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The characteristics and the domain structure of ordered regions (OR), which occur in a disordered phase 
near dislocations, are considered It is taken into ~ccount that such OR may form a random framework 
that penetrates the whole crystal but occupies a small fraction of its volume. In many systems, for typical 
values of the parameters, a phase transition proves possible, with establishment of definite order within 
the framework, at some temperature T, considerably higher than the transition temperature TP in an 
ideal crystal. Because of the smallness of the volume of the framework, the mean order parameter 61 
remains very small at T z T f ,  and only in the range T z T :  should there be obsewed experimentally a 
noticable increase of manifesting itself as a smeared out phase transition. For other values of the 
parameters, a percolation transition, of the type considered by S. L. Ginzburg, [Sov. Phys. JETP 46, 1029 
(197711, proves possible in a crystal containing dislocations. The dependences of the singulanties of 
thermodynamic quantities on the dislocation density and on the crystal parameters are investigated. 
Dislocation superparamagnb at T  > Tf is considered. 

PACS numbers: 64.60.Cn, 61.70.Ga. 75.60.Ch 

The crystals in which phase transitions a r e  studied 
usually contain dislocations. The random strain field 
produced by them may substantially affect the singu- 
larities of thermodynamic quantities near the transition 
point. The nature of the effect of the random field on 
these singularities depends to a considerable degree on 
its correlation distance. The case of a 6-correlated 
field, representing, for example, crystals with point 
defects, has been treated by the &-expansion method,14 
and it was found that in a nonideal crystal, power-law 
singnlarities a re  preserved. A different physical situa- 
tion occurs for large-scale inhomogeneities, investi- 
gated by S. L. G i n ~ b u r g . ~  In this case, it was found 
possible to  introduce a local transition temperature 
T,(r) and to relate the phase transition to the occur- 
rence of percolation over the region T <  T,(r). Such a 
percolation phase transition is also clearly expressed 
(although to it correspond different critical indices). 

The random fields produced by an ensemble of dis- 
locations usually vary slowly with distance, and to 
describe the effects produced by them it is also pos- 
sible to apply the local transition temperature approxi- 
mation (LTTA); cri teria for  its applicability a re  dis- 
cussed below. But the random field T,(r) in a crystal 
with dislocations is  in general more complicated than 
the Gaussian field, with homogeneous and isotropic 
correlation function, considered in Ref. 5 (the regions 
with maximum T,(r) form cylinders near the dislocation 
lines), and the physical picture of the phase transition 
may differ significantly both from a percolation transi- 
tion and from a transition in an ideal crystal. Ordered 
regions (OR) near dislocation lines may appear con- 
siderably above the transition temperature TO, in an 
ideal crystale (and even in crystals in which, in the ab- 
sence of dislocations, no phase transition at all is ob- 
served7). 

plicated random framework, consisting of ordered do- 
mains with order parameter 17 of different signs, and 
penetrating the whole crystal, although still occupying 
a small  fraction of its volume. At some temperature 
T, > TO,, a structure consisting of an equal number of 
domains with opposite signs of 17 is  transformed to a 
state with a predominant number of domains with a 
definite sign of 17; that is, a phase transition takes 
place in the dislocation framework. With lowering of 
the temperature, the thickness of the ordered elements 
of the framework increases; and when T = TO,, there 
should appear comparatively large ordered clusters, 
entrapping many dislocations. Therefore 17 in them 
takes the same sign as in the framework that links 
them in the infinite cluster. As a result, in the range 
T - TO,, where the order gradually spreads over the 
whole volume of the crystal, there occurs a continuous 
change of q(T) and of its derivatives from very small 
values to values corresponding to an ideal crystal. Ex- 
perimentally, this should manifest itself a s  a smeared 
out phase transition of the second kind. Thus the physi- 
cal  reason for the smeared out phase transition that is 
usually observed experimentally may be the formation 
of an ordered dislocation framework. 

The picture described should hold for Tf - TO, >> 6 T,, 
where bT, is the spread of ~ , ( r ) .  For  other values of 
the crystal parameters, Tf - TO, s dT,, no framework 
forms, and percolation occurs only if the infinite clus- 
t e r  directly includes an appreciable fraction of the 
volume. There then occurs a percolation transition of 
the type considered by G i n ~ b u r g . ~  

The purpose of the present paper is to discuss the 
general qualitative features of the effect of dislocations 
on various types of phase transition of the second kind, 
and to investigate the dependence of their characteris- 
tics on the parameters of the dislocation ensemble, 

Below, the important fact is taken into account that such a s  the dislocation density and the radius of the dis- 
in a crystal with straight-line dislocations or  with dis- location loops. The numerical coefficients in the cor- 
location loops of large radius, the OR form a com- responding relations a r e  in most cases determined only 
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in order of magnitude. By the long-range order pa- 
rameter ~ ( r )  we shall understand a dimensionless pa- 
rameter characterizing the corresponding transition: 
for example, the degree of long-range order in the case 
of ordered alloys, o r  the ratio M/M, of the magnetiza- 
tion to the saturation magnetization a t  T = O  in the case 
of a ferromagnetic transition. The paper will consider 
only the equilibrium characteristics of the inhomo- 
geneous ordered structure that arises;  the kinetics of 
its formation will not be discussed. It is  assumed that 
a t  a given temperature, the positions of the disloca- 
tions a re  fixed. 

