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Resonant collisionless gas is considered in the field of a traveling monochromatic wave. The presence of 
a small parameter y = & '/my, in the problem makes possible an asymptotic analysis of the equations 
that describe the action of the radiation pressure on the gas. It is shown that the selective character of 
the radiation force leads to a decrease of the random scatter of the atom velocities. The lower limit of 
the characteristic width 6v -(2.tiy/3m)"2, of the nonequilibrium structure on the distribution function 
determined by the competition betwem the processes of phasing of the velocities and the diffusion 
spreading, is obtained. The possibility of eliminating the translational motion of the resonant ions in 
crossed optical and magnetic fields is noted. 

PACS numbers: 41.70. + t, 51.10. + y 

Cooling of a gas in the field of a standing electromag- 
netic wave was predicted and analyzed in detail from 
various points of view in Refs. 1-9. In the present  pa- 
pe r  we show that in the field of a traveling electromag- 
netic wave i t  is also possible to eliminate in  pa r t  the 
random motion of the atoms of a resonant gas and that 
a number of distinguishing features appear which are 
not encountered in the case of opposing waves. Obser-  
vation of cooling in the field of a traveling electromag- 
netic wave is apparently s impler  from the point of view 
of experimental realization. 

When the action of resonant radiation pressure  (RP) 
in the field of the plane traveling wave i s  considered, 
one must bear  in  mind the following aspects: the trans-  
lational motion of the gas as a whole, the phasing of the 
atoms in velocity space, which leads to cooling, and 
diffusion in velocity space. The f i r s t  of these factors is 
quite obvious. Induced absorption and emission of pho- 
tons are characterized by a preferred direction, where- 
as scattered photons a r e  on the average isotropically 
distributed. 

Phasing in  velocity space is due to the inhomogeneous 
character  of the force of the spontaneous radiation, 
pressure  in the sense  of i t s  sharp  dependence on the 
velocity, which manifests itself most strongly in  weak 
fields ( I d ~ , l  /R<y). The expression fo r  the force in  the 
case  of exact tuning to resonance takes in  this case  the 
form 

where x =kv,/y,, v, is the velocity of the atom in the 
direction of propagation of the radiation, k i s  the wave 
vector, y, i s  the transverse relaxation rate, d i s  the 
dipole-moment matrix element, and E, is the amplitude 
of the field. It prevails fo r  the resonant part icles 
(k  lv, I S yL) and decreases  rapidly with increasing 
Doppler shift. 

We consider, a t  the instant of t ime to, two part icles 
with m a s s  m and somewhat different velocities 
x,, x,&, -x,= bx(t,)) in the region x >  0. Then, obviously, 
at the instant of time t we have 

6 r ( t )  =6x( t , )  exp (F1(z) m-I (t-t,)).  (2 ) 

Since F' &) < O& > O), the distance between the chosen 
part icles in  velocity space decreases  with time, and 
monochromatization in velocity (phasing of the veloci- 
ties) takes place as a result. This  can be  easily under.- 
stood with the aid of the following simple arguments. 
The atoms having a sma l l e r  velocity projection on the 
radiation-propagation direction and accordingly a 
sma l l e r  Doppler shift, move more  rapidly in velocity 
space under the influence of the RP  than the atoms hav- 
ing a l a rge r  velocity projection. Therefore the "slow" 
atoms & < 1) gradually overtake the "fast" ones & >I ) ,  
forming a narrow structure in the velocity distribution. 
This  was f i r s t  pointed out in Ref. 10, where the trans- 
lational disequilibrium under the action of RP  was in- 
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vestigated. The possibility of phasing the velocities by 
an RP force of mixed type in the field of a standing wave 
was noted in Ref. 1, and the influence of optical nutation 
without allowance for relaxation on the translational 
motion of the atoms in a traveling wave is the subject of 
Ref. 11. 

It should be noted that the competing process that hin- 
de r s  infinite phasing is diffusion in velocity space due to 
fluctuations of the RP force.' Allowance for this cir- 
cumstance is decisive for the determination of the max- 
imum narrowing of the atom distribution in the velocity. 

