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The distribution of the electron velocities in an inhomogeneously heated fully ionized plasma is 
investigated. It is shown that the fast growth of the mean free path with increasing energy gives rise to 
thermal runaway of the electrons-an abrupt growth of the number of fast electrons in the region of the 
cold plasma. The electron distribution function has a double Maxwellian character, i.e., it is characterized 
by two electron temperatures. The higher temperature is pwessed by the fast electrons. Critical 
discontinuities appear, namely unusual types of discontinuities of the distribution function. The structure 
of the kinetic discontinuity is investigated. It is shown that besides the usual heat flux there appears a 
convective energy flux carried by the fast electrons. At not too small temperature gradients, the 
convective transport plays the principal part. 

PACS numbers: 52.25.Fi, 52.50.Gj 

1. INTRODUCTION move freely between the regions with mbstantially dif- 
ferent temperatures. This leads to a.strong distortion 

The mean free path of electrons in a plasma increases of the distribution function. In particular, the number 
rapidly with increasing electron energy. Consequently of high-energy electrons in the region of the cold plasma 
the coupling between the energetic electrons and the increases sharply. This phenomenon can naturally be 
plasma is very weak and even small forces cause a con- called thermal runaway of the electrons. The present 
siderable deviation of their distribution from equili- paper is  devoted to its investigation. 
brium. For example, even in a weak constant electric 
field the electron distribution function becomes strongly It is important that electrons with energy E Z E ,  carry 
distorted in the region of high velocities, and a flux of heat by convection. Thus, so to speak, two heat fluxes 
runaway electrons i s  produced.' are produced. One is by usual thermal conductivity and 

Similar distortions of the distribution functions can 
arise also in the presence of electron-temperature 
gradients. Indeed, assume that in a given direction x 
there is present in the plasma a rather weak electron- 
temperature gradient 

Here I ,  is the mean free path of the thermal electrons. 
The temperature gradient (1) produces, naturally, only 
a small perturbation of the equilibrium distribution of 
the electrons in the principal (thermal) velocity region. 
For fast particles, however, the situation is  substan- 
tially different. Their mean free path increases: 1, 
= I , ( & / T , ) ~ ,  so that electrons with rmfficiently high en- 
era '  

i s  due mainly to the electrons with low energies & 

s 10T,. The second flux i s  convective and due to fast 
electrons E z &,. At a sufficiently small electron-tem- 
perature gradient y <y,= lo-' the principal role is played 
by the thermal conductivity. At y >y, ,  on the contrary, 
the convective transport i s  more important. In this 
case the deformation of the distribution function exerts 
a decisive influence on the heat transport in the plasma, 
which proceeds mainly via convection by the fast elec- 
trons. It has a kinetic character and cannot be describ- 
ed within the framework of ordinary transport theory. 

In the present paper we confine ourselves to plasma 
electrons; effects of similar type are typical, however, 
also of ions. We note also that, as shown in Ref. 2, 
perfectly analogous phenomena arise in transverse 
transport of supertrapped electrons and ions in toroidal 
magnetic traps. 
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2. SIMPLIFICATION OF THE KINETIC EQUATION 

We examine the effect of thermal runaway via elec- 
trons. Let the space be filled with a fully ionized plas- 
ma whose electron density and temperature vary along 
a single coordinate x .  Assume that the plasma i s  not 
magnetized or that the magnetic field is  directed along 
x .  For simplicity we assume also that the electron tem- 
perature varies monotonically from a value TeO as  x - -a, to Tel< T,, a s  x-+a, . The electron temperature 
gradient will be assumed quite weak (1). 

We replace, a s  before,' f by a new function cp: 

f ~ ~ - 7  

(8) 
and in addition, separate in explicit form the small pa- 
rameter of the problem 

where (d~,/dx), i s  the maximum value of the tempera- 
ture gradient. To this end we introduce in place of u2  
and x the new variables 

The kinetic equation for the electron distribution 
f(x, v ,  0) i s  of the form 

For the function ( P ( T , z ,  P )  we obtain the equation Here 6 i s  the angle between the velocity v and the x axis, 
@ is the electric field potential, and S i s  the collision 
integral. We take into account the fact that under con- 
dition (1) the distribution function is  strongly perturbed 
by the thermal runaway only in the region of high elec- 
tron energies &Z &,>>~,(2). This simplifies Eq. (3) sub- 
stantially. It i s  natural to seek the solution of (11) in the form of 

a series in powers of the small parameter y :  
In fact, assuming that the electric field iP is not pro- 

duced by external sources but i s  the intrinsic polariza- 
tion field of the plasma, we can neglect i ts influence, 
since 

1 1  
cp=-I&,+-cp,+cp'+ ... . 

