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We investigate the tunneling of a quantum particle through a macroscopically smooth potential barrier in 
which this particle experiences below-barrier collisions with random scattering centers (e.g., impurity 
centers in a dielectric layer). The physical situation and the correspondiing mathematical technique diier 
substantially, depending on whether the energy of the tunneling particles falls in the region of the vicinity 
of the discrete spectrum of the disordered system of impurity centers or far enough from it. In the 
nonresonant region, a unique "sub-barrier" kinetic equation is derived and makes it possible to find the 
effective damping, the spectral composition of the tunneling flux, and the average transparency of the 
planeparallel barrier. In the resonance region, we study the local-transparency conditions and ascertain 
the structure and the probability density of resonant-percolation trajectories. Since the local transparency 
of the barrier turns out to be a strongly fluctuating quantity, we discuss and calculate in addition to the 
average transparency also other asymptotic quantities that correspond to different possible formulation of 
the problem. In the first part of the article we discuss in detail and elucidate the quasi-onedime-nsional 
case corresponding to an infinitely large transvrrse maps of the tunneling particle. In the .second part, the 
same mathematical methods are extended to include a general three-dimensional system. 

PACS numbers: 73.40.Gk 

INTRODUCTION 

The question of tunneling through a macroscopically 
smooth potential barr ier  in which the particles undergo 
sub-barrier collisions with random scattering centers 
ar ises  in a number of physical problems. This sub- 
barr ier  scattering can be either elastic o r  inelastic. 
By way of example we can cite the tunneling of an elec- 
tron through a dielectric plate containing impurity 
atoms. 

It turns out that such a process should be described 
in certain cases by some analog of a "sub-barrier" 
kinetic equation, but in other cases i t  calls for an en- 
tirely different procedure. Generally speaking, the 
problem of tunneling through a disordered medium i s  
not included among the standard problems of quantum 
theory of random systems. Although the width of the 
barr ier  layer is assumed large, all the asymptotic 
values obtained turn out to be intermediate; on the one 
hand, this complicates the problem greatly, and on the 
other i t  makes for a greater variety of results. 

We consider in this paper only elastic collisions with 
random local centers. We investigate the tunnel trans- 
parency a,(E) of a plane-parallel layer-a rectangular 
potential ba r r i e r  of height U, and width L, perturbed by 
a random system of immobile scattering centers (the 
energy E i s  reckoned from the barr ier  U,,). Since the 
distribution of the scattering centers in the layer i s  as- 
sumed to be statistically homogeneous, the problem re- 
tains some essentia1,one-dimensionality features, al- 
though the scattering does upset the true one-dimen- 
sionality in each concrete configuration of the centers. 

First, however, we consider, by way of a very simple 
model that includes the most significant features typi- 
cal also of the three-dimensional case, the pure one- 
dimensional problem. The physical realization of this 
model corresponds to the case when the effective mass 

of the tunneling particle is strongly anisotropic, so  
that the longitudinal mass  i s  much less  than the trans- 
verse one (m,/m,<< 1). In this case the three-dimen- 
sional system degenerates into a quasi-one-dimen- 
sional one consisting of an aggregate of noninteracting 
filaments on which the scattering centers a re  located 
and along which the tunneling'takes place. This situa- 
tion corresponds also to tunneling of elementary ex- 
citations through a homopolymer molecule with im- 
purities. Finally, problems having the same mathe- 
matical structure can apparently find application also 
in other problems of optics and radiophysics of wave- 
guides. In the present article, however, we purposely 
abstain from concrete realizations, which complicate 
greatly the entire analysis, and confine ourselves to an 
idealized formulation of the problem. 

I. ONE-DIMENSIONAL SYSTEM 

1. Formulation of problem and general approach 

We express the wave function of the particle on the 
tunneling section 0 < z  < L in the form (V/2rn,, = 1) 

where ii, i s  the operator of the local perturbation pro- 
duced by the impurity center a t  the point z,. In the 
simplest case we assume the perturbation to be point-. 
like: 

~ i ~ = p ~  (z-zj), (1. l a )  

a procedure used only to simplify the derivation and 
corresponding to the requirement that the perturbation 
be local, roa << 1, where r, is the action radius of the 
local perturbation. 

The formulation of the problem of passage through a 
barr ier  implies matching the solutions of (1.1) on the 
boundaries 0 and L with the wave 
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y , ( z )  =e"'-t-ae-'" if z<0 

and the transmitted wave 
\Y2(z)  if z>L 

(k2 = U,, + E), i.e., introduction of the boundary condi- 
tions 

Y (O)=l+a, Y ' (O)=ik( l -a ) ,  
(1.2) 

Y 1 ( L ) l Y  ( L )  =ik, Y ( L )  =b, 

where a and b are  to be determined. The transmitted 
flux i s  then k 1 b 1 ', and the transparency is 

a= (E, r) = 1 b 1: r=rN= (z, ,  Z Z ,  . . . , z,). (1.3) 

We formulate now the problem in somewhat different 
terms. We consider the equation (1.1) on the entire 
axis and represent *(z) in the form 

'4'(2) = x - ( z ) + x + ( z ) ,  (1.4) 
where d&/dz = & a& everywhere except a t  the points z,. 
Thus, 9 i s  the sum of the components of a two-com- 
ponent vector x that satisfies the equation1) 

The boundary conditions that follow from (1.2) and 
(1.4) take the form 

2ik a + i k  
x*(O)=--+-  

a - i k  a - i k  X L  (0). 

a - i k  
x,(L)=- a + i k  %I(L). 

Starting with (1.5) and (1.6), we construct a matrix 
3 (propagator) that "carries" the solution through the 
region 0 < z < L from the right to the left boundary of 
the barrier:  

Here ~ ( z )  i s  the free propagator that carr ies  the solu- 
tion from right to left into a region free from the scat- 
tering centers, and ? is a matrix that propagates the 
solution through the scattering center. 

The matrix i s  unimodular: 
D ( S ) = i ,  

since ? and A(z) a re  unimodular. This property i s  the 
consequence of the conservation of the flux in the one- 
dimensional Schradinger equation and is not connected 
with assumption (1. la). 

From (1.2)-(1.4), (1.7) and (1.8) we obtain2) 

Averaging a, (E, r) over the ensemble of filaments with 
random configurations r, we obtain the average trans- 
mission coefficient (transparency) 

where p(r,) is the probability of realizing the configur- 
ation 

drn=dzi&, . . . &I, O<Z,<%I.. . <tn<L. 

Equation (1.10), which expresses o,(E, r) in terms of 
the matrix element on the vectors f and g, explains well 
the structure of the solution and permits a number $ 
general conclusions to be drawn. The structure of S is 
not connected with any of the boundary conditions a t  the 
points 0 and L, while the boundary conditions that des- 
cribe the flux below the ba r r i e r  a r e  expressed by the 
vectors f and g in (1.10) and a r e  not connected with g. 
As will be  shown below, all  the conclusions concerning. 
the behavior of a, (E, I?) and a, (E) = (o, (E, r ) )  can be  
obtained, apa r t  f rom an insignificant factor - 1, from 
an analysis of S. On the other hand, the propagator 
S(E, l?) can by itself serve a s  convenient characteristic 
of the spectral properties of the random Hamiltonian: 

which corresponds to Eq. (1.1) on the entire axis (with 
the condition *(*a) = 0). As can be easily understood, 
the eigenvalues of d at  a given configuration a r e  the 
roots of the equation 

s,, ( E ,  r) =o. (1.13) 
In particular, if the configuration r reduces to one 
single scattering center, this yields T,,(E) = 0 o r  1 
+ 6/2a = 0. 