2. LIMITING CHARACTERISTICS OF THE PHASING 

The evolution of the distribution function (DF) of the 
atoms in velocity in the field of a traveling electromag- 
netic wave, over times exceeding the phase relaxation 
time (t> y,"), and at exact resonance, is  described by 
equations that follow from the equations for the density 
matrix after eliminating the off-diagonal elements, 4*7 

name1 y 

d f 2 ( v ,  t)/dt--yf,+IE(v-hkl2rn) [ f ,  ( v - h u m )  -f , (v)  1 ,  

df ,  ( v ,  t )  ldt-y j d n ~ ( n ) f , ( v + h k n / m )  
(3) 

fl(v, t) and f,(v, t) a re  the distribution functions of the 
atoms in the lower and upper states (the diagonal ele- 
ments of the density matrix in the Wigner representa- 
tion), L is the form factor of the spectral line, F(n) 
is the probability of emission of a quantum in the direc- 
tion n, and I is the rate of the induced transitions. In 
(3) and (4) we take into account both the transfer of mo- 
mentum from the radiation and the shift of the spectral 
line as a result of the recoil. 

Let k=e,k, and let the distribution of the scattered 
photons be isotropic: 

We consider the distribution of the atomic velocities 
along the x axis, and then the corresponding DF a re  
equal to 

In weak saturation (I<< y, f2<<fl), when the selectivity 
of the radiation force is maximal, we obtain in the qua- 
sistationary situation4 from (3) and (4) 

(6 

We change over to the dimensionless variables 
x =kv,/y,, T = Ipt ,  p =tik2/myL and introduce the awilia- 
ry function 

~ ( z ,  T )  =L(z+p /2 ) f r ( t ,  7 ) .  (7) 

Then, taking into account the smallness of the param- 
e ter  p, we get from (5) the following equation 
[p -  (l(r3 - for optical transitions]: 

where R =0 ($1 [by 0 (pa) we denote the terms -pa]. 
We assume henceforth an equilibrium initial velocity 
distribution, therefore 

We note that if we discard the terms -p2 in (9), then 
this equation becomes the Fokker-Planck equation.'*12 

We consider first  the solution of the degenerate equa- 
tion (p  = 0) 

It takes the form 

where @ is determined by the initial condition 4?(+x3+x) 
=cp0&, 0). For short irradiation times T<< 1 and for 
a >> y we obtain from (10) 

Thus, even a t  short irradiation times a nonequilibrium 
structure is produced on the DF and consists of a dip 
with a center at x = -la and with a peak centered a t  
x= 1/fi and of width -1. In the course of the subse- 
quent evolution, the dip broadens and the peak narrows 
down and moves in the radiation-propagation direction. 
This is clearly seen in Figs. 1-3 which show the nu- 
merical solution of the degenerate equation (9) for dif- 
ferent detunings A' = (w - 02,)/y,. Analyzing (101, we 
easily note that cpo(x, T) has a sharp maximum at  x 
=xo(r) where no(?) satisfies the equation 

T we have xo(7 ) - (3T)'I3, therefore in the region of 
the nonequilibrium peak we have 

Thus, the width of the sharp nonequilibrium peak on 
the DF decreases with time like -(x:+ I)-', while for the 
wings of the peak (l/x: s y < l/xo) the following expres- 

454 SW. Phys. JETP 50(3), Sept. 1979 I. V. Krasnov and N. Ya. Shaparev 454 



F I G .  2. f-0 (1). on-' (21, son-' (3), zson-' (a ) ,  12Son-' (5) ;  ldEo(/r- 
-yL/2, a=lO, yl=7/2, A=O 

sion is valid: 

Thus, the degenerate solution of Eq. (8) leads to an in- 
finitesimally narrow DF, but in the course of time the 
action of the diffusion becomes noticeable. Mathemati- 
cally this manifests itself in the increase of the term 
-pa2v/8xz in (81, which can become comparable with 
the first  two terms because of the rapid change of the 
DF in the region of the maximum. This takes place 
only in the region of the nonequilibrium structure, so  
that to take the diffusion into account it is convenient to 
change over to a coordinate system that moves together 
with the peak, by making the change of variables 