"I" T'" 

Substituting the expansion (12) in (11) and equating terms 
at equal powers of y ,  we obtain 

Next, recognizing that the plasma is  quasineutral and is  
characterized by hydrodynamic motions with velocities 
of the order of thermal ion velocities, we can assume 
the electron distribution to be quasistationary, i.e., we 
can neglect in (3) the term af/at (first-order approxi- 
mation in the parameter m / ~ , ) .  Finally, since the 
number of fast electrons is  small, we can neglect the 
collisions between them and express the collision inte- 
gral in (3) in a linearized form'.s: 

The chain of equations (13)-(15) defines the sought dis- 
tribution function. 

3. SPHERICALLY SYMMETRICAL PART OF THE 
DISTRIBUTION FUNCTION. KINETIC 
DISCONTINUITIES 

(4) 
Here v ( v )  is  the electron collision frequency 

It follows from (13) that the main function i s  spher- 
ically symmetrical: Inh is the Coulomb logarithm, and k= (1+2)/2, where 

The equation for the function ( ~ ~ ( 7 ,  Z )  follows from the 
condition for the solvability of Eq. (14) for cp ,. Indeed, 
recognizing, just as in Refs. 1, 2, and 4 that in the ab- 
sence of an additional electron source the derivative . 

acp Jap  has in velocity space no singularities as p -1, 
we get from (14) 

is the effective charge of the ions. 

We now introduce the dimensionless variables 

Introducing Here I ,  is  the mean free path of the thermal electrons 

Equation (3) assumes in these variables the form'' we rewrite (17) in the form 
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According (181, (121, (lo), and (6) the quantity y has the 
physical meaning of the reciprocal local effective tem- 
perature: 

Recognizing that as  v -0 the distribution function is  
close to a locally Maxwellian function with a specified 
temperature profile T,(x) ,  we have the following bound- 
ary condition: 

We consider first the electron distribution function at 

i.e., in the region of a cold plasma far from the tem- 
perature transition. In this region, the temperature is  
constant: 

In addition, the temperature transition itself, whose 
width i s  A7 -1, can be regarded under the conditions (22) 
as sufficiently abrupt, i.e., accurate to -1/7 we can ne- 
glect the concrete structure of the transition and assume 
t(r) to be a discontinuous function: 

as r c o  
t ( r ) = ( t L c o M t  as T>O . (24) 

Neither Eq. (19) itself with the function t(7) (24) nor 
the boundary condition (21) contains parameters that 
specify the characteristic dimensions in terms of the 
variables 7 and z . Consequently, the solution of (19) 
in the present case can depend only on the ratio z/7 a, 
i.e., it should be self-similar. It follows from (19) that 
a =i . Putting therefore 

p=zlr", 

we get from (19) 

Equation (26) has singular solutions: 

The general solution, obtained by the substitution p 
=y(l - t~ )p , (~ ) ,  i s  of the form 

p - ~ y ( i - t y )  I ( C - ~ ~ + ~ / , ~ ~ ~ ' ~ ,  (27) 

where C i s  an arbitrary constant. 

The baundary conditions (21) and (24) in terms of the 
self-similar variables are the following: 

FIG. 1. Plots of the function y (p) a t  r >> 1  (t = 0 . 2 5 ) .  The 
dashed line shows the position of the discontinuity Po:  p 
= z/r1'2. 

the region 0 < p <2 it i s  triple-valued. This cannot be, 
because actually (26) has no continuous solution that 
satisfies the boundary conditions (28). A strong dis- 
continuity is produced and i s  shown dashed in Fig. 1. 