In Section 1, we present the strain field and the tem- 
perature field Tc(r) produced by straight-line disloca- 
tions and by dislocation loops, and also by statistical 
ensembles of them. In Section 2, we discuss the for- 
mation of OR produced by individual dislocations. In 
Ref. 6, this problem was treated in the self-consistent 
field approximation, a s  a phase transition leading to  
establishment of an ~ ( r )  of a single sign throughout the 
whole OR. But in the temperature range in which order 
is established, in a quasi-one-dimensional OR, fluc- 
tuations a re  very important that lead to  the formation 
of domains with different 77 and to a considerably 
smeared out phase transition. In this connection, for- 
mation of OR near dislocations is treated in the LTTA 
for a system with arbitrary critical indices, with al- 
lowance for fluctuations. An estimate i s  given for the 
characteristic lengths of domains; it i s  necessary for 
investigation of the problem of the dislocation frame- 
work. In Section 3, we consider the formation of such 
frameworks, "true" phase transitions in them, and 
smeared out phase transitions in the volume of the 
crystal; we also analyze the temperature dependences 
of thermodynamic quantities in the presence of frame- 
works. We consider in Section 4 the order case, when 
T, - TO, < 6Tc, no framework forms, and a percolation 
phase transition occurs. We discuss also the question 
of the applicability of the LTTA used earlier5 t o  de- 
scribe such a transition, and we estimate the tem- 
perature interval near the transition point itself in 
which such an approximation ceases to be applicable. 

1. THE STRAIN FIELD AND THE LOCAL TRANSITION 
TEMPERATURE FIELD IN  A CRYSTAL CONTAINING 
DISLOCATIONS 

For simplicity we shall suppose that there is no 
strain linear in 77 and that Tc(r) is determined solely 
by the trace of the s t ress  tensor, u=u,,, o r  by the di- 
latation u =u,,. Near the transition point in a strained 
crystal, the thermodynamic quantities depend on the . 
difference T - T,[U(~)]. Outside an insignificant range 
of very small T - T,, prwided the criteria indicated 
below a re  satisfied, we may neglect the change 6K of 
the bulk modulus K near T, and the distortion of the 
dislocation-produced field u(r) that results from the 
OR. Then 

Here P is the pressure, and we have introduced con- 
venient reduced temperatures: 7 and the transition 

temperature T,(r). For  a straight-line dislocation, 

Here the index n determines the type of dislocation, 
i.e., the directions of the Burgers vector b and of the 
dislocation line 1; the vector r, is the position of a site 
in the atomic plane perpendicular to  1 through which 
the dislocation line passes; r, is the projection of r 
on this plane; 0- 0, is the angle between b =b, and 
r, - r,. The explicit form of f,(@ is given for an edge 
dislocation in an isotropic medium ( p  is Poisson's 
ratio). In elastically anisotropic crystals also, 
If"(0)l -0.1. 

In crystals containing several (3) systems of ran- 
domly distributed dislocations, within linear elasticity 
theory one can determine the dilatation, and conse- 
quently ~ , ( r ) ,  a s  the superposition of terms produced 
by the individual dislocations: 

rc (r) = f: z et,.... (r-rl,. 
n-1 t 

(3) 

Here the numbers c,, a r e  unity or  zero, depending on 
whether a dislocation of type n passes through the site 
t .  They a re  uncorrelated random quantities, taking the 
value unity with some probability c,<< 1 (we shalI con- 
sider the c, equal for dislocations with opposite signs). 
The probability distribution w (7,) of the random function 
(3) has the form 

n I 

An analysis of functions of the type g ( z )  and w (7,) for 
straight-line dislocations was carried out in an investi- 
gation of the scattering of x rays and of nuclear mag- 
netic resonance and nuclear gamma resonance spec- 
tra.*'O If the size R of the crystal is large in com- 
parison with the mean distance r ,  between dislocations, 
one may neglect terms of order unity in comparison 
with the large quantity 1 =ln(R/r,). In this apprmima- 
tion, ~ ( 7 , )  in i ts  central part is described by a Gaussian 
function, and in its tails decreases according to a 
power law:lo 

Here A is the area  per position t; n, =ri2 describes the 
dislocation density (the usual dislocation density per 
unit area is 2-3 times smaller than n,); the second 
expression for f 2  pertains to an edge dislocation in an 
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isotropic medium. 

From formulas (5) and (2) it is seen that the mean 
fluctuations 67, of the value 7, are  @ times larger 
than the inhomogeneity of 7, produced by dislocations 
lying at the mean distance r,. This is due to the slow 
decrease of ~ , ( r  - r,), which leads to the result that 
when 1 1, in a large part of the crystal the main con- 
tribution to the fluctuations of r, is produced not by a 
few near dislocations, but by a large number of distant 
dislocations. As a result, r, for l rd S 67, is distributed 
according to a Gaussian law. On the other hand, in a 
smaller part of the crystal volume (-1/1) near disloca- 
tion lines, when 

the main contribution to r, is obvious1y made by the 
nearest dislocation; here I ~,.j > 87, may be quite large. 
It is these regions that lead to the power-law depen- 
dence of w(r,) a t  large l rd in (5). 