Even the noted connection of S(E, r) with the spectrum 
of the operator fi can easily point to two different situa- 
tions: 

A. Nonresonant tunneling 

It i s  realized whenever the particle energy E is shift- 
ed f a r  enough away from the spectrum of the eigen- 
values of the random operator n. This will occur, in 
particular, at > O(E = -a2 <0). In this energy region 
TI ,+  0, the amplitude of the sub-barrier scattering IJ. is 
finite3) and moreover, IJ. < 1. The average distance 
between scattering centers is (x) - l / n  (n is their linear 
density). Then, taking the definition of the matrix 
into account, we note that a t  low concentrations, i.e., 
a(x) >> 1, c = n / a  << 1, the matrix element S , ,  has a pro- 
bability (1 - c )  of being exponentially large compared 
with the remaining ones: S,,/S,,-exp(a(x)) >> 1. The 
expression fo r  oL(E, r) therefore takes in this case the 
form 

Since the connection between x,(L) and x,(O) i s  linear, 
and a, contains only the ratio of these quantities, i t  
follows that, without loss of generality, we can put in 
(1.14) ~ ~ ( 0 )  = 1. Expression (1.14) corresponds then to 
the solution of Eq. (1.1) [or (1.5)] with boundary condi- 
tions 

These conditions correspond to neglecting the waves 
reflected from the boundaries 0 and L out of the inner 

600 Sov. Phys. JETP 50(3), Sept. 1979 I .  M. Lifshitz and V. Ya. Kirpichenkov 500 



region of the barr ier  0 < z < L. However, at off-re- 
sonance energies, allowance for these reflections can 
lead only to the appearance, in the averaged expression 
for a,(E), a factor close to unit (1 + O(c)). Taking (1.15) 
and (1.14) into account, we have 

Thus, in the off-resonance region the initial problem 
is practically equivalent to the problem of tunneling of 
a particle through a layer 0 < z  < L, occupied by the 
scattering centers, in the case when the true boundaries 
of the homogeneous barr ier  a re  moved away from this 
barrier to an infinite distance (a situation corresponding 
to condition (1.15)). 

Another representation for the quantities S,, and a, 
in the off-resonance case follows from the condition 
S,, I> S,,. It follows from this condition that S,, 
SpS = A, + 4, where Aj a re  the eigenvalues of 3. It 
follows from the unimodularity of that A , h =  1, and 
the fact that is real means that either the Aj a re  real 
or  A,, , = eel0. In the off- resonance case we therefore 
have A, = and 

(in the resonant case A,,, = etiO, but Eq. (1.17) no longer 
holds). 

B. Resonant tunneling 

This case is realized at a given configuration rN 
whenever the particle energy E lies in the vicinity 
of the discrete spectrum of the operator fir. In this 
case, a s  we shall show, there exists a certain set  of 
resonant configurations {r,},, on which 

If the total contribution from the resonant configura- 
tions with a -  1 is decisive, then 

In the opposite case, we shall seek the probability of 
resonant configuration and investigate their effect 
separately. 

The off-resonant and resonant tunneling require sub- 
stantially different methods and will therefore be con- 
sidered separately. 

2. Off-resonant tunneling 

As already shown in the preceding section, in the off- 
resonance region the problem of calculating the trans- 
mission coefficient u, reduces according to (1.16) to a 
calculation of (l@(L)12)=(I~-(L)12), where Nz)  and 
&(z) are  defined by the equations 

-- fly azv=B C d ( z - z J ~ ( 4 .  
dz' 

O<*,<L 

The solution of Eq. (2.1) with boundary conditions (1. l a )  
is4' 

Substituting2 = z  in (2.2) and taking (2.4) into account, 
we have 

where p i s  the amplitude of scattering by one center. 
The system (2.2) and (2.5) is closed and is equivalent 
to the initial equations (2.1) and (2.la). 

The difficulty of calculating (1 \k(L) 1,) lies in the fact 
that the macroscopically decreasing function \k(z) con- 
tains random rapidly increasing terms, against the 
background of which the separation of the exponentially 
decreasing particle i s  a most complicated task. The 
procedure proposed below and connected with the form 
in which Eqs. (2.2)-(2.5) a r e  expressed, eliminates 
these difficulties a t  least in the off-resonance region, 
and in addition admits of generalization to the three- 
dimensional case. 

We introduce the shorter notation 

g(z) =x-(2, r), (Ig(2) lrz)=Gz 

and proceed to derive an integro-differential equation 
for Gx. We shall call the points z j < z  "past" and the 
points z,>z "future" relative to 2. We see then from 
the definition of g(z), as well a s  from Eqs. (2.3)-(2.51, 
that this function depends not only on the past but also 
on the future, via the coefficients cpj  in (2.5) (for z j  >z).  
This dependence extends over a distance z, - z I - l /o .  

We now write down a relation that follows from (2.3) 
and (2.5) 

g ( z f  t)=exp{-at}g(z)- exp(--alt-tjl}cph (2.7) 
O<f,<l 

cp,=gexp{-atj)g(z)-~ x exp(-altj-thl}cph, zj=z+tj. (2.8) 
ocI%<L-r 

he, 

To calculate the derivative dGE/dz we use relations 
(2.7) and (2.8), in which we put t = 62, an infinitesimally 
small quantity. In this case there is a probability nbz 
(n is the density of the centers that one term remains 
in the sum (2.7), and we get 

Squaring (2.9), we average this expression over r, and 
discarding terms - (62),, we get 

G'+6'-C'=6z[-2aG'-2n<g(z)cp(z+O) )+n<cp2(ziO) )]. 
Hence 

dG'Idz=-2aG'-2n(g(z)cp(z+O) )+n(cp2(z+O) ). (2.11) 

Since the function g(z )  has a discontinuity when it  
passes through each of the points z j  the form (g(z)p(z 
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+ 0)) means that g(z) is taken on the left of the scatter- 
ing center located a t  the point (z + 0). When averaging 
the last two terms of (2.11), we must take into account 
the connection between g(z) and cp,, given by the equa- 
tions in (2.10). 

We assume the density to be small (n/ff << 1) and ex- 
pand the mean values in (2.11) in powers of n/ff. To 
obtain the terms - (n/a)mil we must take into account 
in the right-hand side of (2.11) the contribution from 
configurations that have m additional scattering centers 
at a distance 1 z, - z 1 - l / o l  around the center at the 
point (z + 0) (the probability of this situation is - (n/a)"'). 
We shall carry  out the calculation for m = 0 and m = 1. 

1. In the case m = 0 (there a re  no additional centers 
near (z + 0)) we get from (2.10) 

cpo=cp(z+O) = p g ( z ) ,  
<cpa(z+o)>-2<g(z)cp(z+O) >=p"(g"(z > -2p<g2( z )  >, (2.12) 

dGz/dz=- (2a+2np-np2)G'. 