In addition, we introduce the dilatation transformation 
Y1 =y /pl/', which takes into account the rapid change of 
the DF near the maximum. Then the evolution of the 
nonequilibrium structure, with account taken of the dif- 
fusion spreading, is described by the following equation 
obtained from (8) by taking the limit ( / . I ~ / ~ - O ,  y, is 
fixed): 

Equation (14) can be obtained also without resorting 
to the procedures employed in modern asymptotic anal- 
ysis,13 by assuming that after a sufficiently long time 
peak (of width 6y << 1) becomes so narrow that the pho- 
ton absorption cross section -Lk) for all the atoms 
grouped in the peak will differ insignificantly, and the 
linear terms of the expansion of L(x +y) in y a re  suffi- 
cient. Determining the mean squared scatter of the 
velocities in the region SZ of the nonequilibrium struc- 

F I G .  3. f=O (I), on-' (2). 5os-' (3). 25om-' (4) .  WOon-' (5 ) ;  IdEol/n= 
=yL/2. a-10, yr=7/2, A=-8 

F I G .  4. 

ture by means of 

and assuming that the limit of the integration region 
does not make a substantial contribution to the integrals 
(very sharp and high peak), we obtain from (14), taking 
(7) into account, the differential equation 

which has the following solution: 

C+&/S ( X ~ + ~ / , X ~ ~ + ~ / ~ X O I )  5 0  ez (so) = 
(l+x,2)' 

C is the integration constant. Figure 4 shows the de- 
pendence d the width of the peak on the position d its 
center x,. Thus, the diffusion leads ultimately to a 
smearing of the nonequilibrium structure on the DF 
(demonochromatization of the atomic velocities). There 
exists an instant of time T =  t,, x1=xo(t1) when maximum 
phasing i s  reached. Recognizing that in this case 

we obtain from (16) 

Changing over to physical variables, we can write down 
the following inequality for the characteristic width of 
the nonequilibrium peak on the DF: 

6v> (2AyI3m)". (19) 

We note that in essence an analogous expression for the 
minimum scatter of the velocities was obtained for the 
case of a standing wave.=*' This seems to be some gen- 
era l  law fo r  the limiting characteristics of gas cool- 
ing by radiation pressure due to the spontaneous emis- 

', sion. We note that (19) agrees in form with the funda- 
I mental quantum-mechanical uncertainty relation for the 

time and energy AEAt fZ, if A E = fr rn (6~) '  and Ai - y-'. 

The constant C in (17) is determined from the obvious 
joining principle: a t  sufficiently short times (when the 
diffusion spreading has not yet manifested itself) the 
width of the nonequilibrium peak should coincide with 
the values given by the solution of the degenerate equa- 
tion, therefore C = C,/p, where Co- l. It follows then 
from (17) that the limiting narrowing of the peak will be 
observed a s  soon a s  its center leaves the resonance re- 
gion xo- p-'/'. The irradiation time needed for this 
purpose is determined from the relation (12). 

To determine the structure of the peak with allowance 
- for the initial conditions and diffusion in the far  field 

(/AX;>- 1), we use the method of joining together asymp- 

SOV. Phys. JETP 50(3), Sept. 1979 I. V. Krasnov and N. Ya. Shaparev 455 



totic expansions13 (see the Appendix). The principal 
term of the asymptotic expansion is  

9 

&?(=a)= p j ( i + ~ o ' ) ~  d z o .  
a 

It follows from (20) that a t  short irradiation times [near 
field, ~ ( x , )  << 11 we have 

[this corresponds to the degenerate solution (lo)], and 
at long times (far field), when pg(x,) 2 a, the DF in the 
region of the peak does not depend on the initial distr i-  
bution and is  given by 

Consequently, in the far field the width of the peak is 
-((y2))1/ '- (xop)112 in full agreement with (17). 