In the case of dislocation loops, at large distances 
from the center of a loop the diiatation and T, decrease 
according to the law 

zm (r-r,) =xbRa2fi(m) /I r-r, 1 ', I r-rt ( BRo. (6 

Here nRi is the area of the loop; f,(m) depends on the 
directions of the vectors 

b, and the normal to the plane of the loop. But a t  small 
distances from the dislocation line of a loop, the dila- 
tation is almost the same a s  near a straight-line dis- 
location, and r,, is determined by formula (2) (with an 
f,(6) that changes along the line of the loop). 

If the density of loops N, and their radius R, are 
large enough s o  that N&i>> 1 (since N$t,  -n,, this con- 
dition is equivalent to the requirement that R,>>r, 
=nilh), then the main contribution to the sum (4) for 
g(z) is made by regions distant from the dislocation 
lines by less than R,. In this case, the distribution 
w (T,) is determined by the same formula (5) a s  for 
straight-line  dislocation^.^"^ It is necessary only to 
make the substitutions 

where (. . .) denotes an average both over 0 and over the 
perimeter of the loop. But if N,Ri<< 1, then w (7,) 
changes significantly, and in its central part it has a 
Lorentzian form. 

2. ORDERED REGIONS NEAR SINGLE 
DlSLOCATlONS 

At comparatively high temperatures, when r>>br, 
in the greater part of the crystal the strains are insuf- 
ficient for the occurrence of ordering, and only near the 
dislocation lines can thin cylindrical OR originate. In 
order to investigate them, it is necessary first to con- 
sider ordering near single straight-line dislocations. 
If gradient terms in the thermodynamic potential clj 

may be neglected, then in the LTTA the boundary r,(B) 

of the OR near such a dislocation, i.e., the region 
where r a r,(r), is determined according to (2) by the 
condition 

Here r, is taken equal to zero. The order parameter 
q(r) and its mean value 'j in the OR are  determined by 
the formulas 

rd0) nB(i-B) 
~ ( r ) ~ [ ~ ~ ( r ) - ~ ] ' - n l . [ - - ~ ] :  FA 4--q.+, sin ng (9) 

where ~l, and P are the constants in the formula 
q = q , ( - ~ ) ~  for an ideal crystal. 

The dependence of on Vq, disregarded in the LTTA, 
may be neglected if 

where r,[r- r,(r)J is the correlation radius corres- 
ponding to r,(r) (see, for example, Ref. 11). In the 
greater part of the volume of the OR, l aql - r zq ,  where 
ro =maxr,(e), 1 T - T,(rN -7, r,[r - ~,(r)l  -r,(r)=r, 
Therefore the indicated criterion is satisfied, and the 
LTTA is applicable, if 

In a certain layer at the surface of the region, - (yo - r, 1-q is large, 

r e [ ~ - ~ c  (r) I >re 

and the LTTA is inapplicable. But the thickness of this 
layer, 

Ar-r~(.r/r*)~, E=(i-v)/(ltv) 

is small in comparison with r, when the condition (10) 
is satisfied. 

In formulas (2), (8), and (9), the strains due to the 
formation of the OR themselves were disregarded. In 
an actual region r, -r, (or r, - T - r )  they have the order 
of magnitude 

(v is the atomic volume, a the critical index for the 
specific heat) and are small in comparison with the 
strain bf/r, produced by the dislocation if 

The condition 6K<< K for smallness of the renormalba- 
tion of K near T, has the same form. Since kT,<< vK 
and a<< 1, this condition is usually satisfied outside a 
very narrow interval 87 near T - r, =0, corresponding 
to a very small region 6r<<rO, r,. 

According to (lo), if up2 a, then 7, -1; that is, .the 
LTTA is valid, and OR of thickness r, > r ,  originate at 
all ~ < < 1 .  But in other cases, especially in systems 
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with a large radius of interaction (where a >> b and 
v =1/2), T,<< 1, and the condition (10) is satisfied only 
a t  very small 7. In the region T > rO, the LTTA is in- 
applicable, but r c >  r,, and the disturbance produced by 
a dislocation is not yet sufficient for production of OR. 
Therefore 7, plays the role of the temperature of for- 
mation of su-ch OR. It has been determined by 
Narbutovskii and S h a p i r ~ , ~  with allowance for gradient 
terms in a, in the case of a transition to the super- 
conducting state, by use of Landau's theory on the as- 
sumption that IJ is constant along the cylinder. Their 
expression6 for the ordering temperature agrees with 
the order-of-magnitude estimate r0 of (10) (if in it we 
set  v=1/2 and regard a a s  the coherence distance). 
But when 7 - T,, the order should be appreciably non- 
uniform not only across but also along the cylinder. 
This is due to the fact that the interfaces between anti- 
phase domains with different signs of IJ, or  between 
ordered and disordered sections, have, when T -rO, an 
interface energy ari - u e  (u is the specific surface en- 
ergy) not greater, in order of magnitude, than kT, 
The formation of such a nonuniform quasi-one-dimen- 
sional OR (with domains of size -ro -r,, whose energy 
of formation - kTc) proceeds gradually, a s  a con- 
siderably smeared out phase transition (over a T in- 
terval of width comparable with 7,). 