The conditions on the discontinuity follow directly 
from (19). We have 

In the self-similar case relation (30) takes the form 

Therefore, taking (29) into account, we obtain p, i.e., 
the discontinuity point: 

The value of y changes at the discontinuity point from 
y = l/t to y =yo=pv4t. The value of the jump Ay= l/t - y o  
has the following dependence on the cold-plasma tem- 
perature: 

The form of the distribution function of the electrons 
is shown in Fig. 2. The Maxwellian distribution with a 
local cold-plasma temperature t is  valid only up to en- 
ergies z = ~,=p,7~". At larger z it changes radically. It 
is interesting that the effective temperature at z > z, be- 
comes at first very large, but then approaches rapidly 

Consequently, the continuous solution that satisfies the 7Gtnf  

conditions (28) is 

v = l / t ,  0 6 ~ < 2 .  
FIG. 2 .  Logarithm of the spherically symmetrical part of the 

(29a) distribution function of the electrons a t  r >> 1 (t = 0 . 2 5 ) .  The . . 
p ( y )  =2.3'"ty/(I+2ty)", 0 9 ~ 6 2 ,  (29b) large initial slope corresponds to a Maxwellian distribution 

with local temperature. Next, at high energies, the distribu- 
P ( Y )  =2y(l-ty)l[l-y'-'lst(i-yS) I"', O6pGm.  (29c) tion also tends to be Maxwellian with a t e m r a t u r e  equal to 

The function y (p) is  shown in Fig. 1 (solid curves). In the temperature of the hot plasma. Curve 1 )  r = l ;  2) r =1/4. 
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the temperatures of the electrons in the hot region of 
the plasma. Thus, the distribution function turns out, 
in rough approximation, to be doubly Maxwellian: at 
low electron energies it i s  characterized by the local 
cold temperature, and at higher ones by the tempera- 
ture of the hottest region of the plasma. 

The onset of the discontinuity can be easily under- 
stood if i t  i s  recognized that Eq. (19) i s  similar to the 
equation of a simple Riemann wave.= It i s  known that 
in the course of time the profile of a Riemann wave 
breaks (topples over), and this leads in hydrodynamics 
to the onset of a shock wave. Naturally, in our case 
the profile y(z), specified as monotonic at a certain in- 
itial value T, can also break with increasing T. This 
leads to formation of strong discontinuities in the dis- 
t r iht ion of y(z). We shall call them kinetic discontin- 
uities. 

Similar singularities of the distribution function arise 
also in the region of the temperature transition, where 
the t(r) dependence becomes significant. The equations 
of the characteristics for (19) are  of the form 

The numerically obtained dependence of y on zxlh at 
various T i s  shown in Fig. 3 (the temperature profile 
t ( ~ ) =  8 - $ t anht~) .  It i s  seen that with increasing 7, 
i.e., on going from the heated to the cold plasma, the 
monotonic distribution gradually goes over into a solu- 
tion with a kinetic discontinuity, shown dashed in the 
figure. 

The obtained numerical solution y (z , T )  in the region 
of the maximum change of the temperature i s  well de- 
scribed analytically if we put 

In this case, just as in the region far  beyond the tem- 
perature transition (22), the solution y (z, 7) i s  a triply 
valued function of the energy at z 51. The function y (z) 
satisfying the boundary condition y = 1 at z =a, i s  given 
by the formula 

The other solution, satisfying the condition y = l/t at 
z = 0, i s  obtained from (19) by introducing the self -sim- 

FIG. 3. The function y k) for three different values of T at a 
temperature profile t(7) =$ -$ tanh KT. These values of T 

. correspond to the following temperatures: 1) t =g, 2 )  t =;; 
3) t=&. 

i lar variable v=z2/t(r) and the functiong=yt(7). As a 
result we obtain an ordinary differential equation for g: 

The solution of (35), starting out from the point g= 1 
and 7'0, turns back at q=0.781, and at q=O the value of 
g again becomes equal to zero. Both solutions cross at 
t 20.6. In this case y goes over continuously from one 
branch to the other and undergoes only a weak discon- 
tinuity-a discontinuity of the derivative. At t <0.6 there 
is no crossing and a jumplike transition from one branch 
to the other takes place. In this case we have a kinetic 
discontinuity. The equation for the coordinate z, of the 
discontinuity point has as before the form (30). Solution 
of this equation yields 

Thus, quantitatively the solutions y(z, r )  in the region 
of the temperature jump and beyond it  are  similar. In 
the former case, however, the position of the discontin- 
uity point i s  almost immobile (zOe1), while in the latter 
it moves with increasing distance from the transition 
region (2,- 7'12). 