We call attention to the fact that the spreading of the 
inhomogeneous peak a s  the result of the diffusion is  a 
very slow process, since B ( ~ , ) - X ; / ~ - T ~ / ~ .  At the same 
time in the near zone, where the velocity phasing pre- 
dominates, we have B(xO) - x o z 5  r 2 I 3 .  

3. MOTION OF RESONANT IONS IN  CROSSED 
OPTICAL AND MAGNETIC FIELDS 

As shown in the preceding section, when a field of a 
traveling electromagnetic wave acts on a collisionless 
gas, the random velocity decreases and the directional 
velocity increases. It is  known that the translational 
motion of the particle can be limited by ionizing it and 
pbcing it in a magnetic field. It is  of interest to con- 
sider the joint action of optical and magnetic fields on a 
resonant ion, since this uncovers additional possibili- 
ties of controlling the translational degrees of freedom 
of an ionized gas. 

The action of the magnetic field in this case is  two- 
fold. First, it influences directly the acceleration of 
the ion and enters in the form of the Lorentz force into 
the equation for the DF. Second, it changes the contour 
of the spectral line and therefore enters in the equation 
for the polarization and the population difference. We 
now estimate the influence of each of these factors. If 
the characteristic dimensions of the region of the sharp 
change of the DF is bu << y/k, then we can show, by 
using the procedure of Ref. 14, that the magnetic field 
in the first  case must be taken into account if w, - w, 
= tiky,/mv (w, is  the Larmor frequency), and in the 
second case, when w, -w, = y ,/ku, the ratio is 

and therefore for a magnetic field H<mc,/e i ts  influ- 
ence on the contour of the spectral line canbe neglected. 
(For the limiting characteristics of the cooling by the 
optical field wl/w, - p1'2 << 1. We confine ourselves to 
consideration of an individual particle, ignoring the 
fluctuations of the radiation force. The equations of 

motion take the form (the magnetic field i s  directed 
along the z axis, y/y, = 2) 

Differentiating (22) with respect to t and using (23), we 
obtain the equation of an oscillator with friction. For 
1 A 1 >> 1 kv I, y,, we can easily find i ts  solution 

u.-A. exp ('12aAt) sin (Qt-rp) , (24) 

It follows from (24) that in an  optical field crossed 
with a magnetic field the projections of the velocities of 
all the ions on the x axis oscillate a t  the same frequency 
and with an amplitude that decreases ( A d )  o r  increases 
(A>()), depending on the sign of the detuning. In this 
respect the situation i s  similar to the case of a standing 
wave, when the resonant particle is decelerated at A < 0 
regardless of the velocity direction. 

The Larmor precession in a plane perpendicular to 
the direction of the magnetic field causes the particle 
to interact with the optical field, in the course of one 
half-period of the motion on its circular orbit, more 
strongly than during the second half-period, when it 
goes off-resonance because of the Doppler shift. 
Therefore along the direction of the electromagnetic 
wave the ions a r e  decelerated at A< 0 regardless of the 
sign of the initial projection of the velocity and a r e  
bunched in velocity space near u,= 0. 

Since the magnetic field constantly rotates the com- 
ponent of the velocity vector v in the xy plane, the ra- 
diation pressure acts also on the projection of the ve- 
locity v, in a direction perpendicular to the propagation 
of the radiation and to the magnetic field: 

a A 
- cos (Qt-cp) + - sin cp+cos cp 

252 

The ion deceleration in crossed fields can be used to 
eliminate the Doppler broadening of the spectral line. 
When there is  no optical field, this is possible only for 
strong fields (w, >> kv) on account of the Dicke effect.15 

CONCLUSION 

The phasing of the atomic velocities by the field of a 
traveling electromagnetic wave, considered in the pres-  
ent article, extends the possibility of controlling the 
translational degrees of freedom of a gas with the aid of 
light and can be used, in particular, for monochroma- 
t ization of longitudinal velocities in a molecular beam 
without substantially changing i ts  intensity. The mean 
squared scatter 6v of the projections of the velocities 
can in this case not be less  than a value determined by 
the lifetime of the upper state 821, - (tiy/m)'12. For ex- 
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ample, for the Sr8' atom (X =4607 A, transition 5 'So 
- 5 'P,): 