2. m = 1 (on additional center a t  the random point 
(z + t); t 0). Since the additional center can be either 
on the right o r  on the left of the point z, and the cal- 
culation methods for these cases a re  different, we write 
down the sought mean values in the form 

<oa(z+O)-2g(~)cp(~+O))-'/r[(. . . )+I+(.  . .>-,I (2.13) 
and consider the cases * t separately. 

a )  A feature of the case + t is that both centers, (z + 0) 
and (z + t +  0), a re  on the right of z. According to (2.10) 
we have 

cpp=pg(z) -pe-"ql, cpO=cp(~+O) ; 

Hence 

cpe=pg(z) -pv(at )g(z) ,  v(r)=[p(i-p)e-"]/(i-p2e-"). (2.15) 

Since both centers lie to the right of z, and the corre- 
lation between g(z) and the centers on the right (in the 
future) can be caused only by the close center on the 
left (in the past), the correlation terms yield the cor- 
rection of the next (third) order of smallness. There- 
fore 

where w(t )  describes the density correlation 

b) The case -t is determined by the fact that the point 
z lies between the centers (z - t + 0) and (z + 0). Chang- 
ing the notation, we rewrite formulas (2.7) and (2.8) in 
the form 

g ( z )  I = e-"g(z  - t )  - e-O1q-,, 
'+@ 

cfr,=pe4'g(z-t) -pe-"'9-,, cpo=cp(z+ 0)  ; (2.16) 
cp-,-pg(z-t) -pe-"'qa, cp-,-cp(z-t+O). 

Expressing qo, q-t from (2.16) in terms of g(z - t) and 
separating in the quantity 2g(z)cp, - cpi the correlation 
part due to scattering by the pair of centers, which in 
fact yields as a result of the averaging the terms - (n/ 

we put 

In Eq. (2.17), g(z - t) i s  now already on the left of the 
points (z - t + 0), (z + 0). Therefore, as in the preceding 
case, accurate to terms of higher order in the density, 
we should average $(z - t) prior to the integration of 
the entire expression with respect to t. This yields. - 

(f ( a t )  e-la'& ( z  - t )  >= n j w ( t )  f ( a t )  e-""'GZ-'dt. (2.18) 
0 

According to (2.12), however, accurate to the terms 
of higher order in the density n/ff, we can assume in 
(2.18) that Gc-te-2ut = Gc. Therefore retaining in the 
derivative dGc/dz the terms proportional to (n/aI2, we 
can write 

w t e a  - $ ( i - p ) ' f  w ( t )  e -"'dt  
~ 2 = - ( i - ~ ) ~ j  i - p ze - za ,  

0 0 
( i  - p a e - a : ) 2  ' 

If the discreteness of the disposition of the impurity 
centers in the lattice si tes can be neglected (aff << 11, 
and the correlation function i s  w(t) = 1, then 

and consequently 

(a' + k2)  ' 
2 u + n p ( 2 - p ) + - S 2  naira a ] L } . (2.21) 

Equation (2.21) i s  valid for distances a t  which we can 
neglect the terms - (n/ffl3. 

We conclude this section with a few remarks con- 
cerning the meaning of the calculated average trans- 
parency a,. The averaging of the quantity $(L), over 
the configurations corresponds to averaging over 
different paths of tunneling in a layer consisting of 
quasi-one-dimensional filaments or, equivalently, to 
calculation of the density of the passing flux per unit 
a rea  of the sub-barrier layer. It is precisely this 
quantity which i s  of interest a t  not too large L, being 
in fact only an intermediate asymptotic form with res- 
pect to L when the number of filaments (i.e. the a rea  
of the tunnel layer) increases without limit. 

Each of the quantities g(L), is by itself not self- 
averaging a t  large L. We shall presently show, how- 
ever, that in the off-resonance region the specific at- 
tenuation coefficient lno,(r)/L = 2 lng(L),/L is for typi- 
cal configurations, in the limit a s  L -a a self-aver- 
aging quantity and can be calculated a t  low densities 
n /a  << 1. 

To this end, noting that 

6 In g ( z )  =In g(Z+69) -In g ( z ) ,  

we write down the difference between the two close 
quantities lng(z + 52) and lng(z) in analogy with the pro- 
cedure used for $(z): 
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As verified above, the quantity cp(z + O)/g(z) depends 
only on the local surrounding of the point z by the scat- 
tering centers on the segment (z - t, z + t ) ,  t -  l/a. 
Therefore averaging over z in (2.22) means averaging 
over the local configuration, and taking the limit as 
6z - 0, we obtain 

In first-order approximation in n/cu we have p0/g(z) = @, 
and consequently 

Accurate to terms of second order in vr/a we obtain in 
analogy with (2.11), (2.15), and (2.18) 

As expected, the limit lnu,(r)/L I,,, does not coincide 
with the previously calculated asymptotic value lnGL/L. 
To compare the obtained expressions (2.21) and (2.25) 
with the transparency of an ordered system we use Eq. 
(1.17) and express in the form 

S= (S) N, N=nL, 

Hence A,,,,,= k t ,  where X, is the larger eigenvalue of 
the matrix 8. This yields 

-In aL= In d & - 2 r t ~ l n [ g +  (E,'-i)"']. 

aha g=ch-+ -sh-. (2.27) 
2n 2u 2n 

At n / a  << 1 we obtain, accurate to terms -eat", 

which coincides with the term of f i rs t  order i n n  in 
(2.25). 

3. Resonant tunneling 

We proceed now to investigate tunneling of particles 
having an energy E within the spectrum of the random 
operator fi. We star t  from the exact formula (1.10), 
which we write out in explicit form: 

Writing down the unimodularity condition ~ ( D ( s )  = 1) in 
the form 

( S , ~ + S ~ ~ ) ~ +  ( S ~ ~ - - S , ~ ) ~ - -  ( S ~ , - S ~ ~ ) ~ -  (Sla+Ssd2=4 (3.2) 

and introducing the notation 

P" (S11-S*3'/4+ (S'1+SlZ)"4, 

Sll+S2' 82,-s12 
cos g= 2(l+p')'" ' sine = - (3.3) 

2(1+p2)'h ' 

cos cp-(S,,+Szl)/2p, sin cp=(Sti-Szz)/2~- 

we reduce (31) to the final form 

1 (k2+a') (ha-a" p - - ( l + p 2 )  {cos2 j+- [ s in  4a'kz j+ 
(kz+aa) (p2+1) " sin q] '1 . 

13.4) 
Each of the quantities St, oscillates rapidly a s  a func- 

tion of I' and E, and varies in tremendous intervals 
(-eaL, eaL). The condition for exact resonant tunnel- 
ing, correspondent to a complete transparency of the 
barrier (aL = 1), i s  

p-0, sin e-0. 

This corresponds to the three equations 

S11-S,,=O, Sl,+S,I=o, sia-S,=O. (3.5) 

However, recognizing that the quantity in the curly 
brackets in (3.4) always remains " 1 a t  k / a  + a / k  - 1, 
and varies in the interval 

we see  that we can write with sufficient accuracy5' 

aL(E, r ) = [ i + p 2 ( E ,  r )  I-'. (3.6) 

(The equal sign in (3.6) occurs when k / a  = 1.) There- 
fore the third condition of "exact resonance" S,, =S,, 
does not impose any restrictions on the resonance 
transparency (0,- I), and we retain a s  the "exact re- 
sonance" conditions the following two equations that 
result from r )  = 0: 

X ( E ,  ~)=s~ , - s , ,=o ,  Y(E, ~ ) = = S ~ ~ + S ~ , = O .  (3.7) 
At a given energy E, Eqs. (3.7) define a resonant (N 
-%)-dimensional hypersurface in the configuration 
space rN' On the other hand, the very same equations 
can be regarded a s  conditions for the determination of 
the resonance energy level Eo(rN) for the given con- 
figuration r,. In a small vicinity of each exact-re- 
sonance point p(E,, r,)= 0 resonant tunneling with 
transparency u(E, rN) -  1, is preserved so long as 
p(E, I',)- 1. The energy width 6E of the resonant 
transparency is therefore determined, for a concrete 
realization of rN by the obvious relation 

Rewriting the condition p(E, rN) -  1 in the form 

W E ,  r~1-1.  Y ( E ,  r ~ 1 - 1 ,  (3.9) 
we obtain, a t  a fixed energy E, the condition for the 
width of the "resonant layer" around the hypersurfaces 
(3.7) in the r, space: 

6 x 4 ,  6Y-1. 

