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A new method is proposed for the study of the behavior of wave packets in various quantum systems, 
including anharmonic ones. It is shown how to approximate such a packet optimally with the aid of a 
Gaussian. A closed system of ordinary differential equations is obtained for the position and width of this 
packet. The proposed method is applicable during the time in which the difference between the true 
solution and the approximating Gaussian solution is small. Wave packets in both one-dimensional and 
multidimensional systems are considered. It is shown, with a quantum nonlinear string as an example, 
how to effect the transition from the multidimensional problem to the field problem. The obtained system 
of ordinary differential equations can be used to set up a numerical experiment on the excitation of 
molecules. It is shown how to vary the frequency of the field with time at a given anharmonicity, so as 
to ensure an effective rapid excitation of an oscillator. 

PACS numbers: 03.65.Db 

INTRODUCTION We shall call such wave packets pseudo-coherent states. 

Much attention is being paid recently to the buildup of 
oscillations in molecules. This question is important 
for the understanding of the phenomenon of collisionless 
collective dissociation, of the excitation of molecules 
by intense light,'" of the excitation of oscillations of the 
field of surface  force^,^ etc. The behavior of such non- 
linear systems in monochromatic fields was considered 
in a large number of papers (see, e.g., Refs. 7-9)." In 
Refs. 8 and 9, computer calculations were used to con- 
sider both classical and quantum problems dealing with 
the behavior of a particle in a one-dimensional potential 
well of non-harmonic type under the influence of an ex- 
ternal exciting force. In many of the cases considered 
in Ref. 8, a curious regularity was observed: despite 
the relatively strong anharmonicity, the solution in the 
quantum case was a more or less localized wave packet 
moving along a trajectory close to classical, but in con- 
trast  to the well known coherent state in the harmonic 
o ~ c i l l a t o r , ' ~  the shape of the packet varied with time 
(the packet pulsated). A situation is possible (and is 
certainly realized a t  least during the initial stages of the 
the excitation), wherein the shape of such localized 
formations does not deviate noticably from Gaussian. 

In view of the large complexity of the calculation, i t  
is impossible to use directly the method of Refs. 8 and 
9 for a numerical experiment on molecules. We pro- 
pose in this article a method that makes i t  possible to 
calculate, in the presence of pseudo-coherent  state^,^' 
the position and width of a wave packet a t  each instant of 
time in both the one-dimensional and miltidimensional 
cases. Since the method reduces to a solution of a sys- 
tem of ordinary differential equations, i t  can be used in 
principle to se t  up numerical experiments also for 
multidimensional systems that describe molecules. 

When working with pseudo-coherent states we can 
make use of the following device: we introduce an aux- 
illiary potential Ul(x, t )  which, on the one hand, approx- 
imates a t  each instant of time in "optimal" fashion the 
true potential U(x, t) a t  the location of the packet [U, 
(x, t) can differ quite strongly from U(x,t) in places 
where there is no packet], and on the other hand greatly 
simplifies the procedure of solving the Schradinger 
equation. We can choose Ul(x, t) to be a potential ih the 
form o(t )  + P(t)x +y(t)x2.11 Then, i f  a t  the initial instant 
the packet had a Gaussian form, the solution of'the 
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SchrSdinger equation with Ul(x, t) can be represented in 
the form 

exp { -A  ( t )  (2-E ( t ) )  ' + i h - * ~ i  ( t )  (2-E ( t )  ) + B ( t ) } ,  

where for A(t),F(t) and B(t) we can write ordinary dif- 
ferential equations that contain cv(t), P(t), and y(t). One 
can regard as "optimal" a choice of coefficients in U, 
(x,t) such that both the "center of gravity" and the width 
of the Gaussian packet coincide a t  all times with the 
"center of gravity" and the width of the true solution. 
In this case i t  becomes possible (see Sec. 1) to express, 
with suitable approximation, a(t) ,  P(t), and y(t) in terms 
of U(x,t),A(t), and x(t). 