Even at T<< T,, when an OR has already formed, it 
may be split into antiphase domains. In the Ising model 
(for example, in the ordering of alloys), the interface 
energy is 

-urn2-kTjo'/r.'BkT, 

and there is a thermodynamic advantage in the forma- 
tion of elongated cylindrical domains with a mean length 
Lo of order 

Lo-r. exp (oro'/e,kT.) -re exp (ro'le,r.') Wr,. (11) 

Here and hereafter, t , ( i  =I, 2, .  . . ) a r e  dimensionless 
constants of order of magnitude unity. In degenerate 
systems, for example in isotropic magnetic materials, 
there should occur, instead of distinct domains, a 
smooth distribution q(r) along the cylinder axis, due to  
turning, 

with almost constant I q(r)l, leading to a relatively 
small increase ob the density of O, of order c(Vq, )1, 
where c - kT,q -9 ;I. The characteristic distance Lo, 
a t  which the change of q(r) is comparable with q, is 

In actual magnetic materials, turning of M(r) with 
respect to the cylinder axis z is impeded by the mag- 
netostatic energy that arises,  of density -Ml,$, when 
M Lz (for simplicity, we limit ourselves to the case 
in which the energy density of anisotropy and of mag- 
netostriction is less than Mao$). Therefore the esti- 
mate (12) is correct only if 

and this energy may be neglected. The corresponding 

condition is indicated in (12). 

But if 

then the magnetostatic energy leads to partition of the 
ordered cylinder in the magnet into distinct antiphase 
domains, with the magnetization parallel to  its axis, 
and with wall thickness Lo<< Lo. The expressions for a 
and for the domain length Lo a r e  then different, depend- 
ing on the ratio between Lo and r,: 

Lo-Lo exp (MoqroLISr (kToro) 

when 

LO- (k~ , / r ,M~'q~) '">r , ,  kTcr,<Mo%llZr;; 

L ~ - r ,  exp (Mo'qZr,JIElkTc) , L0-ro 

when 

For  example, when Mo-103 G, as cm3, 
xb/f-lo-', T,-103K, and v=2P, the last condition in 
(13) is satisfied if ~ < 1 0 - ~ .  

Similarly, one can consider an OR near an isolated 
dislocation loop. If, for 7 -rO, Y ~ ( T J  i s  small in com- 
parison with the loop radius R,, then the emerging OR 
a t  f i rs t  has the shape of a torus, with a thickness and 
degree of order determined by formulas (8) and (9), 
a s  in the case of a straight-line dislocation. At lower 
temperatures, when r, -Ro, the OR becomes extended 
in all directions m, and its boundaries r,(m), with 
allowance for (6) and for the condition 

a r e  determined by the formula 

where yo - 7-lh. At very small 7, as well as when 
T >  T ~ ,  according to  (14) 

the LTTA ceases t o  be applicable in the greater part 
of the volume bounded by ro(m), and only in a small 
portion of i t  can one distinguish a region of local order 
exceeding the fluctuation background. If ro(ro)>R0, 
then the LTTA is altogether inapplicable for descrip- 
tion of the ordering near the loops. 

3. PHASE TRANSITION DUE TO A DISLOCATION 
FRAMEWORK OF ORDERED REGIONS 

The character of a phase transition in a crystal con- 
taining an ensemble of dislocations depends sub- 
stantially on the ratio between the temperature T, of 
formation of OR near individual dislocations and the 
mean spread 67, of the local ordering temperatures. 
According to  (5) and (lo), if the condition 

is satisfied, then rO>> 674 that is, initially, a t  a com- 
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paratively high temperature r -rO, near individual 
dislocations there a re  formed cylindrical OR, whose 
size r,, for T>> 67, increases a s  1 /T. 

If, however, there a r e  several systems of straight- 
line dislocations with nonparallel dislocation lines, 
then the OR are  not isolated, but each of them must 
intersect OR forming near dislocations of other sys- 
tems. As a result, the OR near randomly distributed 
dislocations form a complicated, nonperiodic frame- 
work, consisting of thin cylinders oriented in several 
characteristic directions and intersecting OR of other 
systems over intervals distributed according to some 
random law. From geometric considerations it is clear 
that (at least in the case of complete noncorrelation of 
the dislocations of different systems) the mean lengths 
L, of the sections between successive intersections a r e  
of order of magnitude 

The same type of continuous framework of OR, with 
a characteristic length (16) of sections, is formed in 
crystals containing randomly distributed dislocation 
loops of sufficiently large radius R, >> L,. If Ro<< L,, 
then the OR near loops a re  isolated. In the other 
limiting case of dislocations distributed with incomplete 
randomness, when their lines are  linked and form a 
Frank network, the characteristic lengths of the sec- 
tions are obviously L: -r,. 