If the resonance is sharp enough, the order of magni- 
tude of the averaged transparency is determined by the 
relative phase volume of this resonant layer, ( ~ r ) /  
AT. We must, however, make here an important re-  
mark. We shall consider henceforth the case of low 
concentration of the scattering centers, c = n / ~  <<I. 
This corresponds to NlnN <<y= aL,  and only small N 
a re  of importance for not too large 4q which by itself 
ensures the required sharpness of the resonance. On 
the other hand if  N >> 1, then in some special "degene- 
racy" cases the main contribution to the average trans- 
parency a r e  made, a s  we shall show, by configurations 
with I lnu(E, r N )  1- N <<y, which in these cases must be 
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regarded as resonant (see Eq. (3.27) below). 

We note finally that i t  follows from (3.2) and (3.3) that 
the requirement p -  1 leads automatically to the condi- 
tions 

Stt-1, Sir-i, Sal-i, Sax-1. (3.11) 

The first of these conditions, S,,- 1, explains why the 
resonant energy levels a r e  close to the eigenvalues of 
the operator Hr. This i s  due to the giant scale of the 
oscillations S,,(E, r) near the eigenvalue E0 defined by 
the condition Sll(EO, r )  = 0. The converse, however, 
does not hold true: proximity of E to the eigenvalue 
EO(r) still does not mean resonant transparency. 

One can expect from the foregoing general analysis 
that resonant configurations, exist near each 2nergy 
level in the spectrum of the random operator H and, 
conversely, for general-position configurations that 
satisfy a certain inequality there exist resonant energy 
values corresponding to o(r)- 1. It will be shown be- 
low, however, that the energy width of such resonance, 
or equivalently the probabilities of the resonant con- 
figurations for a given energy level, a r e  frequently so 
small that their relative contribution to the average 
resonant transparency is of no interest. In the quali- 
tative analysis that follows we shall therefore consider 
those situations in which the resonance effects a re  of 
greatest importance. This can be expected primarily 
in the vicinity of a level on an individual scattering 
center. 

The general approach referred to above i s  convenient 
when N > 2. Therefore, proceeding to a more concrete 
analysis, we begin with the cases N = 1 and N= 2. Being 
simpler, they will help understand also a more general 
situation. 

1. Case N = 1 (one center at the point 2,). Reckoning 
the energy from the eigenvalue E0 defined by the condi- 
tion Sll(EO, zl) = 0, and introducing the dimensionless 
energy 5 = (E - P)/2org, a: = -EO, we write down the 
matrix T and the propagator in the form 

x,=a(L/2-2,). 9-aL. 

Then, according to (3.6) 

(The exact equality takes place in this formula at k/a 
= 1 .) 

Recognizing that the probability of finding the center 
in the interval dx, is equal to 

we obtain in accord with (1 -1 1) 

where 

The function 52,(&) is concentrated in the vicinity of the 
point E = 0  and its width is 6c- e". In those cases when 
the natural energy width of the beam incident on the 

barrier is A& >> E &  - e-Y, the function 52,(&) can be re- 
placed by an effective 6 function with a normalization 
coefficient6' 

A 

a1 (e) +u16 (e) , a,- ol (e) de=4n~e-(~+@)*. 
-A 

(3.12) 

2. The case N = 2 (two centers a; the points z,, 2,; z, 
>zl). In this case the propagator S is of the form 

where y =a(z,-z,), e = q 2 - q 1 , q l = a z 1 , q 2 = c y ( L - ~ , ) .  
Writing down Eqs. (3.7), which now take the form 

X(e, y) = (e2-e-'Y)es- (4-e-'I) e-"-0, 

Y (e, y, E) =2(eeu+2e-I) sh E=O, 

we obtain, accurate to the next-order exponentially 
small terms, the resonant energy q, the resonant con- 
figuration (,: 

e ~ = f e - ~ ,  y<0/2;  Eo=O. 

From (3.8) we get the energy width of the resonant 
transparency 

and from conditions (3.10) we get the width of the re- 
sonant layer in I', space: 

Recognizing further that the probability of finding the 
centers in the intervals dz, and dz, is equal to 

pzd~ldza=~ae-"*dz,dz2, z2>z,, 

we obtain 

o2 (e) - C ~ ~ - ~ * Q ~  (e) , (3.13) 
where 

I 212, e < e-rP 

The function S2,(&) has a width 6s - e-", and under the 
same conditions as  in the preceding case [see (3.12)l 
can be replaced by an effective 6 function. Then 

u r e  ( ) ,2e-s("+~) 6(e). (3.14) 
3. We consider now the general case, when N scat- 

tering centers with coordinates (z,,  z,, . . . ,z,),z, <z, 
< . . . < z, < L are located on a separate filament. To 
investigate the conditions (3.7) we represent the matrix 
S in the form 

y =(yl, y,,  . . . , yNel) is an (N- 1)-dimensional vector. 
Equations (3.7) then become 

q=9i+q2=e) - CY,, t = ~ a - q ~ .  
11-1 

Taking into account the definition (3.15) of th_e mat+ 
Q(y) and the explicit forms of the matrices T and A,  
we note that the left-hand sides of Eqs. (3.16) are  poly- 
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nomials with small powers c << I.  A detailed analysis 
of such equations is presented in a paper by one of us? 
It is shown there that for general-position configura- 
tions the most probable is localization of the particle 
wave function in the vicinity of two centers located at 
the shortest distance. The root of the first equation of 
(3.16) is then, accurate to the next-order exponentially 
small terms, 

e=e.=f  erYn, y,=min ( y ~ ,  Yz . .  . . , YN-I ,  q )  
(X=Sl,-S,I=eNe"-eN-* exp ( 9 - 2 y m )  - . . .-0) 

(3.17) 

and is practically insensitive to changes of any distance 
yi,i+m, at exp(y,-y,)<< 1. 

From the second equation of (3.16) we get 
~"- -Q , I (Y ) /QIs (Y )  Qt~/Qla<Ot E<f .  (3.18) 

Taking next (3.8) into account, we obtain the energy 
width of the resonant transparency near the energy c 
= 4: 

6 ~ - e - ~ / e : - ' -  e r p ( - O  + ( N - i ) y , ) ,  (3.19) 

and from the conditions (3 .lo), (3.11), and (3.16) we 
get the width of the resonant layer 

6y,-e-s/eoN-exp { - 9 + N y m ) ,  6 ~ - i / ( S l , - S , I )  -I. (3.20) 

The remaining distances y, and q take on arbitrary 
values bounded by the inequalities 

y;-yj-y. z o ,  q l -a - ym > o, ~ ; + q ' - 9 - - N y -  (3.20.) 
1 

Therefore the resonant phase volume is 

(3.2 1) 
Relations (3.20) and (3.21) correspond to "general- 
position resonant configurations" for the energies 
EeYIN =eY>> 1. 