In addition to what was done in Ref. 8, i.e., excitation 
in specified external fields, we have demonstrated3' 
how, by using the obtained equations, i t  is possible to 
choose optimal, generally speaking nonmonochromatic 
exciting signals (see, e.g., Refs. 12 and 13). The fre- 
quency of the external signal varies in this case in such 
a way that i ts  phase coincides a t  each instant of time 
with the phase of the wave-packet velocity. We have 
succeeded, in the numerical experiment, to excite with- 
in short times a nonlinear system to energies a t  which 
the anharmonicity has already a substantial effect on 
the spectrum. 

The indicated transition can be directly generalized to 
a multidimensional problem. In this case U, must be 
represented in the form 

On the other hand, the transition from multidimensional 
problems to field problems is less trivial: the field 
equations must be  renormalized. What is remarkable 
here is that the renormalization can be effected in the 
equations in general form, without going over to con- 
crete problems. 

1. ONE-DIMENSIONAL NONLINEAR OSCILLATOR 

Let the Hamiltonian of the system in question be 

where U(x, t) is a potential with weak anharmonicity 
X@(x): 

We represent the exact solution of the Schrijdinger equa- 
tion with Hamiltonian (1) in the form 

where 

Yap(z, t )  =exp { - A  ( t )  ya+iC ( t ) y + B ( t )  ), (4) 
y - z - r ( t ) ,  ~ ( t )  - ~ , ( t ) + ~ t ) ,  ~ ( t )  = ~ , ( t )  + i ~ , ( t ) ,  

A1(t),A2(t), Bl(t), B2(t),Z(t), C(t )  a r e  real  functions of the 
time. We stipulate furthermore that the parameters of 
the function I,(%, t) satisfy the conditions 

Let, in addition, 9,(x, t) be a solution of a SchrGdinger 

equation with a real  potential. It is easy to show that 
the following relations a r e  then valid: 

j ( l cp l '+~~~cp '+cp~~~)dy=~,  

5 ( I ~ I ~ + ~ p c p ' + p Y ~ Y . ; ) y  dy-0, j ( Iql1+YaPcp'+cpYaY.;) ya dy-0. (7) 

The function *,(x,t) yields the f i rs t  two moment$ of 
the exact solution !I!,,(%, t). It is easy to show that the 
quantity ( Y  +?(t)) averaged over the fast time oscilla- 
tions yields, accurate to terms proportional to X, the 
energy of the investigated system, namely 

E ( t )  =Mo,'<Y+ES(t) >. 
Differentiating (5) twice with respect to time and using 

the Ehrenfest equations, we obtain 

(The last equality ensures a minimum deviation of the 
phase of B2(t) from the phase of the exact solution 9, 
(x, t), 

1 
ME ( t )  -- - au 

M  
j - ~ ( T B ; + ~ ~ . Y ~ I ~ I ~ )  dy,  

ay  

iMY acp acp' +-j ~ A Y  Y [ v ~ - P - ]  ay dy .  

For  the correction p(y, t )  =x(y,t)*,(y, t) we have the 
equation 

where 

Considering only those exact solutions of the SchrBding- 
e r  equation which can be represented a t  the initial in- 
stant in the form of a Gaussian function, and recogniz- 
ing that the contribution from p(x, t) to (9) is small in 
terms of A', we obtain a system of equations that is 
closed relative to Z(t) and Y(t): 

447 Sov. Phys. JETP 50(31, Sept. 1979 C. A. Narniot and V. Yu. ~inkel 'shtek 447 



It can be shown, using relations (7) and (a), that Eq. 
(12) in f i rs t  order in A yields the minimum of the norm 
of the increment p(y, t). In the case of a linear oscilla- 
tor the system (12) yields exact solutions for the Ham- 
iltonian fi in the form of Gaussian packets. On theother 
hand, if the potential U(x, t) is anharmonic, the nonlin- 
ear quantum corrections to the packet motion a re  auto- 
matically taken into account in (12). I t  is important that 
(12) yields not a quasiclassical but a quantum descrip- 
tion of the evolution of the system, with a single limita- 
tion: the deviation of the exact solution from the ap- 
proximate one must be small. 