The structure of the OR within the framework is de- 
termined to a considerable degree by the ratio between 
L, and the characteristic distance Lo of change of sign 
of q, determined by formulas (11)-(13). At compara- 
tively large T ,  when Lo<< L,, each section of the frame- 
work, and consequently the framework as a whole, is 
split into fluctuational domains with different signs of 
q. The refore the mean value of q (the magnetization, 
in the case of ferromagnetism) is  zero, and long-range 
order does not appear, although there is local order 
in each domain. In the case of lower temperatures, 
when according to (11)- (13) Lo is large, in an isolated 
OR the change of sign of q at sufficiently large dis- 
tances (but for Lo< R) leads with ever increasing ra- 
pidity to the destruction of long-range order. But in 
the case of a two-dimensional @ =2) o r  three-dimen- 
sional (d =3) framework with Lo>> L,, a change of sign 
of q within individual sections is improbable; and for 
appearance in the ordered framework of a region with 
the opposite sign of q and with dimensions A>> L,, it i s  
necessary to produce antiphase boundaries at  
-(A/L,)~-' links of the framework, and the correspond- 
ing probability 

is exponentially small. 

Therefore at  some temperature T = Tf (or T = rf), for 
which 

a phase transition should occur in the dislocation 
framework of OR. As a result of this transition, a 

framework consisting of equal numbers of antiphase 
domains with opposite signs of q transforms to a state 
with a predominant number of domains of a definite 
sign. From the condition ~ ~ ( 7 ~ )  = &L,(T~), with use of 
(11) and (16), it follows that in the Ising model with a 
completely random distribution of dislocations, we 
have 

Here r0 is defined by formula (lo), B by (15) 
[BiL(rf /rO)l+" >> 11. According to (1 7) and (1 5), rf in- 
creases with increase of the dislocation density. If, for 
example, nfb -a/10 and r,/a -lo3-104, then B-10-100. 
Then rf may be several times smaller than 7, and sev- 
e ra l  times (or several tens of times) larger than 67,. 
We note that the qualitative estimate of rf from the con- 
dition Lo - L, and the logarithmic dependence of rf on 
the length L, of the sections of the framework agree 
with the results of an exact solution of the two-dimen- 
sional Ising problem for a regular framework con- 
structed from single-atom chains intersecting after a 
distance L,.12 

In Heisenberg magnets with appreciable rnagneto- 
static energy, according to (13) and (16) the condition 
Lo - L, gives 

when 

when 

At large E, formulas (17a) do not lead to values of rf 
less than rO. In this case, with lowering of tempera- 
ture there is no formation of OR with different num- 
bers of oppositely oriented domains, but directly a s  a 
result of the phase transition a t  rf -7, there appears in 
ordered framework with a predominant number of do- 
mains with definite directions of the magnetization. 

With neglect of the magnetostatic energy, in an Ising 
magnet the energy at  junctions of dislocations of dif- 
ferent systems is minimal when the magnetization vec- 
tors M in them are  parallel. But if the magnetostatic 
energy is appreciable, and if the condition (13) is sat- 
sified, then in each dislocation M is parallel to its line. 
Then there is an energetic advantage in the formation 
of an acute rather than an obtuse angle between the 
vectors M of linking dislocations. As a result, a , 

dominant direction of the resultant magnetization ap- 
pears in the framework (a special situation arises if 
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the lines of different systems a re  perpendicular, but 
ordinarily they do not form right angles; for example, 
in crystals with fcc lattice there is a system of lines of 
the type (211); OR near certain lines may make no con- 
tribution to the total nagnetization). 

If the framework is formed on the basis of a Frank 
network and if L, -r,, then in (17) and (17a) i t  i s  neces- 
sary  to replace r:/r, by r,, and correspondingly to  di- 
vide the arguments of the logarithms by B(T~/T~) .  This 
increases T ~ .  

In degenerate systems (without appreciable long- 
range interaction), for  a completely random distribu- 
tion of dislocations, according to  (12), (16), (lo), and 
(15) 

while for a Frank network, JI  = (2 - v) - l .  since v =2/3, 
$=6/7 or  3/4 differs little from unity, and 7, cannot be 
appreciably larger than 67,. Therefore in these sys- 
tems, even when B>> 1, the interval of a clearly ex- 
pressed thin single-domain framework is absent, and 
7, may be below the temperature (23) of the percolation 
transition. On the other hand, in Heisenberg magnets 
a framework may form a t  T~ determined by formulas 
(17a) if WoLo2 C/L, for all  T<  T,, or  a t  the temperature 
of transition from the degenerate to a quasi-Ising sys- 
tem 

if E << 1, and the condition ML,Lo2 C/L, begins to  be 
satisfied only when T < rf < 7,. 

Thus in nondegenerate systems [in particular, in 
magnets when the condition (13) is satisfied], there can 
exist an appreciable interval of temperature rt > r >> 67, 
within which there i s  an ordered framework, occupying 
a small part of the crystal  volume, while outside the 
framework q =O. Within a small T interval of order 

(for the Ising model), the mean (over domains) value of 
q in the framework increases from 0 to ij. Below T;, 

according to (9), the mean of q(r) over the crystal is  

ri, nw-B) 
qob'nrx'fro-', Gr,<r<r; 

4 sin np 

and increases a s  T'-~ (although the mean value over the 
OR, 51 - T ~ ,  meanwhile decreases). 

