions (the anomalous dimensionalities 
in the Gell-Mann-Low function) of the (p4 model in the 
dimensional renormalization scheme. 

Consequently, to find the Gell-Mann- Low function B(g) 
and the anomalous dimensionalities y(g) we must know 
the coefficients of I/& in the expansions of the renor- 
malization constants Z in the reciprocal powers of E .  

The technique of such calculations was developed in 
We consider an O(n)-symmetry model of an n-compo- 

nent scalar field, specified by the Lagrangian 
Refs. 7 and 8. It was used by us  to carry  out the corre- 
sponding calculations in the four-loop approximation of 
the theory (1). The functions fl(g), y2(g), and y4(g) were 
determined from formulas (8) and (lo), and to find y,(g) 
we found i t  convenient to use the equality y,(g) = yz(g) 
- yVz(g), which following from the relation Z, =2,,22i1, 

To calculate the Feynman diagrams we use dimensional 
regularization and the procedure of minimal substra- 
tions or,  equivalently, the scheme of dimensional re- 
normalization.'' Namely, we subtract from each di- 
verging integral only the singular terms of its expan- 
sion in a Laurent series in E = (4 - d)/2 where d is the 
dimensionality of space-time. In terms of the renor- 
malization constants, this means that the latter a r e  ex- 
panded in a series in reciprocal powers of &: 

where 

and Z,,2 is the renormalization constant of the two-point 
Green's function with the insert  (p2, i.e., 

For the renormalization-group functions we obtain the 
following expressions: 

s' g' 7r(g)  = -(n+2) - -(n+2) (n+8) 
36 16.27 The renormalized Green's functions rR a r e  obtained 

from the regularized ones by the following limiting 
transition: 

where 

Here (p} are  the momentum arguments of the Green's 
function I?; p is the renormalization parameter; Z,, Z4, 
and Z2 a r e  respectively the renormalization constants 
of the mass, of the four-point vertex r4, and of the re- 
ciprocal propagator D" = r2. The quantities Z, and g, 
satisfy relations analogous to (2): 

m 

g' - -[-5na+6320nz+80656n+196648+96~ ( 3 )  (63n1+764n+2332) 
32.243 

-2886 ( 4 )  (5na+62n+ 176) + 19206 (5)  (2n1+55n+186) ]+O ($) . 
(14) 

In particular, a t  n = 1  
The functions a,(g), b,(g) and c,(g) (their independence 
of the mass is proved in Ref. 12) a r e  uniquely calculat- 
ed by perturbation theory by the requirement that the 
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The presented expressions for the 0 functions and the 
anomalous dimensionalities can be used in quantum field 
theory (in four-dimensional space) to study the ultra- 
violet asymptotic Green's functions. They can also be 
used in various departures from perturbation theory and 
from the continuation of its results into the region of 
coupling-constant values g 2 1, as was done, for ex- 
ample, in Refs. 9 and 14. In the present paper we use 
the results to determine the critical exponents of phase 
transitions within the framework of a field-theoretical 
approach based on the & expansion, to critical phenom- 
ena. 

3. CRITICAL EXPONENTS AND THE E. EXPANSION 

The renormalization group method, transferred from 
quantum field theory to statistical physics, was used 
successfully to describe the behavior of various sys- 
tems near a second-order phase transition point. The 
scale invariance that manifests itself in the critical 
phenomena finds a natural interpretation in terms of the 
renormalization group: the scaling behavior in the vi- 
cinity of the critical point, due to the appearance in the 
system of long-range order, can be  described in lang- 
uage of Euclidean quantum field theory, which has an 
infrared-stable point. The fixed point go of the renor- 
malization- group equation 

is determined from the condition @(go) = O  and is called 
infrared-stable if @'(go) > 0. Zn this case  the effective 
charge .ij(p2/p2,g) tends to go when i ts  momentum argu- 
ment p2 tends to zero, i.e., a t  large distances. If the 
theory contains an infrared-stable point, the nondimen- 
sionalized Green's functions demonstrate a t  small p2 a 
power-law behaviorg: 

with an exponent equal to the value of the corresponding 
anomalous dimensionality at the point g =go. 