We now indicate a criterion for the applicability of 
(12). In first  order we obtain the following equation for 
x: 

Let AU(y ,  t) be  a polynomial in y of degree N. Then, 
taking (11) and (12) into account we have, choosing ~ , ( t )  
in suitable fashion, 

where Hn(y) is a Hermite polynomial. The coefficients 
xn(t) in the expression 

I 
I nhi dr 

X ( Y ,  t )=  Z X = ( ~ ) H ~  (m) ~xP{-- j 
.-I 2M a 

then take the form 

Solving (121, we obtain the dependence of Z(t) and Y(t) on 
the time. We can then easily determine ~ ( y ,  t) from (13). 
On the other hand, the system (12) can be  easily solved 
for a concrete form of the potential U(x, t) with a com- 
puter (see Sec. 3). 

The criterion for the applicability of the proposed 
description is satisfaction of the inequality 

2. EQUATIONS IN SLOW VARIABLES 

For a linear oscillator, Eqs. (12) take the form 

These equations can be solved exactly. In particular, 

where 

a t  p = O  we obtain the well known coherent states. 

For a nonlinear oscillator, we represent z(t) and Y(t) 
in the form 

For concreteness, we consider anharmonicity of the 
form 

By the averaging method14 we obtain for the slow vari- 
ables q(t), 8(t), a@), q(t), and p(t), in first-order approx- 
imation, 

where 

po=h/2Mo,, po(t) =-fo cos (olt+6) -f ( t )  . 

The system (18) is easier to investigate than (12). 

3. RESULTS OF COMPUTER CALCULATIONS 

The systems of ordinary differential equations (12) 
and (la), obtained in the preceding sections can be used 
to formulate a numerical experiment on the excitation 
of oscillations of a molecule by laser radiation. It must 
be borne in mind that for polyatomic molecules a t  high 
excitation energies, where the multimode character is 
already significant, Eqs. (12) and (18) no longer work. 
During the initial stages, however, s o  long as only one 
mode is excited and s o  long as the criterion (14) i s  valid, 
i t  is possible to use these equations to describe the ex- 
citation of the molecule. 

Using (12) and (18), we can choose an optimal modula- 
tion of the laser radiation, such that the effective build- 
up of the oscillations of the molecule turns out to be 
possible a t  much lower powers than a t  present. One of 
the methods of such a choice is the following. We sub- 
stitute f(t) in (18) in the form f(t) =-fo sin(wot + 8). The 
external field a t  any instant of time performs then posi- 
tive work on the molecule, inasmuch as in this case the 
force has the same phase as the velocity. Determining 

FIG. 1. Free motion of 
oscillator. Solution of Eqs . 
( 1 2 ) .  Fast variables, 
%= 0.03. 
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FIG. 2. Excitation of oscillator by ,a driving force. Solution of 
Eqs. (12). Fast variables, f = O.lX, ho= 0.1. 

in self-consistent fashion f(t) in the course of the solu- 
tion (18), we obtain the explicit form of the exciting 
signal. 

For the concrete form of the potential U ( x ,  t) 

we present examples of the solutions of Eqs. (12) and 
(18), obtained with the aid of PDP and WANG computers. 
The following cases were considered: 

I. Free  motion of the system Cf=O, see  Fig. 1). 

2. Evolution of the system under the influence of an 
external force f(t) =(I!E(~), (I! > 0  [we solved Eqs. (12), see  
Fig. 21. 

3. Evolution of the system under the influence of the 
external force 

f (t)  =-fo sin (oot+8(t)), f.>O 

FIG. 3. Excitation by a driving force f= - fo sin (w,t+ 8 ) ;  
A,= 0.1; 0.2; 0.5. Solution of Eqs. (18). Slow variables. The 
dimensionless quantities are here 

lih 
0 "3b0' 

Woo' 

FIG. 4. Dependence of the 
frequency of the induced 
force on the time. The 
same quantities are used 
as in Fig. 3; fao= 0.02. 

a t  x(t) = -awo sin(wot + B ( t ) )  [we solved Eqs. (18), see  
Fig. 31. 