In the opposite limiting case &eN"<< 1, we construct 
for the general-position resonant configuration a sys- 
tematic scheme that makes it easy to determine their 
statistical weights, We take an arbitrary system of 
segments x,>O satisfying the relation 

and transform the configuration r,{z)ar${x} in ac- 
cordance with them (see Fig. 1): 

FIG. i. Example of resonant configuration of general position 
rk(x) for the cam N = 3  at energies E ge-. 

For this configuration, the matrix can be written in 
the form 

" -.. - - 
S - s , s ,  . . .  S ~ A ( . Z ~ + ~ ) ,  

(3.23 ) 
Let x,=x,,=y be the largest of the x,. Then at c 

s e-Y, for any general-position configuration 1/ 
N,e'=j<< I /N,Y>>NI~N),  we have 

Since & corresponds to complete absence of damping, 
the only additional condition for resonant transparency 
o - 1 is x,,, - 1. The resonance width is then obtained 
from the conditiony = &eY - 1 and is givenby the expression 
6c - emY. Thus, the resonant configurations for the 
energy E = e - ~ ,  y >Y/N are determined by the conditions 

In particular, at E < e-' all the configurations Q{x] 
x (i.e. x,> 0 , ~ x j = 9 )  a re  resonant (o- 1) and converse- 
ly, the remaining configurations are not. It is easily 
seen that the set {r$) does not account for all the con- 
figurations rN. Since the Jacobian of the transition 
from the variables y to the variables x, is according to 
(3.22) a{y)/ a{%} = (i)N, and the restrictions on these 
variables coincide, it foilows' that the ratio of the total 
phase volumes is ~ r g / A r ,  = (8)N. Thus, at c < e" the 
resonant phase volume is 

A r ,  ( 0 )  - ( P 1 2 ) N / N ! = e x p  (N In ( e 0 / 2 N ) ) ,  (3.25) 
and at arbitrary c = eSY<< e-y'N we have 

N l n ( y - 9 l N )  e,  y - P I N S 9  In N I P  
+ (  l n 9 e l N .  y - P l N W P  In NIN 

( 9 B N l n  N B i ) .  (3.26) 

The seemingly paradoxical fact that damping does not 
take place along the sequence of points z: = z,+ x,/2 for 
the general-position configurations r* , but does take 
place for chains of equidistant resonant centers has a 
simple physical explanation: the definition of the tran- 
sparency refers to damping relative to the input ampli- 
tude of the wave function, and not to amplitudes at the 
points of the maxima z = z ,  (as in the standard formula- 
tion of the problem). 

In the energy region c -  e'Y'N the main contribution to, 
the resonant transparency is determined by degenerate 
configurations close to an ordered arrangement of the 
centers at equal distances y ,=x, = . V ' / N , ~ ~  =1)2 =Y/2N. 
In this case, as  can be understood from the foregoing, 
the resonance conditions are determined by the rela- 
tions 

6yk-62,-6qt-6qr-1. (3.27) 
The conditions (3.27) correspond to an optimal relation 
between the increasing phase volume A r N  and the de- 
creasing unbalanced transparency a(&, rN): 
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Starting from (3.21) and (3.26) and recognizing that 
the probability p(I',)dI', of landing in the phase-space 
element dr, is cNe-edr,(z, <z, < . . . <z, < L ) ,  we ob- 
tain the magnitude and the form of the maximum of the 
average resonant transparency in the vicinity of the 
impurity level: 

If the effective width of the function u,,(E) is much less 
in energy 6r, - e'Ylx than the energy width of the particle 
or  beam of particles incident on the barrier, then o,(c) 
can be replaced by an effective 6 function [see (3.12)]. 
This yields uJc) - oN6(c), 

(x, << I lnc 1 , but the accuracy of the employed estimates 
is insufficient to determine its numerical value). 

In the summation over N, the main contribution to 
o =XU, is made by filaments with extremal trans- 
parency. _Varying (3.29) with respect to N, we obtain 
the value N = (H(x, + 1 lnc I l a ,  that makes the largest 
contribution to the average transparency. The values 
of the transparency and of the effective damping co- 
efficients are  themselves given by 

a-exp {--ZIP ( I In cl +AD) ]'b-~9), -9-' 1n a s 2  ( 1 In c I /P)"-c. 
(3.30) 

On the other hand, if  the concentration c is defined on 
each individual filament, then only a single term ON 

corresponds to N =(N) = cY' and the normalization factor 
e'CY does not enter in (3.28). Then 

o - e x p  

(3.31) 
We have investigated above the resonant transparency 

in the vicinity of the single-center local level E =O. It 
can analogously be investigated also in the vicinity of 
discrete local levels" made up of several close centers 
(cluster levels). By regarding the cluster as a single 
effective scattering center having an internal structure, 
it is easy to construct a matrix 0 that propagates the 
solution through the indicated clustec, in the form of 
an ordered product of the matrices T and $"(thus, e.g., 
for a cluster of two centers we have 8 =?AT). Reckon- 
ing next the energy from the corresponding cluster 
level c: defined by the condition Clf (E:) = 0, we obtain 
the matrix d and the propagator S in the region of 
energies E' = i: - 1 close to the cluster level E:. 
When "general-position configurations" are considered, 
it turns out in this case that only the matrix element ell 
is small in proportion to the proximity of the energy 
to the cluster level (ell - E I ) ,  while all the remaining 
matrix elements 0 i, and T i ,  do not possess this small- 
ness. In this case the situation is similar to that oc- 
curring when there is only one center on a filament in 
the region of the barrier. The energy width of the re- 
sonant transparency is then 6~'- e-'. On the other hand 

the largest contribution to the resonant transparency 
at these energies is made by degenerate configurations 
close to an ordered arrangement of identical clusters 
a t  equal distances from one another. The correspond- 
ing energy width of the resonant transparency turns out 
to be be'- e'YINo(N,, is the number of clusters on the 
filament). 

To conclude this section, we make a few remarks. 

1. Since we did not take into account in the investi- 
gation of the resonant tunneling the interaction between 
the tunneling particles, while in the vicinity of the 
scattering centers their density is high enough, it fol- 
lows that the condition of applicability of the results 
imposes a limitation on the density of the particles in 
the incident beam, namely, it is necessary that the 
density be small enough to be able to neglect the 
interaction between the particles within the entire re- 
gion of the barrier. 

2. Since we have used in fact only an integral or  ma- 
trix form of the Schriidinger equation, a similar analy- 
sis is possible also for the finite-difference equations 
that describe tunneling of elementary excitations. In 
this case, naturally, the conditions for matching the 
wave function on the barrier boundary and the law of 
dispersion of the elementary excitations a(E) may 
change somewhat, but these circumstances a re  not 
essential in the described procedure, 

3. The entire investigation of the multiple resonances 
is based on the initial assumption that the potential 
barrier is homogeneous and the scattering centers are 
identical. Violation of these conditions leads readily 
to an unbalance of the joint resonances. In an un- 
balanced system, there appears only one resonance 
(on an individual center or  optimal cluster) and there- 
fore o(E,)-c(E$eg where c(E,) is the concentration of 
such clusters for the level E,. 

The presence of inelastic scattering channels also 
weakens the resonance effects. 