A consistent approach to the description of critical 
phenomena in terms of the (p4 quantum-field model was 
developed in Refs. 15 and 16, where explicit connections 
were obtained between the exponents of the power-law 
asymptotic relations (20) and the critical exponents that 
characterize the scaling behavior of She statistical- 
physics quantities near the critical temperature T,. 
Thus, for example, a t  T = T ,  the asymptotic form of the 
correlation function r (x )  a s  1x1 - m is determined by 
the exponent q: 
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The correlation length 6 a t  t =T - To- 0 satisfies the 
following scaling law: 

g - t - v ( i + ~ ~ n ~ t . t - v + .  . . ), 
1-0 (22) 

where w characterizes the degree of deviation from 
scaling. All the remaining critical exponents a re  ex- 
pressed in terms of q and v.'" 

On the basis of the analogy between the partition func- 
tion and the quantum-field generating functional, we can 
establish the following parallels between the statistical- 
physics and field quantitiesi6: the quantized field rp is 
identified with the order parameter, the temperature 
difference T - T, with the square of the bare  mass m i ,  
the correlation function r (x)  with the propagator ((p(x) 
cp(O)), and the reciprocal correlation length 6'' corre- 
sponds to the physical mass m,,, which determines the 
position of the pole of the Fourier propagator ~ ( p ' ) :  
D-'(p2 = -mz,,) = 0. To find the critical exponents on the 
basis of the (p4 theory, we must now investigate quanti- 
tatively the character of the power- law behavior of m, 
as mi -0, and also the asymptotic behavior of U(p2) in 
the limit as p2- 0 for m i  =O. The renormalization- 
group equations make i t  possible to reduce this problem 
to a determination of the values of the anomalous di- 
densionalities y,(g) and yz(g) a t  the infrared-stable 
point g =go. 

As seen from (14), the function @(g) vanishes a t  g =O. 
Thus, a t  d = 4  we have go =O.and all the anomalous di- 
mensionalities y(go) also vanish. This means that in the 
limit as pi-- 0 the interaction vanishes, the q4 theary i s  
a t  d = 4  in fact a free theory in the infrared region 

The idea of the & expansion is to take the case d = 4 a s  
the zeroth approximation, construct a perturbation the- 
ory in powers of 2 E = 4 - d, and then, putting 2s  = 1, 
proceed to the case d = 3  which is of physical interest. 
In fact, when carrying out in the (p4 model the renor- 
malizations a t  finite E * 0, we must use for the Gell- 
Mann-Low function the quantity 

848) =-eg+B(g), (23) 
which vanishes a t  a certain point go(&) and has a t  this 
point a positive derivative. At small  c the infrared- 
stable point go(&) is close to zero, gO(&)-c, and this 
makes i t  possible, by reexpanding y[go(E)] in powers of 
&, to express all the critical exponents in the form of 
expansions in powers of E .  

We present now explicit relations that connect the 
critical exponents with the anomalous dimensionalities 
y(go). The corresponding formulas were obtained in 
Refs. 16, but we find i t  useful to  repeat the derivation 
of thesexelations within the framework of the dimen- 
sional-renormalization scheme employed by us. 

Taking the Fourier transform of (21) and comparing 
the result with the asymptotic expression for the propa- 
gator: 

we get 
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7l=2yz(go). (25) 
The second exponent v is connected with the physical 
mass rn* It is a renormalization-invariant quantity 
and satisfies the renormalization-group equation without 
anomalous dimensionalities: 

From the theorem on homogeneous functions we have 

Then, eliminating k2a/ap2 from (26) with the aid of (271 
we get 

The use of standard methods of analysis of equations of 
this type3 leads to the conclusion that 

m,,b - ll[~--lm(L)l. 
mZ-0 (29) 

Assuming k and g to be fixed, we have 

m2-ms2=t. 
(30) 

Consequently 

E - L m p h -  t112[f-7-(6,)1 
1-e (31) 

Hence, comparing (31) with (22), we get 

Allowance for the second term in the expansion of the 
effective charge in the vicinity of the fixed point 

makes i t  possible to find the correction to the solution 
(29) and by the same token determine the exponent w: 

On the basis of formulas (25), (32), and (34) and also 
on the basis of the functions y2(g), y,(g), and B(g), cal- 
culated in the four-loop approximation, we can write 
down the expansions in powers of & up to terms -c4 for 
go(&) and for the exponents q, v, and w. We note that 
the coefficients of these expansions do not depend on the 
employed renormalization scheme. Our results, which 
a r e  given below, agree with Ref. 6, in which the corre- 
sponding calculations were extended up to c3 for go,  V, 

and w and up to c4 for q. To recast  the results in the 
standard notation employed in the &-expansion formal- 
ism, we choose the expansion quantity to be 2c: 