The results of the solution of the equations a r e  shown 
in the figures. As seen from Figs. 2 and 3, the exciting 
signal causes rather fast excitation of the system. Fig- 
u re  4 shows a plot of o,(t) a t  optimal excitation (solid 
line). For comparison, the same figure shows a plot of 
w,(t) a t  optimal classical excitation (dashed line). In 
addition, also for comparison, the figure shows a plot 
of w,(t) obtained neglecting the change of the width of 
the packet (dash-dot). 

Choosing the anharmonicity constant for a concrete 
molecule and using the function plotted in Fig. 4, we 
can determine the required temporal variation of the 
laser frequency in the optimal regime of excitation of 
this molecule. The intensity-of the laser radiation field 
is then 

As already mentioned in the Introduction, the method 
considered here can be generalized also to multidimen- 
sional problems (see Sec. 5). This makes i t  possible in 
principle to organize a numerical experiment also when 
a large number of modes is excited. The philosophy be- 
hind the search for the optimal exciting signal remains 
the same  a s  before. 

4. THE EFFECTIVE HAMILTONIAN 

Equations (12) can be obtained also in another way. 
Namely, we can obtain the previously derived equations 
by averaging the Hamiltonian (1) over a pseudo-coher- 
ent state and introducing the necessary canonical vari- 
ables. In fact, after integration and after simple trans- 
formations we obtain 

The canonical variables were chosen in the following 
manner: 

Z=Z ( t ) ,  P = M ~  ( t ) ,  q = ~ ,  p=-AA,. (22) 

(The one-dimensional quantum problem goes over in 
this case into a two-dimensional classical problem). 
Taking the variational derivatives of Herr with respect 
to the canonical variables and using the Hamilton equa- 
tions, we then obtain exactly Eqs. (12). It is thus clear 
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that by a purely "classical" method we can obtain from 
(21) the equations (12) for the pseudo-coherent states, 
by using the Hamilton equations. 

5. SYSTEM OF SEVERAL PARTICLES WITH 
NONLINEAR INTERACTION 

Let the Hamiltonian of the system in question be of the 
form 

We stipulate beforehand that we shall consider for sim- 
plicity a system consisting of unlike particles. The 
wave function of the pseudo-coherent state is of theform 

Yap=exp { - ~ . , y . y ~ + i f i - ' ~ 3 ~ y ~ + B ) ,  

B,=-'1, In (2n)N0 det [Amm], 

~ c n = ' / r ~ s ~ l ) ;  Amm=Amn=Ams,(r)+tQm(r,; Z*=<zs>xB (23) 

Generalizing (21) to the multiparticle case, we obtain 

where 

q.m=linn. ~ ~ = - f i A . ~ , , ) ,  z .=~.,  P,=MIL.. (25) 

Varying (24) with respect to the canonical variables (25), 
we obtain a system of equations for the pseudo-coherent 
multiparticle state 

N. 1 " 1 
Rdu(2)=-2A2 F A ~ ( ~ ) + 2 A 2  X ~ e c * ~ - ~ u ( z )  

L-1 L-I Mk 

him At,  I d 
AAlr(r) - + AA*<(r) - v- - - 

Mm M, 2 dt 

Inthederivationof (26)we must use the relation dX;:/dX,, 
= -A,'<: and assume in the variation that k, , is inde- 
pendent of A,, and A,,,,, is independent of A,,,,,. The 
solution of the system (26) yields the complete informa- 
tion on the time variation of the approximate solution of 
the SchrSdinger equation- the multiparticle wave func- 
tion (23). 

The derivation of the criterion in the multidimensional 
case is quite cumbersome because of the tensor char- 
acter of the transformations, but i ts  idea does not differ 
in principle from that of the one-dimensional case. 

The choice of the canonical variables (25) is governed 
principally by convenience considerations. In particu- 

lar,  from the theorems on the simultaneous diagonaliza- 
tion of two quadratic forms i t  follows (since A,, is a pos- 
itive definite quadratic form) that there exists a trans- 
formation, generally speaking time-dependent, which 
yields a se t  of canonical variables out of 4N, quantities. 