II. THREE-DIMENSIONAL SYSTEM 

4. Nonresonant tunneling 

Proceeding to the three-dimensional case, we start 
with certain general remarks. Owing to the sub-barrier 
damping, it is natural to expect that the "quasiclassical 
tunneling paths," which take into account the multiple 
scattering, make a substantial contribution if they are 
close to the shortest ones, i.e., if they lie inside al- 
most right cylinders of radiuss'-1/a. These paths are 
independent if the cylinders corresponding to them are  
separated by distances >> l / a .  These cylinders play 
the role of the individual filaments in the one-dimen- 
sional case. This explains why the picture of khe 
tunneling retains in the three-dimensional case many 
features of the one-dimensional situation. 

The equation for the wave function inside a barrier 
with scattering centers is given by 

AY (r) - a2Y (r) = ~ u , Y ,  r = (z, p),  
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where a, is the operator of the local perturbation from 
a center at the point r, with a radius of action .Y~((YY, 
<< 1). 

The solution of Eq. (4.1) with a zero right-hand side 
is given by 

Yo(z, P) ' X -  (z, P) +x+ (z, P) * (4.2) 
where the functions X,(z,p) satisfy the equations 

(z, ~ ) l a ~ = * a ~ ~  (z, P) (4.2a) 

and a re  equal to 

X-(z, P) =e-'%- (0, P) , X+ (z, p) =e(~-~'"+ (L,  p) ; 

& i s  an operator acting on functions of p and is diagonal 
in the (z,H) representation (Fourier representation in 
P) ; 

[&x(z, l . = ~ x . ( z ) ,  a.+'+xg; 

we can put in (4.6) 
(hr, rv=~6(r-r,)6(r'-r,), vh=Qh6 (r-rJ, (4.8) 

where P =(;l, 1) is the sub-barrier scattering ampli- 
tude. Its poles in the energy plane correspond to bound 
states localized in the vicinity of an individual center. 
Far  from these poles, the amplitude p is small (Pa << 1) 
(see the Appendix). 

When (4.8) is taken into account, Eqs. (4.5) and (4.7) 
become - 

gz (p) = ~ 2 4 ~  (P) - h (r - sj) W, 
O<Zj<Z 

If the density of the scattering centers over the damp- 
ing length is large (n/a3 >> I),  then the fluctuation ef- 
fects a re  small (in terms of a3/n<< 1) and the initial 
equation (4.1) goes over into the smoothed equation 

A Y  - (a'+ np) Y -0, (4.11) 
which corresponds to the shift of the renormalized 
boundary of the continuous spectrum of A.' Equation 
(4.11) i s  obtained by local-macroscoping averaging of 
(4.1), wherein, as  seen from a comparison of (4.4) and 
(4 .lo), 

xl(z) = j x(z, p)etxp s p .  

The general solution of (4.1), on the other hand, will 
be written using the Green's function of Eq. (4.1) in an 
infinitely long homogeneous barrierg': 

J 

where ff is an integral operator whose kernel is the 
Green's function 

h(r-r') =exp {-a1 r-r11}/4n lr-r'l, (4.3a) 

hj = j h(r-r')cp,(r')d~r', (4.3b) 

cp,-cp,(r)=cp(r, r,) =&Y. (4.3~) 

In the opposite case of interest to us, that of low den- 
sity under nonresonant conditions, we use a method 
similar to that used in Sec. 2 above. 

Using the same reasoning a s  in the one-dimensional 
case Isee (1.16) and the remark that follows this for- 
mula], in the energy region outside the resonant spec- 
trum we shall consider tunneling through the layer 
O<z<L in homogeneous space, i.e., we omit x+(L,p) 
from (4.3) and assume that ~ ~ ( 0 ,  p) =$(p), where the 
"initial condition" &(p) will be connected below with 
the correlators of the incident particle flux. 

In contrast to the one-dimensional case, in the three- 
dimensional case the sub-barrier scattering leads to a 
change of the transverse momentum x of the tunneling 
particles, and our task is to investigate both the spec- 
tral and the integral transparency of the barrier. To 
this end it i s  necessary to obtain at z =L the two-point 
c~r re la tor '~ '  

GL(p)=(Y (L ,  pl)Yr(L, O))=(gL(p)g'L(0)> (4.12) 

for the given boundary condition 
Go(p)-(gO(p)g'O(O)>, CO(0)=l .  

We introduce the notation x -(z, p) =gz(p). Then, taking 
(4.2) and (4.3) into account, we write 

The Fourier component of the correhtor Gk determines 
the spectral transparency, while the integral trans- 
parency is 

We proceed to derive an equation for Gz(p). From 
(4.6) and (4.7) we have the relations Applying the operator a, to the left and right sides of 

(4.4) and solving the resultant equation with respect to 
cP,, we get 

where a, is the operator of scattering by the center at 
the point r,. Equations (4.5) and (4.7) make up a closed 
system. 

To calculate the derivative 8CZ(p)/8z, we assume, a s  
in the one-dimensional case, that t=6z in (4.14) is an 
infinitesimally small quantity. In this case there is 
only one term left in the sum of (4.141, with proba- 
bility nS6z (n is the density of the centers, S is the 

By virtue of the locality of the perturbation i?,, the 
kernel of the operator 9, and the function q, are  con- 
centrated in regions having the same radius yo<< l/ff. 
If, as  we shall assume hereafter, the distances bet- 
ween the scattering centers a re  ) r, - r, 1 =r,, >> yo, then 

cross section area of the cylinder in which the wave 
function of the tunneling particle) is localized, and we 
get1'' 
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gZ+"(p) = (1-6&)gz(p) -hi 1 .<.,<z,+as. (4.16) 
Calculating on the basis of (4.16) the difference GK+"(p) 
- Gyp) and taking the limit a s  62 - 0, we obtain in 
analogy with the one-dimensional case, 

Assuming the density to be small, we expand the mean 
values in (4.17) in powers of n/& << 1. To obtain the 
terms -(n/a3)"+' in (4.17) it is necessary to take into 
account the contribution from the configurations at 
which, in a sphere ( r - r, 1 - l/a around the point r at 
which the scattering center is located, there turn out 
to be (with a probability - (n/a3)'") .m additional scatter- 
ing centers. 

To obtain in (4.17) the terms linear inn ,  we put m =O. 

It follows from (4.15) that rp,(z, p) = (C,g9,. Taking 
into account the locality of the operator p, [see (4.18)], 
we get 

Equation (4.17) then takes the form 

/az=-&G' (p) +6,Ga. (4.19) 
By going over in (4.19) to the (2, x) representation and 
taking into account the diigonality of the operator 2 in 
this representation we obtain for the Fourier com- 
ponents 

with the boundary condition 

G2-S (4. (4.204 

We seek the solution of (4.20) in the form 
G.==~-"ZX/, a=a+np/k. 

The equation for Xf is then 

ax: 
-=- npZ 

az q Z x Z  + --, x: 
4a. 

Taking the Laplace transform in (4.22) 

and taking (4.20a) into account, we obtain with the re- 
quired accuracy (with account taken of terms - npz/a) 

Taking the inverse Laplace transform in (4.24), we ob- 
tain 

i l+e2az ln(2az) r l, 2az a I 
K'= l +e ln2azs I ,  I a2azae1". 

e-' exp (2aze-'Ic), 2az > e"' 

The explicit solution of (4.22) is 

Since z'-' is a slowly varying function compared with 
a kernel Kx(5), it follows that the principal contribu- 
tion of the integral (4.25) is determined by small values 
of 5. Next, expandingRPt in powers of 5 in the vicinity 
of [ = O  and taking into account only the first term, of 
the expansion, we get 

On the basis of (4.21) and (4.26) we obtain the spectral 
distribution of the tunneling particles: 

[ ""' C.=+ 6(x)--(l-exp(-qd))]. 4a:q~ (4.27) 

Terms of higher order in the density n do not alter the 
picture qualitatively. The expressions for them are  
too unwieldy to be given here. 