4. STRUCTURE OF KINETIC DISCONTINUITY 

To investigate the structure of the kinetic discontin- 
uity we turn to Eq. (11). Recognizing that in our ap- 
proximation the discontinuity i s  spherically symmetri- 
cal, we can neglect the dependence of cp on p. Assum- 
ing furthermore, in accordance with (I?), that p =  1 in 
the first  term, we rewrite (11) in the region near the 
discontinuity in the form 

Equation (36) differs from (17) in the last term that de- 
scribes the diffusion of the electrons in energy as a 
result of the collision. It is this term which determines 
the smearing of the discontinuity. 

Taking the expansion (12) into account, introducing the 
function y in accord with (18), and changing over to the 
new variable 

we obtain 

Here z,=z(~,) i s  the location of the discontinuity at the 
given instant 7, and t,=t(~,). The boundary conditions 
for (38) are 

y+y+ as g++-, y+y- as 6-c-m, (39) 

with y+=yl(r, z,) and y-=y,(r,z,) the solutions of Eq. 
(17); they are connected, in addition, by the relation 
(30). 

The solution of (38) with the condition (39) is 

We see therefore that the width of the discontinuity re-  

473 Sov. Phys. JETP 50(3), Sept. 1979 A. V. Gurevich and Ya. N. lstomin 473 



gion i s  small in terms of the variables z -of the order 
of y'". It increases with increasing jump y'-y+. 

5. DIRECTIONAL PART OF THE DISTRIBUTION 
FUNCTION 

The function cp , is defined by Eq. (14). It follows from 
(14) and (17) that 

cpil=-2k'k~ (acp,~a~) ". 
The sign in front of the square root is chosen such that 
the distribution function (8) has a directional character, 
i.e., i t  has a maximum at p=1. Equation (41) defines 
the angular dependence of the distribution function. 

The equation for the function cplok, 7) follows, as  be- 
fore, from the condition of the solvability of Eq. (15) for 
cp,. Recognizing that the function cp, must not have any 
singularities as p -1, we obtain from (15) 

We consider first the cold-plasma region far from the 
temperature transition (22), where the self -similar 
solution (29) i s  valid. Up to the discontinuity point p, 
we have 

We see therefore that 

i.e., the solution (29a) at p < p, is not perturbed and re- 
mains spherically symmetrical, Maxwellian, with a lo- 
cal temperature T. In the region beyond the discontin- 
uityp>p, i.e., at 

it follows from (17) that 

and the distribution function becomes sharply direction- 
al, with a directivity that increases with increasing en- 
ergy like - z '". Thus, in the region of the kinetic dis- 
continuity we have not only a jump of the effective elec- 
tron temperature T,(v), but also a transformation of the 
distribution function from spherically symmetrical to 
sharply directional. 

We examine now the manner in which the distribution 
function becomes directional in the discontinuity region. 
To this end we represent the function q ( z ,  7, p) in the 
form of a series 

assuming in accordance with (12) that 

The correctness of this assumption will be proved di- 
rectly by constructing the solution. Substituting the ex- 
pansion (45) in (11) and recognizing that in the zeroth 
approximation, by virtue of (46), the quadratic term 
-(8qjo/ap)2, is the principal one, we find that the func- 

tion $, is spherically symmetrical: 

@o=Oo(z, T) (47) 

[the term -(8q0/az)' contains the small parameter lh]. 