If the explicit time dependence in Heit is caused only 
by the external field, then that part of (24) which does 
not depend explicitly on the time yields the eigenenergy 
of the system in a definite pseudo-coherent state. This 
energy consists of three parts: 1) the energy of the 
"classical" motion (the f i rs t  two terms), 2) the quan- 
tum "internal" energy in the quasicoherent state (third, 
fourth, and fifth terms of the sum), 3) the "interaction" 
energy of these "degrees of freedom," due to both the 
quantum and the nonlinear character of the system. For  
a harmonic oscillator, the "internal" and "classical" 
degrees of freedom a r e  uncoupled. The pseudo-coher- 
ent state corresponding to the minimum of the "intern- 
al" energy, is a well known coherent state of a quadratic 
system. 

We have considered above the averaging of the Ham- 
iltonian over a pseudo-coherent state: We shall show 
now that for a Hermitian operator Q ( P , ~ )  whose anhar- 
monicity parameters remain small with respect to i and 
2 ,  also satisfies accurate to second order in X the re- 
lation 

In fact 

The Hermitian operator 6(;,2) which depends anatytic- 
ally on the variables p and x ,  can always be expanded, 
accurate to second-order terms inclusive: 

Using Eqs. (7) and (8), we can easily verify the validity 
of (27). The generalization to the multidimensional case 
is automatic. 

We assume now that there exists an "ensemble" of 
pseudo-coherent states and :hat we a r e  interested in the 
mean value of the operator 0 over this c'ensemble." Ob- 
viously, this mean value can be expressed in terms of 
a sor t  of "distribution function" F, which determines 
the density of the probability that the canonical vari- 
ables (22) take on definite values. In the case when the 
"ensemble" is so constructed that the pseudo-coherent 
states contained in i t  do not decay, we can write for F 
the equation 

6. NONLINEAR QUANTUM STRING 

We extend the method to include a system with an in- 
finite number of particles. Namely, using the results 
presented above, we obtain equations that describe the 
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pseudo-coherent states of a nonlinear quantum string in 
an external potential (see also Ref. 15). We a re  con- 
sidering one-dimensional oscillations in a direction per- 
pendicular to the string. The Hamiltonian k takes in 
this case the form 

where x1 is the coordinate along the string, u(xi) is the 
transverse deviation of the string, pti2/2 is the density 
of the momentum at  the point xi, F(xi, t )  is the density of 
the external forces, ~(au/ax,)  is the density of the po- 
tential energy of the interaction in the string, which is 
an even function of au/ax,, V(u) is the external potential, 
an even function of u, in which the string is placed, and 
p is the density of the string. The wave function in the 
pseudo-coherent state is given by 

Yap= exp B - - d (2,  t )  y (2) pdz :I 

Then He,, constitutes the Hamiltonian (28) averaged over 
(29), and i s  in essence a continual integral: 

H~~~ = j Y - ~ Y D ~ .  
We carry out the continual integration in standard fash- 
ion (see, e.g., Ref. 16), using the fact that the inte- 
grals a r e  Gaussian. As a result we obtain 

where 

A (z, 2') - A, (2, r') + iAt ( z ,  2') , 

Choosing the canonical variables in analogy with (25) 
and taking the variational derivatives of the effective 
Hamiltonian (30) with respect to these variables, we ob- 
tain a closed system of integro-differential equations, 
which give the parameters of the pseudo-coherent state 
of the quantum string. These equations contain delta 
functions a s  well as their derivatives, and call for reg- 
ularization. 

Assume that a t  the initial instant of time a t  infinity 
(xl = & ~ o )  the string is in the ground state. I t  is clear 
that sufficiently remote point of the string will be in this 
case in the ground state a t  any finite instant of time, 
since all the perturbations in the string propagate with 
finite velocities. In addition, the perturbation of the 
initial conditions above the ground state should be a 
smooth function of the coordinates. We carry out the 
regularization in the equations, by making the substi- 

tution 

(2  - 2')' 

(na)  '"d ad' 

where o! is a dimensionless parameter, d is a small 
distance, and from physical considerations i t  can coin- 
cide in order of magnitude with the distance between 
the particles in a real  system simulated by the string. 
We can then show that the quantities X(x,xt), A1(x,xt), 
and A2(x,xt) can be represented in the form 

A,(z ,  2'; t )  =A,'(z-x'; d)  +A,'(z, 2'; t ) ,  (32) 

where the functions Xi and Af can depend substantially 
on the cutoff parameter d and do not depend on the time, 
while k0,A;, and A! a r e  smooth functions of the vari- 
ables, i.e., the characteristic scale of their variation 
is much larger than d, s o  that the dependence of these 
functions on the cutoff parameter can be neglected. 