5. Resonant tunneling 

We consider tunneling in three-dimensional systems 
a t  energies belonging to the spectrum af the random 
Hamiltonian 8. As will be shown below, in this case 
there can appear in the sub-barrier region "resonantly 
percolating" trajectories, i.e ., tunneling paths along 
which no attenuation takes place. The probabilities of 
these trajectories and the energy widths of the re- 
sonant tunneling on them will determine the trans- 
parency conditions. 

We consider a solitary trajectory passing through N 
scattering centers (a criterion of solitarity, i.e., of 
the absence of a contribution from joint scattering by 
other centers, will be spelled out below). To this end 
we write down the boundary conditions (similar to (1.7) 
in the one-dimensional case) and the relations that 
follow from (4.3) in the (2, x)  representation: 

2ik 
(x-"a==-- a-ik 8(x)+* a,,-& (X+')- 

Here 
k.'=k2--xi, hjk=h(rj-r,) =exp (-a1 rj-rhl )/4nl r,-rh(, 

The system (5.1)-(5.5) is closed and describes com- 
pletely our problem. 

Before we proceed to investigate the general case, 
we examine the simplest case of a trajectory passing 
through one scattering center located at the point'" 
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one-dimensional systems, the largest energy width of 
the resonant transparency (at a fixed number N of scat- 
tering centers along the trajectory and a t  a fixed path 
length L1) should have trajectories in which all the 
distances between neighboring scattering centers a r e  
equal. We s tar t  with a study of these trajectories and 
investigate next the admissible deviations that pre- 
serve their "percolation" properties. We put 

2 y = + - r  2y=lr,,,-r,I=LfIN, 

z,=(L-zN) ==L1/2N=y; =On, 

1. We consider the case N = 1. Recognizing that a t  
resonant energies we have GI/@, >> kt)., ( ~ f ) ~ ,  we write 
down on the basis of (5.3)-(5.5) 

(lir=pe-a~~x-o I p,-o+pe-(L-a~'~X+L] p,-o 

Substituting (5.3') in (5.1), we get 8,<1 (see Fig. 2). Recognizing that in the vicinity of 
the resonance p a  >> 1, and consequently j/ff, >> .>:), , 
( X t ) x ,  we simplify the general expressions (5.3)-(5.51, 
retaining in them only the principal terms. Then 

(a + ik) e-2(L-za) a - 
=-- 

(a - ik) 8n (L  - z,)"' (5.6) 

From (5.4') and (5.2) we obtain similarly 
exp (-ya.) 

(x+") x = - $1, (5.4") 
2% 

~ y - p h ( @ ~ + ~ + @ ~ - , ) ,  2GjGN-1, (5.5 "a) 

2ik e-zlm (a f ik) f l Z l a  - cz '~ -o l , ,=  ------ 
(a - ik) 4xn (a - tk) 8 % ~ ~  "' (5.7) 

Substituting now (5.6), (5.7) in (5.53 and putting [ = (z, 
-L/2), we get 

p ( a f i k )  -1 
ik (f + ()]{1 + --e-mLch 2 a ~ )  . 

Qi'-P ~ ~ z ( ~ - i k )  2nL (a-ik) 

As p - Q  we have where h = e-'" Y/8ny. 

We consider now Eq. (5.5"a), which we rewrite in the 
form 

Taking the inverse Fourier transform in (5.3'), we get , + l - j + j l = O ,  2==1/2ph, 2GjGN- i. (5.12) 

Its solution is 
x-" (p) =- - 

@~=cAI"+cAz", (5.13) 

where k,,, a r e  determined by the characteristic equa- 
t ion 

Recognizing, finally, that 
A" hA+i=O. (5.14) 

The condition for the appearance of an energy band 
(i.e. for the absence of damping along the trajectory), 
is 1 k,,, 1 = 1 and, a s  seen from (5.14), is equivalent to 
the requirement 

2aX (~-")rr y .(L) = ( x + ~ )  i+ ( x - ~ ) .  - a.-ik, 
we net - 

2a cp, exp[-a(q2f pa)'"] 
Y (L,p)----- 

(a-ik) 4% (q2+p')" 

The density of the particles that pass a t  the point (L, p) 
i n  x i  p2a/2h-4nayeznv. (5.15) 

Substituting (5.3 ") in (5 .l) and (5.4 ") in (5.2) and taking 
(5.5 "b) and (5.5 "c) into account, we get 

ph BN-- 
l+ (a-ik) phl (a+ ik) 'N-l' 

l+ (a+ik) phl (a-ik) 2ik e-"" 
@I[ ph I+&=---. (a+rk) 4n2h 

At p -a, (<< L/2 we have 
a'k' Zap' 

I (L'p) d(a2+k2)¶ch2 2.i 'xP(- ' (5.10a) 

Expression (5.10) determines the local transparency of 
the barrier o,(p)r l * ( ~ , p ) ( '  (i.e., the ratio of the flux 
density a t  the exit to the density of the incident flux). 
At exact resonance p =Q, ( = O  the local transparency 
at the center of the spot a t  the point p = O  is 

OL (p-0) =a'k'lnb (aa+k') '. (5.11) 
and the area  of the spot is np2 - L/m. From Eqs. (5.10a) 
and (5.10) it is evident that the resonant passage is pre- 
served a t  1 [ 1 s 1, p a  2 ffLeaL. Recognizing that near 
the pole p a  -I/&(& =(E - E,) /24,  EO =-a: is the energy 
corresponding to the pole of the scattering amplitude), 
we obtain the energy width of the resonant transparency 
6& " e-OL. I i 

FIG. 2. One of the simplest  "resonance-percolationw trajec- 
tor ies .  The length of the broken line i s  L', 2y = L'IN. The 
criterion that determines the solitarity of this trajectory i s  
that there be n o  additional scattering center inside the region 
bounded by the thick dashed l ines.  

2. We consider now the general case of the "reson- 
ance-percolation" trajectory passing through N scat- 
tering centers located a t  the points (r,, r,, . . . , r,), with 
p, =O. As is already clear from the analysis of the 
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Hence 

Icliil-I CI- . . . -2kye"Yln(a'+kz)". 

Then, taking (5.3") into account, we get 

exp (-y%-ixpN) 2kyeaY (%-"I.-- : 
2% 'n (aa+k') " 

and consequently 
2a 2 a  1 e ~ p [ ~ y % + i x ( p - p ~ )  I 

y ( ~ * ~ ) - x ~ - L ( ~ ) - - g N - j  a-rk 4n2 2% d'x 

2a 1 -- i exp[-a(yS+lp-pNlz)"l, 
a-lk (yS+lp-pnI1)" 

(5.16) 
a'k' alp-pNl' 

Thus, the integral flux Q through one "percolation" 
trajectory with "step" 2y is 

Recognizing now that c - 1/@a < (ay)'e-2aY, y =L1/2N, we 
obtain the energy width of the resonant transparency 
6 E - e - a ~ . / ~  . The maximum width 6c at a fixed number 
of steps N corresponds to L1=L, i.e., to the shortest 
percolation path. To estimate the average transparency 
i t  is necessary to find the probabilities of the per- 
colation trajectories, determine their optimal struc- 
tures, and find their integral contribution. These tra- 
jectories, naturally become more tortuous with in- 
creasing center concentration c =n/a3. In the present 
paper we consider only the simplest case of low con- 
centration, when the main contribution to the trans- 
parency is made by trajectories close to the shortest 
ones (this is certainly the case, for example, at @ 
<< l ,Y=aL  >> 1). 