2on=tikYm-22 kHz, r,-10' Hz, Z/L-lo-', p=10-', 

the characteristic time of peak formation on the D F  is 
t - 5 x l W 4  sec, and the limiting width 6v, - 3 cm/sec is 
reached after t - 5 X 10" sec. After the lapse of a time 
t - 1 sec, when diffusion in velocity space becomes no- 
ticable, the peak is still quite narrow: 671 - 7 cm/sec 
<< y,/k = 100 cm/sec. We note that the increase of the 
radiation power leads to a shortening of the time of 
formation of the peak and increases the number of 
cooled particles, but because of the saturation of the 
radiation-pressure force ( I ~ E ,  I /ti2 y,) the minimal 
velocity scatter increases: 

(GI i s  the saturation parameter). 

New possibilities a r e  uncovered also for  the control 
of the translational motion of ions in the combined ac- 
tion of resonant light and a magnetic field. Here, for  
example, to eliminate the Doppler broadening the fields 
required a r e  -10' Oe (w, a wP > a A), whereas the use of 
the Dicke effect for these purposes15 calls for fields 
-lo5 Oe (o, > I kv I ). 

The variety of effects of resonant radiation pressure 
makes it possible to change the state of the translation- 
al degrees of freedom of the gas in a very wide range 
of directions and points with optimism to prospects for 
using these effects for both scientific and applied pur- 
poses. Further progress in this direction will be  
brought about by the organization of new experiments. 

APPENDIX 

We now derive the asymptotic expression (20). We 
introduce to this end the new variables 

(l=(i+zo')y+z,y'+y'/3, z,--z,(~). (A. 1 ) 

Then, taking into account the following obvious rela- 
tions 

we rewrite (8) in terms of the variables q and x,: 

In the near field (region of small  x,) the direct asymp- 
totic expansion (we a r e  considering the limiting process 
p - 0, with x, and q fixed) of the solution of (3) can be 
sought in the form 

The expansion (A.4) generates a sequence of linear 
problems 

a~p. la~~=o,  ~,/aza=ll?(.cpo) ,..., (A. 5) 

which must be solved under boundary and initial condi- 
tions corresponding to (8). The expansion (A.4) be- 
comes non-uniform in the f a r  field, when pxz-O(1). 
Thus, the direct asymptotic expansion is not valid after 
a sufficiently large time interval, when the nonequilib- 
rium peak goes out of the resonance region (x,> 1). 
This is due to the cumulative character of the manfes- 
tation of diffusion. 

To construct a solution suitable in the f a r  field up to 
1, we introduce the slow variable pg(x,)=s and 

consider another limiting process: q and s a r e  fixed 
and p- 0, where 

9 

s=pg(zo)= J p ( ~ + x o ~ ) ~ d ~ ~ .  (A.6) 

Equation (A.3) is transformed into the following (with 
account taken of the t e rms  -p2 in (A.3) and of the rela- 
tion Y =uh0,  q, p)  =&, q, p ) - ~ p ~ / ~ / s ~ ) :  

Consequently, the asymptotic expansion of the solution 
in  the f a r  field takes the form 

The principal term of the asymptotic expansion (A.8) 
satisfies the thermal-conductivity equation 

The initial conditions for  $, a r e  determined by joining 
together the asymptotic expansions (A.8) and (A.4). We 
consider the intermediate limit [q, a(p)g(xo) =s, is 
fixed, a(p)-01, where p<< a ( p )  << 1. 

lim (p/a(p) ) = 0. 
P-0 

The joining together of f i rs t  order  leads to the relation 

lim (p) pS., q) = go (0, q) = 'pa(q) = @ (q). (A.10) 
*-0 

Equation (A.10) yields the initial condition for (A.9). 
According to Kaplun's continuation theoremt3 the expan- 
sion (A.8.) is uniformly suitable on the interval 
111 " u(p), where a(p)--. Therefore Go(s,q) is unam- 
biguously given by - 