In the lower-temperature range, T -6 T,, where 
ro-r,/ph, the OR begin to be affected also by the fields 
of more distant dislocations, and a s  a result of super- 
position of these fields, there a re  gradually formed 
large OR that capture a considerable number of dis- 
locations. Since these OR a r e  connected with the 
framework, in ferromagnets the degree of order q has 
the same sign in all OR. The mean value of q can be 
found from the general formula 

-- 
where ~ ( 7 , )  is determined by the expression (5). When 

r >> 67,, (20) and (5) lead to formula (19); when T 5 67,, 

where D,, ,B (x )  is a parabolic-cylinder function. In the 
range of negative 7, when - T>> 6 ~ , ,  (21) goes over to 
the expression q,(-~)' for q in an ideal crystal; and 
when 1 71 - 67,, formulas (20) and (21) describe a con- 
tinuous transition from the asymptotic law (19), cor- 
responding to "framework ordering", to the law 
qo(-r)B, when order i s  established over the whole crys- 
tal. 

In the range T >> kc, is very small, and the transi- 
tion to  an ordered state of the framework a t  7 =T, may 
be experimentally undetectable. The transit ion will 
then be perceived a s  the establishment of a law 
q - (-7)' (and analogous laws for other materials) over 
a range 1 71 -67,, and experimentally such relations 
correspond to  a smeared out (over the interval 67,) 
phase transition of the second kind. Thus the presence 
of a dislocation framework leads to a smeared out 
transition in the vicinity of 7 =0 along with a barely 
perceptible true transition a t  T '7,. TO estimate the 
interval of smearing out, we assume, for  example, 
that x f ~ ' / ~ - l  and n,-lo9 ~ m - ~ .  Then according to (5), 
6 ~ , - 1 0 - ~ .  As i s  well known, such smeared out phase 
transitions a re  actually often observed in solids. We 
note that in the absence of a framework, theory (in- 
cluding theory that s tar ts  from percolation concepts) 
predicts a transition with a singularity g -(-r)', where 
P-1/3. 

The variation of y = (i i /q,)(n6~,)- '~~ with 7/67, for  
P =1/3 and 1 =8.5 is shown in Fig. 1 (Curve 1). The 
same figure (Curve 2) shows the variation with 7/87, 
of =dlnq/dlnl~I, which describes the exponent when - 
q(7) is approximated by the function 1 TIF. In a certain 
interval, P> P; a t  the maximum, Pm0.5. It is interest- 
ing that such an V(T) relation, with p=0.5>P, has been 
observed a t  very small 7 for  the magnetic transition in 
Ni.14 

It should be noted that a single sign of q in large OR 
is achieved only in ferromagnets. In the ordering of 
antiferrornagnets o r  alloys, the Burgers vector b of 
dislocations produced in the disordered phase does not 
coincide with a lattice vector of the ordered phase; 
and when T <  67,, isolated dislocations lead to the ap- 

-064-rs  -&-a3 

FIG. 1. 

51 7 Sov. Phys. JETP 50(3), Sept. 1979 I .  M. ~ubrovskij and M. A. Krivoglaz 517 



pearance of a complicated sign-variable field q(r), con- 
sisting of domains of dimensions -r, produced by the 
dislocations and forming a peculiar glass (it disappears 
if the joining of dislocations in pairs is possible). 
Coupling of such large OR with the framework o r  with 
each other, in the presence of percolation, produces a 
one-sign field q(r), determined by the condition for  a 
minimum of the term in + containing (VqY, and the 
discussions of the nature of the transition given here and 
in Section 4 remain valid. Then formulas (20) and (21) 
approximately determine not i j  but l?jl. But if the dis- 
locations a re  produced in the ordered phase, then b 
is a lattice vector of the ordered phase, and in anti- 
ferromagnets o r  alloys, just as in ferromagnets, a 
single sign of q is established in large OR. 

Also possible is a smearing out of a percolation 
phase transition (see Section 4) over an interval 
-6rJ1, due to the influence of the crystal boundaries 
on the dislocation field. It leads to the appearance in 
67, of additional terms, 1 times smaller than those 
taken into account, but dependent on r and variable 
over distances comparable with the crystal size (ad- 
ditional smearing out may result from macroscopical- 
ly inhomogeneous plastic strain). 

We note that in the treatment given, it was assumed 
that the interval 67 in which 6K 2 K is small in com- 
parison with 67,. Under these conditions, the stric- 
tional phase transition of the f i rs t  kind considered by 
Larkin and Pikinls should not show up. 

In analogy to (20), one can obtain an expression for 
the specific heat by averaging the expression 

corresponding t o  an ideal crystal (A, and A-  refer to 
the regions T> 0 and T <  0). In the LTTA adopted, C, 
does not become infinite and is determined by the 
formulas 

1 na +(A--A+)--] . 8 .el. 
21 sinna 

In the range T <  0 and 67,<< 1 71 << 1, there should exist 
disordered regions near the dislocations, when uf,,(B) 
< 0, with thickness -yo. The corresponding magneto- 
static energy density -M0q2t$n,, due to the mechanism 
pointed out by Lesnik,15 should lead a t  small T to a 
large magnetic anisotropy, increasing with tempera- 
ture in proportion to rZR *. 