The "singular" parts X' a n d ~ f  a r e  due entirely to the 
structure of the ground state of the string, and their 
contribution to the considered equations can be com- 
pletely compensated by renormalization of the poten- 
tials U and V. Let the potentials Uand V be represented 
in the form - 

Then the renormalization of the constant C, and B, in 
the form 

where 

(C! and B! are  taken to be the observable quantities) 
eliminates completely the dependence of the equations 
on A'. 

Changing over to the Fourier representation, we ob- 
tain 

Here Ko(U) is a Bessel function of the second kind of 
imaginary argument. We finally obtain, putting d = 0: 
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J A f i k ,  k1')h0 (-kg', k t )  a"+ -f!-(C:kl+B:) ]"iO (k, k t )  [a 

+ j A: (k', krf) hO (-krf. kf)dkt1] +A: (k,  k') 

A; (k, k t )  =E$ Al0 (k, kt!) Ale(-kt,., kr)dkrf 
P 

where 

. , +- C - 4 %  
q (k)  - I eib [ z- a1*v0 (x) (A') (z, d -B?] &, -. .-I 

(2n-2) I !  

Uo and Yo a r e  the renormalized potentials. 

The system of integro-differential renormalized equa- 
tions (34) and (35) provides us with complete informa- 
tion of the observable parameters of the pseudo-coher- 
ent state of a quantum nonlinear string in an external 
potential. We note that Eq. (35) goes over as ti- 0 and 
correspondingly as X(x,x8)- 0 into the usual classical 
equation for the vibrations of a nonlinear string. Equa- 
tions (34) have no analog in the classical theory. To un- 
derstand fully the physical meaning of the solutions de- 
scribed by these equations, we consider a situation 
wherein F(x, t )  = 0 and in addition X(x, t) =k(x, t) = 0. 
This condition means the absence of classical excita- 
tions. Equation (35) is then satisfied identically. How- 
ever, as shown by the analysis of (34), perturbations 
XO(x,x';t) can propagate in the string in this case. Phys- 
ically this can be visualized in the following manner: i f  
we alter a t  some point the width of the wave packet of 
the string particle, without displacing a t  the same time 
i ts  center of gravity, and then remove the external ac- 
tion, then a wave will begin to propagate in the strong 
and the width of the wave packets will change in the 
wave without a change in the positions of their gravity 
centers. Since there a r e  no classical displacements in 
such waves, we call them "null" waves.'' 

CONCLUSION 

The article deals with the problem of exciting quan- 
tum nonlinear systems by an external, generally speak- 
ing, nonmonochromatic field. This problem i s  directly 
connected with the question of excitation of molecules 

by laser radiation. Both in the one-dimensional and in 
the multidimensional cases, closed systems of ordinary 
differential equations a r e  obtained and permit the form- 
ulation of numerical experiments on molecule excita- 
tion. A method is indicated of searching for an optimal 
exciting signal, which has a time-dependent frequency 
and is capable, despite the anharmonicity, of "swaying" 
the system. 

The approach proposed in the article for the investiga- 
tion of multidimensional systems can be generalized 
also to include field problems. We have demonstrated 
the method of transition from multidimensional to field 
problems using a s  an example a quantum nonlinear 
string, for which a closed system of integro-differen- 
tial renormalized equations was obtained, which go over 
as ti- 0 into the ordinary equation for a nonlinear 
classical string. 