4. SUMMATION OF THE &-EXPANSION SERIES 

It i s  well known that the perturbation-theory ser ies  in 
the coupling constant g a r e  asymptotic. In recent years, 
a technique was developed for determining the asymp- 
totic forms of the coefficients of such ser ies  in high or- 
ders ing." The &-expansion ser ies  that appear in the 
solution of the equation &[go(&)] = O  also turn out to be 
asymptotic. It was shown in Ref. 18 that asymptotic es- 
timates of the coefficients of the perturbation-theory 
series i n g  lead to the following estimates of the coeffi- 
cients of higher orders of the F: expansion f(2c) 
=C,(-2c)kf*: 

where f stands forg,, q, l/v, or  w, and the coefficients 
a and b a r e  given respectively by 

4+n/2 for go 
3 3+n/2 for q 

4+n/2 for 1/v'  

5+n/2 for o 

It follows from (39) that the &-expansion ser ies  have a 
zero convergence radius. Therefore the direct substi- 
tution &=1/2 in (36)-(38) cannot lead to any reliable 
conclusions concerning the critical exponents in the 
physical point d = 3. 

For the transition to the value & =1/2 we shall use a 
method developed by us9 for summing asymptotic ser-  
ies, in which account is taken, on the one hand, of the 
exact values of the coefficients of lower orders (35)- 
(38), and on the other hand, of information obtained 
from the asymptotic estimates (39) and (40). The meth- 
od is based on the use of a modified Bore1 transforma- 
tion 

Then 

The series (42) for the function B(x) has a unity conver- 
gence circle. The function B(x) ,  as follows from (39), 
is free of singularities on the integration integral [0, m) 

and has a square-root branch point a t  x =-I. To con- 
tinue the function analytically beyond the limits of the 
unit circle, we use the conformal mapping x- W :  

524 Sov. Phys. JETP 50(3), Sept. 1979 



The integration [0, m) then goes over into the segment 
[0, I], while the cut (-m, -11 goes over into the conver- 
gence unit circle inside of the series in w obtained by 
re-expanding the function B[x(w)]. The coefficient of wN 
is determined on the basis of the coefficients f, of the 
initial & expansion up to k =N, inclusive. Therefore, 
terminating the series in w with the N- th term: 

we obtain for the function f(2c) and approximate expres- 
sion fN(2&) that corresponds to taking N orders of per- 
tubation theory into account. 

The choice of the concrete value of the parameter X 
introduced here i s  very important. It determines the 
exponents of the power-law asymptotic form of the func- 
tion fN(%&) at  large &: 

With solvable models with known asymptotic form in the 
coupling constant g as an example, we can see  that good 
convergence of the sequence of the approximants fN(g) 
to the true function f(g) i s  ensured only if the choice of 
X is correct, i.e., matched to the asymptotic form of 
f (g )  a s  g - - m  (Ref. 9). Since the asymptotic form of the 
critical exponents relative to & is unknown, we fix X just 
to satisfy the requirement of fastest convergence of our 
approximation procedure. 

We introduce the se t  of quantities 

which characterize the relative change of f, when ac- 
count is taken of the next order of perturbation theory. 
For a correct guess of the aysmptotic form of the func- 
tion f(2&), the relative e r r o r s  A,, should decrease rapid- 
ly. A numerical analysis shows the presence of a sharp 
minimum of the values of (A, I a t  a definite value of A, 
separate for each critical exponent. This method was 
verified for the solvable model and yielded good results? 
In our case, the use of this method leads to the following 
values of the parameter A: 

1.6 - 1.5 for go 
2.8 - 2.9 for 11 
1.2 - 1.3 for I / v .  
0.3 - 0.G for co 

To determine the parameter X we used also another 
method, proposed in Ref. 20. I t  was based on the fact 
that the asymptotic form of fN(2&) is determined in the 
region of large c by the numerically estimated asymp- 
totic values of the coefficients BP' as k- m. The values 
of X obtained in this manner a re  close to those indicated 
in (47). 

Now, starting from the &-expansions (36)-(38) and 
from the values (47) of A, we can use formulas (41) and 
(42) a t  N = 4 to calculate the critical exponents a t  the 
point 2c = 1. The results of the summation a r e  given in 
Table I. The error  interval was assumed by u s  to be 
*A4 f,(l). We present also the values of the charge a t  the 
fixed point g,(2e) at c. =$: g,(l)= 0.488i 0.006(n = 1); 
0.436* O.O06(n = 2); 0.393i O.O06(n = 3). 