In the next approximation, separating the principal 
terms (46), we have the equation 

From the requirement that the derivative a$ ,/ap have 
no singularities as  p+l ,  just as  in Sec. 3, we obtain an 
equation that defines the function 5, ,(z,T). We have 

This equation, naturally, coincides with (36). Its solu- 
tion (40) describes, in the transition region, the struc- 
ture of the spherically symmetrical part of the distribu- 
tion function. From (48), taking (49) into account, we 
get for $,: 

~ I = ( l + p ) " ~ i , ( z ,  T)+@,o(z, T), @,l=-2k"'z(a~Ja~)"'. (50) 

Thus, the angular dependence of the distribution func- 
tion i s  determined by Eq. (41) everywhere with the ex- 
ception of the discontinuity region. We have then in ac- 
cordance with (18) 

i '  I ' ag o - j d z ,  I=- j-dz 
0 

a~ 2 ar  

We have taken into account here the fact that in the 
transition region 

The function j (5 )  i s  defined by (40). In particular, 
in the self-similar case, recognizing that z , = p , ~ ' ~ ,  
y (O)= l/t, we have 

Formulas (51) and (50), with (40) taken into account, 
describe the continuous transition from the spherically 
symmetrical distribution function at z < z ,(a$,/ar=O 
to the sharply directional (41) at z >z,. 

The equation for $ ,,(z, 7) i s  obtained by starting from 
the requirement that the derivative a7pdap contain no 
singularities as  p -1. We have 

The solution of (52) shows that the function $: increases 
in the transition region from zero to a value 

and then increases slowly (like z1f2) with increasing en- 
ergy. 

It is seen thus that :- y-'I4 <<go. It is easy'to verify 
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in similar fashion that 1 q, 1 2 1. Consequently, the con- 
ditions (46), which determine the validity of the expan- 
sion (45), are always satisfied. 

6. HEAT FLUX. KINETIC CONVECTION 

The heat flux along the x axis is given by 

f (p, z )  = ~ ( m / 2 7 1 ~ ~ ~ t  

We calculate first the heat flux in that space region 
(22) where t is constant. The heat is transported here 
only by convection of the fast particles with energy z 
22,. Since the distribution function at lower energies 
is isotropic, the usual thermal-conductivity heat flux 
is absent-it is  proportional to the temperature gradi- 
ent. Since, a s  we have seen, the distribution function 
is strongly directional at z > z, we can confine our- 
selves for only to the first two terms of the expansion 
(12): 

zo zy-zoy, 
(po =%f - t"' 

2 "" 

( p i - 2  [B z>zo, 

(54) 

k 

where 

r(y)=[ (1-y')-Z/3t(l-y3) ]-''a. 

Substituting (54) in (53) we get 

l',@ I12 kt/* 
PII=ANT~~ (7) - T2'-z2zexp 

(at),. 

In the last expression we have returned to the variables 
(6), T,, is the temperature of the hot region of the plas- 
ma, and A, is a constant of the order of unity,') namely 

In this case the energy is thus transported only con- 
vectively-by particles moving freely at high velocity 
relative to the plasma; the number of such particles 
decreases exponentially with the dimensionless dis- 
tance ~ ( 6 ) .  

We consider now the temperature transition region 
t = t(X). Here we have according to (34) and (35) 

The contribution to the heat flux made by the thermal 
particles and by the low-energy particles Iz <z,) is pro- 
portional to the temperature gradient: 

where x i s  the thermal-conductivity coefficiente: 

a ( k )  is a coefficient on the order of unity, whose value 
depends on the ion charge. 

The particles with high energies (z > 2,) determine the 
convective heat flux, which is calculated just as (55). 
Thus, the total flux is 

The coefficient A,, just as A,, is of the order of unity, 
and its value is 

In the derivation of (57) we took into account the fact 
that z,= t. It is seen from (57) that the convective term 
is exponentially small at small gradients. At y 2 lo", 
however, it becomes comparable with the usual ther- 
mal-conduction term, which it can exceed at large 
gradients. 

Thus, heat transport in an inhomogeneously heated 
plasma is effected by thermal-conductivity only at very 
small electron-temperature gradients, y ~ 1 0 - ~ .  At large 
gradients, an important role can be played by the kine- 
tic convection by fast electrons. 

"We note that Eqs. (3) and (7) a re  valid in fact also in the 
presence of a constant magnetic field in the plasma. If the 
temperature gradient of the magnetized electrons is directed 
a t  an angle o! to the magnetic field, i t  is necessary to make 
in (7) the substitution h- h/cos cr. 

2 ) ~ h e  quantity ci - 1 is determined by the third term of the ex- 
pansion of the distribution function (12). 
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