We thank 0. A. Gel'fond and V. E. Rok for the numeri- 
cal calculations. The authors a r e  also indebted to G. A. 
~skar 'yan ,  B. L. Voronov, V. L. Ginzberg, M. V. 
~ u z ' m i n ,  V. N. Sazonov, and V. Yu. ~ s e r t l i n  for useful 
and helpful discussions. 
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Phasing of atomic velocities in the field of a traveling 
electromagnetic wave 

1. V. Krasnov and N. Ya. Shaparev 
Computation Center, Siberian Division, USSR Academy of Sciences 
(Submitted 20 March 1979; resubmitted 13 May 1979) 
Zh. Elrsp. Teor. Fu. 77, 899-908 (September 1979) 

Resonant collisionless gas is considered in the field of a traveling monochromatic wave. The presence of 
a small parameter y = & '/my, in the problem makes possible an asymptotic analysis of the equations 
that describe the action of the radiation pressure on the gas. It is shown that the selective character of 
the radiation force leads to a decrease of the random scatter of the atom velocities. The lower limit of 
the characteristic width 6v -(2.tiy/3m)"2, of the nonequilibrium structure on the distribution function 
determined by the competition betwem the processes of phasing of the velocities and the diffusion 
spreading, is obtained. The possibility of eliminating the translational motion of the resonant ions in 
crossed optical and magnetic fields is noted. 

PACS numbers: 41.70. + t, 51.10. + y 

Cooling of a gas in the field of a standing electromag- 
netic wave was predicted and analyzed in detail from 
various points of view in Refs. 1-9. In the present  pa- 
pe r  we show that in the field of a traveling electromag- 
netic wave i t  is also possible to eliminate in  pa r t  the 
random motion of the atoms of a resonant gas and that 
a number of distinguishing features appear which are 
not encountered in the case of opposing waves. Obser-  
vation of cooling in the field of a traveling electromag- 
netic wave is apparently s impler  from the point of view 
of experimental realization. 

When the action of resonant radiation pressure  (RP) 
in the field of the plane traveling wave i s  considered, 
one must bear  in  mind the following aspects: the trans-  
lational motion of the gas as a whole, the phasing of the 
atoms in velocity space, which leads to cooling, and 
diffusion in velocity space. The f i r s t  of these factors is 
quite obvious. Induced absorption and emission of pho- 
tons are characterized by a preferred direction, where- 
as scattered photons a r e  on the average isotropically 
distributed. 

Phasing in  velocity space is due to the inhomogeneous 
character  of the force of the spontaneous radiation, 
pressure  in the sense  of i t s  sharp  dependence on the 
velocity, which manifests itself most strongly in  weak 
fields ( I d ~ , l  /R<y). The expression fo r  the force in  the 
case  of exact tuning to resonance takes in  this case  the 
form 

where x =kv,/y,, v, is the velocity of the atom in the 
direction of propagation of the radiation, k i s  the wave 
vector, y, i s  the transverse relaxation rate, d i s  the 
dipole-moment matrix element, and E, is the amplitude 
of the field. It prevails fo r  the resonant part icles 
(k  lv, I S yL) and decreases  rapidly with increasing 
Doppler shift. 

We consider, a t  the instant of t ime to, two part icles 
with m a s s  m and somewhat different velocities 
x,, x,&, -x,= bx(t,)) in the region x >  0. Then, obviously, 
at the instant of time t we have 

6 r ( t )  =6x( t , )  exp (F1(z) m-I (t-t,)).  (2 ) 

Since F' &) < O& > O), the distance between the chosen 
part icles in  velocity space decreases  with time, and 
monochromatization in velocity (phasing of the veloci- 
ties) takes place as a result. This  can be  easily under.- 
stood with the aid of the following simple arguments. 
The atoms having a sma l l e r  velocity projection on the 
radiation-propagation direction and accordingly a 
sma l l e r  Doppler shift, move more  rapidly in velocity 
space under the influence of the RP  than the atoms hav- 
ing a l a rge r  velocity projection. Therefore the "slow" 
atoms & < 1) gradually overtake the "fast" ones & >I ) ,  
forming a narrow structure in the velocity distribution. 
This  was f i r s t  pointed out in Ref. 10, where the trans- 
lational disequilibrium under the action of RP  was in- 
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