TABLE I 

Note. Comparison of our results (column 1) with calculations 
within the framework of the cp4 model for d = 3  (column 2), the 
hi&-temperahre expansion in the three-dimensional models 
of Ising (n = 1) and Heisenberg (n = 3) (column 3) and with the 
experiment (column 4). The numbers in columns 2-4 were 
taken from Ref. 10. 

n-i 

The dependence of the obtained critical exponents on 
the concrete choice of the parameter X is illustrated in 
Table I1 (for the case n = l), from which i t  i s  seen that 
fixing the values of h [in our approach-by means of re- 
lations (47)] i s  one of the most important aspects of the 
method described above for summing the asymptotic 
series.  

0.0333*0.0001 

0.6ZB*O.Vy 
0.78i*0.015 

I t  i s  of interest to trace also the variation of the criti- 
cal exponents a s  a function of the number of the included 
terms of the perturbation-theory series.  In Table 111 we 
give (for n = 1) the values of the exponents obtained both 
by directly substituting 2~ = 1 in (36) and (37), and by 
using the summation methods described in the present 
section [respectively gEt(l), v;*(l) and gN(l), vN(l)]. AS 
seen from the table, the use of special summation meth- 
ods improved radically the approximating properties of 
perturbation theory. 

The summation technique developed in the present pa- 
per was used by us to calculate the critical exponents a t  
2c = 2, which corresponds2' (at n = 1) to the two-dimen- 
sional Ising model, which admits of an exact solution. 
For the exponents g and v, the exact values of which in 
this model a r e  respectively f and 1 ,  we obtained ~ ~ ( 2 )  
~ 0 . 1 8 ,  v,(2) =0.92. We note in conclusion that the cor- 
rections -&' obtained by us  for the critical exponents 
when used alone (i.e., without employing the summation 
methods) make the agreement with the published results 
only worse. The procedure described by us has made it 
possible to improve substantially this agreement, this 
being both an additional proof of i t s  effectiveness, and a 
direct confirmation of the applicability of the quantum- 
field approach, based on the & expansion, to the calcu- 
lation of critical exponents. 

0.0313+0.0025 0.016+0.014 
0.63W*~((Ud 0 . 4 : ~  1 U.62j=U.W5 
0.782*0.010 I - - 

TABLE I1 

n-2 
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A system of carriers is considered, having an anisotropic energy spectnun and scattered by randomly 
disposed attraction centers of f ~ t e  radius a Il(1 = ( ~ f i ) / l e ~ ) " ~  is the magnetic length) in a 
quantizing magnetic field H. A new type of oscillations of the kinetic coefficients as a function of the 
magnetic field is observed. The oscillations are due to the dependence of the one-dimensional (on account 
of the magnetic fteld) scattering potential of each individual center on H and to the anisotropy of the 
effective mass of the carriers. The longitudinal and transverse conductivities of a gas of interacting 
electrons with soroidal equal surfaces (m, = m, = m,, m, = mil > m3 in a weak electric field E, and in a 
quantizing magnetic field parallel to the spheroid axis Hl(mll(lz are calculated. It is shown that both the 
longitudinal and transverse conductivities oscillate with changing magnetic fields, and the period is 
mainly aH '". For definite values of the magnetic field intensity, this effect leads to a negative 
longitudinal magnetoresistance [L. S. Dubinskaya, Sov. Phys. JETP 29, 436 (1969); M. M. Aksel'rod et 
al., Phys. Stat. Sol. 9, k91, 196511. The possibility of experimentally observing the oscillations is 
d i s c d .  

PACS numbers: 72.10.Di 

1. We consider  the spec t rum of the states of an elec- axial s y m m e t r y  of the problem, at U#O, the projection 

t ron whose m a s s  is highly anisotropic, m ,  =m,  =m, m of the orbital angular momentum of the electron on 

<< m,, =m,, in a quantizing magnetic field ~ l ( m , , ) l z  and in the direct ion of H is conserved. If the  mixing of the 

a spherically symmetr ica l  a t t ract ion field U ( r )  < 0 of levels ~ = n + i ( I m I  + m )  a n d ~ = k + + ( l m I  + m )  (Ref. 3) 
finite rad ius  a 5 1. In the absence of a cen te r ,  the mo- by the cen te r  is small4: 

tion of the electron in the ( x , y )  plane perpendicular to H - 
is quantized, and the energy difference between any two urnk= = j p dpR,,(p) I U ( p ,  0 )  IR,,(p) A@J., 

neighboring levels  is KwL (w, = e ~ / m , c ) .  By v i r tue  of the 
(1) 

* 
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