2 
@(s,n)=  J @(E)G ( i - ~ , ~ s ) d i  (A.11) 

- - 
where G(x, t) is the fundamental solution of the heat con- 
duction equation. Changing over in ( ~ . 1 1 )  to the vari- 
ables (x,, y) we obtain (20). We note finally that inas- 
much as in the near field ( ~ ( x , )  << 1) the asymptotic 
expression (20) goes over directly into a degenerate 
solution q,, which i s  the f i rs t  term of the direct asymp- 
totic expansion, i t  is uniformly suitable in the near and 
f a r  fields in the interval 0 -C pg(xo) " at (al >> 1). We 
point out also that the foregoing calculations show the 
validity of the Fokker-Planck approximation for the 
distribution function in the considered time intervals, 
since neglect of second-order terms in (8) does not 
change the principal terms of the asymptotic expansions 
and leads to (20). 
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We calculate the mechanism and singularities of the excitation of ion oscillations in a plasma produd 
by a steady electron beam that propagates in a gas in the absence of an external magnetic field. It is 
shown that they are governed by the effect of spatial enhancement of system-charge-density perturbations 
that are almost transverse to the beam velocity. The established experimental facts are explained 
satisfactorily, in the main, on the basis of a dispersion relation that takes into account, on the one hand, 
the buildup of the ion oscillations by the cold beam, and on the other, the collisionless damping of these 
oscillations by the ions and elect- of the plasma. 

PACS numbers: 52.4Q.Mj 

Ion oscillations excited in a neutralized electron beam 
were investigated in a number of studies both in the 
presence of an external longitudinal magnetic field and 
without such a field. Whereas for a beam in a mag- 
netic field there exists a fairly complete picture of the 
excitation of the ion oscillations of different types,4 
the data obtained in the absence of a magnetic field 
are insufficient to establish on the basis of the results 
of the theorye8 the character of the oscillations and 
the processes that determine their onset in this case. 
Yet freely propagating beams a r e  quite frequently en- 
countered physical systems (electron-beam welding, 
active experiments in the upper atmosphere, their 
transport is apparently quite strongly subjected to 
action of oscillations produced in the beams. 

We have experimentally investigated ion oscillations 
in a plasma that is produced by an electron beam pass- 
ing in the absence of a magnetic field through a gas. 
The measurements were performed with a setup for 
electron-beam welding, comprising a metallic cubic 
chamber measuring 50 x50 x 50 cm, in which it was 
possible to vary the air pressure in the range from 
8 x to 1 x Tor r .  In one of the steps of the mea- 
suring chambers we placed an electron gun. In al- 

most all the measurements we used a diode focusing 
system that shaped a practically parallel beam of 2-3 
mm diameter with current up to 250 mA and energy 
10-20 keV. The only exceptions were experiments 
with variation of the beam diameter. The latter can 
be easily effected only by using guns with magnetic 
focusing lens; to be sure,  this cesulted in a beam with 
a clearly pronounced crossover and one could speak of 
a certain average beam diameter. 

A system of three diaphragms with holes of 10 mm 
diameter, approximately coaxial with the beam was 
located 18 cm away from the gun anode. The outer 
diaphragms were grounded, and when necessary it was 
possible to apply to the inner diaphragm a high-fre- 
quency voltage to modulate the beam. The modulator 
length was 20 mm. The oscillations excited in the 
beam were received with a high-frequency probe o r  
with a diaphragm-loaded collector. The signal was 
next applied to the input of an oscilloscope o r  an 
5-4-8 spectrum analyzer. Since the investigated beam 
carried a rather large specific power (up to 105 w/cm2 
in a welding beam), the probe w a s  moved in the course 
of the measurements in a direction transverse to the 
beam, with linear velocity 1.6 x lo3 cm/sec, td prevent 
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