At temperatures rO> r >  rf above the phase transition 
point, the OR framework in magnetic materials contains 
parts with different directions of the magnetization M, 
and in a certain sense the system behaves as a disloca- 
tion superparamagnet. Comparatively weak external 
fields should lead to a dominant orientation of M. An 
almost complete reorientation and establishment of a 

mean magnetization W=Moij [ij is determined by formula 
(19)] takes place when 

Here Lo is determined by formulas (11) and (12) o r  
should be replaced by the length R (or R,) of the dis- 
location line if R c Lo; and i t  is assumed that HI 
>>4ir&n, where n is the demagnetizing factor of the 
specimen. For  example, if 

then HI - 1 Oe is small, and the mean magnetization ac- 
cording to (1 9) is  of order 1C;i - 2. 10-SMo. In the range 
H< HI, a large susceptibility x -W/H, should be ob- 
served. 

4. PERCOLATION PHASE TRANSITION IN 
CRYSTALS WITH DISLOCATIONS 

In crystals with small u o r  with a >> b, a t  high dis- 
location density, instead of (15) the opposite condition 
B << 1 lh may be satisfied. Then 7, << 67,, and OR a r e  
not formed near individual dislocations when T>> 67, 
Only when 7 -67, do OR originate, a t  once capturing 
a large number of dislocations. Initially these OR a r e  
disconnected, and the values of q in different clusters 
differ in sign (or, in magnetic materials, in the di- 
rection of M). With lowering of temperature, the s izes  
of the OR and their number increase, until a t  some 
temperature T = rp an infinite cluster originates and 
percolation occurs. In such a cluster, in the LTTA, 
q has a definite sign, and i ts  appearance corresponds 
to  a phase transition of the second kind in an inhomo- 
geneous ~ y s t e m . ~  Cases a r e  possible in which B>> 1lh 
and a framework forms from OR near dislocations a t  
7 - rO>> 67, but a phase transition in the framework 
appreciably above 67, does not occur ( T ~  s 67,, for  ex- 
ample, in degenerate systems). Then when T>> 6 ~ , ,  
the sign of q in different OR is different, and only 
fusion of OR at  7 = 7, - 67, leads to the indicated perco- 
lation transition. 

In both cases, a t  T = 7, -67, the strains in the OR a r e  
chiefly caused not by the nearest dislocations, but by a 
large number of distant ones. Therefore the probability 
distribution of 7 ,  a t  1 TJ s 6 7, is Gaussian, and for ap- 
proximate description of a percolation transition in a 
crystal with dislocations one can use directly the re- 
sults of the calculation for  a phenomenological model 
with a Gaussian distribution of inhomogeneities5 (using 
the parameter values that correspond to the case under 
consideration). In the three-dimensional case,  a perco- 
lation transition, in the LTTA, takes place when the 
total volume x of the OR becomes equal to x,=0.17.l6 
For  the Gaussian distribution (5), this value of x is  
reached when 
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Thus dislocations shift the phase-transition point 
(when T~ 67,) by an amount proportional to  n p .  For  
example, if ufllh -1, then T, = 6 ~ , - 1 0 ~  at  n, =lo7 cm-,, 
and ~ , - 1 0 - ~  at nd=1OU cme2. In the interval 

an important role is played by processes of percolation 
fusion of clusters, and in the LTTA the dependence of 
- 
7, X ,  and r, on T -  T, is characterized by the percolation 
critical indices P,, Y,, and up, which differ from the 
usual indices P, y, and v of an idea1 crystal. Accord- 
ing to  Ref. 16, P,=0.35, y,-1.7, and v,=0.9. Only 
when 1 TI >> 667, a re  the percolation dependences of x and 
7j  (for 7< 0) replaced by the critical dependences for  
ideal crystals. Formulas for 7 j  and x in the transitional 
region 171 -67, have been given by Ginzburg [the spe- 
cific heat, in the LTTA, is determined by formula 
(2211. 

The result6 of Sections 3 and 4 a re  correct not only 
for straight-line dislocations but also for loops of large 
radius Ro>>r, [with the substitution (7) in the expres- 
sion for 67,]. If, however, R ,  < r,, then no connected 
framework forms, and the spread of T, is predominantly 
determined by the effect of the nearest loops. In the 
case R,< r, (but ~ ~ ( 7 ~ )  < R,), there occurs percolation 
of isolated OR, whose boundaries a r e  determined by 
formula (14) but a re  somewhat distorted by the in- 
fluence of neighboring loops. On estimating T, from the 
condition NJr;(Tp) -1 with use of (14), w e  get 

The necessary condition for applicability of the LTTA, 
~ ~ ( 7 , )  > Y,(T,), is written out in (24) for v =2/3. In this 
case T* is proportional to  n,. 