We characterize the degree of tortuousness of the 
trajectory by the average aperture angle 0 of the 
vectors y,((cosO,) = 1 - 02/2; ((cosOj - ( ~ 0 ~ 0 , ) ) ~ )  =o4/l2; 
02<< 1). Fixing the dimensionless step of the trajectory 
u =2ya = aL1/N, we introduce the quantity 

At N >> 1 we get from the obvious condition z, =(z,) 
=Y-u 

The possibie scattering-center fluctuations that leave 
the trajectory "resonantly percolating" are equal to 

The condition that the trajectory be solitary consists in 
the absence of other centers (other than those making 
up this trajectory) in a cylinder of radius u around it. 
Then the probability of realizing a resonance-percola- 
tion trajectory per unit plate area is 

Ww, ( ~ ~ ~ 0 ~ )  exp (-cNenua), c=n/aS, 

and the contribution of such trajectories to the average 
trajectory is (with logarithmic accuracy) 

0.. e ( e )  +av, e 6 ( ~ ) ,  o., o-Wu. ~ e - ~ ,  

1~ o.,. = (1 + F) {In C U ~ ~ ~ - C ~ U ~ ) - U .  

With the sum degree of accuracy, the total u is deter- 
mined by the extremal value of u,,g with respect to O 
and u (of course, in that region of the values of c and 

in which the initial assumptions ZI >> 1, g2 << 1 are 
satisfied). Thus, for example, in the r eg ionPf2c  1 lnc 1 
<< 1 (and all the more & << 1) we have Y'>> 1, and the 
term C I I ~  in the curly brackets can be neglected; we 
then obtain asymptotically 

We can similarly investigate also the resonant trans- 
parency in the vicinity of the discrete local levels 
made up of several close centers (cluster levels), for 
which it is necessary to introduce the effective ampli- 
tude p, of scattering by the cluster; this amplitude will 
be large the closer the energy to the considered cluster 
level. All the remaining scattering amplitudes, how- 
ever, will be small. It is clear that near the cluster 
levels the highest energy width of the resonant trans- 
parency is ensured by configurations with identical 
clusters separated by equal distances, along the short- 
est "resonance-percolation" trajectory. 

Just as  in the one-dimensional case, the resonant 
transparency is a strongly fluctuating quantity, and the 
determination of various intermediate asymptotic 
forms with the aid of the estimates presented above is 
governed by the concrete formulation of the problem. 

Investigation of higher concentrations, particularly 
the approach to the critical values c,, a t  which infinite 
percolation paths arise, calls for special methods and 
is beyond the scope of the present article. 

APPENDIX 

In the expression containing a damped plane and scat- 
tered spherical wave 

Y (r) =e-"'+~e-"~/4nr 

(ro is the effective radius of the local perturbation ii), 
the amplitude p of the sub-barrier scattering takes, 
according to (4.7) and (4.8), the form 

- (  ;=fi(i+h~~)-l. (A.1) 

Inasmuch as  in the three-dimensional cases a 6-func- 
tion perturbation in the form ii =B6(r) (i.e., with a ker- 
nel u(r, r l )  =B6(r)6(r1) leads to divergences we shall 
obtain the required estimates by using a s  the simplest 
local perturbation of radius r, and consider an opera- 
tor a with a kernel 

a(r, r'j = ~ f  (r)f (r'), (A.2) 

where fir) is a function with a sharp maximum and 
differs from zero inside a sphere of radius ro(aro<< 1). 
In this case, according to (A.l) and (A.2), we have for 
the kernel p(r,,r2) of the operator p 

h ~ ~ = h ( r , = )  =e-ar1*/4nrlz, f,=f(r,), fz=f(rl). 

The value of the dimensionless constant T is given by 
the normalization f (r), which we choose in the form 
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By virtue of (A.3) and (A.4), recognizing that ar,<< 1, 
we obtain a simple expression for the scattering ampli- 
tude p: 

4 n b  
P= j j ~ c r , ,  rz)av, av, = - i +z -%d  ' 6 + ~ 6 ( r ) 6 ( r ' ) ,  

A bound state exists on the center at r <-I. The 
corresponding eigenvalue a, is determined by the pole 
p, i.e., by the condition 1 + ~  =rao? (at 11+7 1 << 1). 
Near this value we have 

On the contrary, at I (1 + r)/r 1 >> ar0 we have 
p = ~ i / ( ~ + ~ ) .  (A.7) 

"We use below a hacek v (~,B,s. . .) to denote a 2 x2 txans- 
formation m a t r p  on the components of the vector X ,  and a 
circumflex * (H . . . ) to  denote operators acting on functions 
of the spatial coordinates. 

 he transparency uL ( E ,  I') depends on three arguments, L, 
r , and E, but in order not to clutter up the notation we shall 
write out explicitly, depending on the context, only those ar- 
guments which are  of interest to us  here. 

3)It is easy to verify that the amplitude of forward sub-barrier 
scattering is p = (1 - TII/Til [see also Eq. (2.5)] .  

4"l?he solution of the equation 

d2P/dzz-u2Y=-6(z-a), O<zo<L 

with boundary wnditions x - (0) = 0 ,  x + &) = 0 coincides with the 
the Green's function on an infinite axis 

and therefore the gemral solution of (2.1) takes the form 

5)The estimate (3.6) pertains to the case q2 = (k2 + ~ u ~ ) ~ / c ~ ~ k 2  - 1. 
For q >> 1 the averaging of u gives r ise  to an additional factor - l / q .  

'~xpression (3.12) should be regarded a s  symbolic, since the 
transparency at(&) c 1 at  any energy C ;  however, it is precise- 
cisely the coefficient a* which determines the ratio of the in- 
tegral input and output fluxes. 

"The cluster levels may be discrete because the positions of 
the scattering centers in the crystal-lattice sites are  dis- 
crete. 

8 ) ~ o r e  accurately, the cylinders can be slightly bent, provided 
that the angle 0 between their generators and the z axis lies 
within the limits e2 5 l / a  L. 

')l!he solution of the equation AIVk) - cu2 86.) = - 6 k  - r') , 0 
< z' < L with the homopneous boundary conditions x - (0,  p) 

= 0, X +  & ,p)  = o coincides with Green's function in an infinitely 
long homogeneous barr ier  (4.3:) I ( r  -rt) = h k  -I"). We note 
that the kernal of the operator h in the ( z , ~ )  representation is 
is diagonal in n, with 

' O ) B ~  virtue of the macroscopic homogeneity, the propagator 
(Mz,p1)q* (z ,pw))  depends only on p=p' -pw.  

"'1t is assumed here that the density of the scattering centers 
is law enough, so  the n(iro<< 1 ,  where ro is the perturbation 
action radius. 

'2)The case of one center a t  the midpoint of the barrier was 
considered in Ref. 2 by another method. 
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