These features of thermodynamic quantities a t  7 =T, 

have been derived by Ginzburg5 by use of the LTTA, in 
which it is assumed that OR do not interact until con- 
tact, and that upon making contact they immediately 
unite into a cluster with a single sign of q. In some 
narrow interval 

near the transition point itself, this approximation 
ceases to be applicable even when condition (10) is 
satisfied. This is due to  the fact that with lowering of 
the temperature, the growing OR shortly before their 
fusion into an infinite cluster a r e  already beginning to  
interact noticeably (with energy -kT,), when the dis- 
tance Ar between them is comparable with the local 
radius of correlation Y,(T, r )  =a[ T - ~, ( r ) l - "  in the region 
of proximity. The point of contact r, of the OR is a 
saddle point of the function r,(r); 

where in the LTTA 7, =r,(r,), and r, i s  the characteris- 
tic correlation distance of variation of ~ , ( r ) .  By use of 
this estimate, from the conditions 

it is not difficult to  find the interval of breakdown of the 
LTTA; 

The estimate (25) is applicable to the general case of 
large-scale inhomogeneities of ~ , ( r ) ,  with characteris- 
tic distance r,, and indicates the interval I T - T,I < AT 
in which the theory of Ref. 5 is inapplicable. In the case 
being considered, of inhomogeneities produced by ran- 
domly distributed dislocations, according to  (4) and (5) 
the random field 7,  is a superposition of statistically 
independent fields with various scales of inhomogenei- 
ties: from r,/11/2 to the crystal dimension R . For  
large B >> l In, even for the smallest-scale fluctuations 
with r, =r,/llh, in (25) 

that is, AT<< 67, For  small B<< 11', the small-scale 
inhomogeneities with r, < ~ ~ ( 6 7 , )  lead to  small energy 
of interaction of OR that a r e  approaching each other 
(<<kT,), insufficient for the establishment of a single 
sign of 11. But according to (5) they make only a small 
contribution to 67,, of the order 

A slight lowering of T from 7, by an amount 

i s  sufficient for establishment of percolation of the 
large-scale inhomogeneities with Y, >Y,(~T,), for which 
the LTTA and the results of Ref. 5 a r e  valid. 
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Deformation-potential operator for a screw dislocation 
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Geometrical considerations are used to obtain the form of the operator of the deformation potential for a 
screw dislocation. It is shown that the spectnun of an electron moving along a dislocation in a parallel 
magnetic field differs from the usual parabolic spectrum. 

PACS numbers: 61.70.Ga 

In the description of the interaction of an electron - dz - adq, while w, and w2 remain unchanged. The 
with lattice defects one frequently employs the defor- corresponding Laplace operator can be easily calcu- 
mation potential, which is a quantity proportional to  lated: 
the divergence of the displacement u. In the case of 
screw dislocations of interest to us, div u=O, whereas 2a a' 

A=a,+a,,+a,, +-a , ,+-a. , .  
the influence of the screw dislocation on the moving P rZ 

electron is subject to no doubt. We shall show how this It corresponds to a Hamiltonian 
difficulty can be overcome. 

1 a" 
The interaction of an electron with a screw disloca- = - (P~+P.'+P, . )  +V, V = + - j -p : )  , 

2~ 
tion will be described with the aid of the metric theory. 

where p, = - iE a,, and the operator V assumes here the The undeformed medium is assumed to be isotropic. 
role of the deformation potential. The eigenfunctions We consider f i r s t  the situation in the classical approach. of this are of the form Jlvl ,,,+,eie'" 

The electron spectrum prior to  the deformation is then where v =  m +an. They correspond to energies 
E = ( p i  +pay +p:)/2~, p is the particle mass, and p is the t i2(ka +x2)/2m. If the wave-vector component along the momentum. The principal assumption is that the tra- 

z axis is x =0, then V=O and the dislocation does not jectories a re  frozen into the medium and a r e  deformed 
influence the motion of the electron. together with the medium. Then uniaxial tension by a 

factor k along the x axis corresponds to a spectrum More meaningful results a re  obtained if a magnetic 
field H is directed along the z axis. Then the momen- 
turn operators in the Hamiltonian take the form 

Any homogeneous deformation can be resolved into 
similar tensions and rotations. In the case of an in- 
homogeneous deformation it is possible t o  introduce a 
metric ds2 such that the trajectories coincide with the 
geodesics. By, the same token, the behavior of a parti- 
cle in a deformed medium is completely described. 
The transition to quantum mechanics is in standard 
fashion-a Laplace operator, followed by a Hamiltonian, 
is constructed from the metric ds2. 

Let the screw dislocation in an isotropic medium be 
located along the z axis, and let a positive value of the 
Burgers vector b =2na correspond to a right-hand 
screw. We express the metric in the form ds2 = ot 
+ wi  + wZ,. In the absence of the dislocation we have 
w1 =dr,  w2 =rdp,  w, =dz. It is almost obvious that when 
the dislocation is introduced w, =dz is replaced by o, 

p.--iiia. +eary, p,--iAa, - 5 HZ, 
2c 2c 

p.=-wa.. 

We seek the I) function in the form $ = ~ ( r ) e ' " ~ e ' "  . The 
Schradinger equation then becomes 

Here w = 1 el ~ / p c ,  v =  m +ax .  The eigenvalues and 
eigenfunctions a re  given by1 

R=e-""'r'"'F(-I, l v  1 + l ;  y f ) ,  y=po/2h. 

Since alxl <<l, it follows that at m<O the dependence 
of the electron energy on i ts  velocity v =fix/p along the 
dislocation is the usual parabolic one. At m 3 0 this is 
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