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An analytic expression for the exchange energy in the interaction of an atom with a multiply charged ion 
is derived within the l itations of the quasiclassical approach for large distances between the nuclei of 
the colliding systems. It is shown that in the case of interaction with a multiply charged ion one can 
distinguish two ranges of values for the distance R between the nuclei of the interacting systems in which 
the exchange potential is represented by two different functions of R .  

PACS numbers: 34.20.Fi 

1. INTRODUCTION 

Collision processes involving multiply charged ions 
(MCI) have recently become the'object of intensive 
theoretical1-l3 and e ~ ~ e r i r n e n t a l ~ ~ " ~  study since they 
permit the determination of parameters that a re  im- 
portant for modern photonuclear machines and heavy- 
ion accelerators. In addition, collisions of charged 
particles with atoms a r e  accompanied by capture of an 
electron from the target atom into highly excited states 
of the MCI with excitation energies E of the order of 
z2/2, where z is the charge of the ion. The large cap- 
ture cross sections (a- 502 a. u. ) in slow collisions 
(v << 1) makes i t  possible to regard the process a s  one 
of the most efficient means of obtaining powerful x-ray 
and ultraviolet sources. 

The probability for capturing an electron from the 
target atom into a bound excited state of the ion in slow 
collisions (v < 1; here and in what follows we use atomic 
units in which A= me = e = 1) depends on the exchange- 
interaction energy (EIE) A(R), which determines the 
frequency r = Afz at  which the electron passes from one 
potential well to the other. 

If the electron is captured at once into many excited 
levels of the MCI so that i t s  spectrum in the field of 
the MCI can be regarded as continuous, then the fre- 
quency for the passage of the electron from one po- 
tential well to the other will be given in terms of the 
EIE A as follows8: 

where A E  = z2/n3 is the separation between neighboring 
energy levels of the electron in the field of the MCI. 

A quasiclassical method developed in Ref. 20 makes 
i t  possible to calculate the trend of the terms in the 
two-center problem for the case of the collision of a 
proton with a hydrogen atom, provided the initial states 
of the colliding atomic particles a r e  highly excited. 
This methodz0 gives the level energies with an e r r o r  
of the order of l/n, where n is the principal quantum 
number of the state of the electron in the isolated atom. 
When this method is applied to a system consisting of 
an atom and an MCI, very cumbersome calculations 
a re  encountered, especially in the region R <z, where 
R is the internuclear distance and z is the ionic charge. 

Semiempirical expressions for the EIE that were ob- 
tained earlier1 by approximation of numerical cal- 
c u l a t i o n ~ ~ ~  were apparently inadequate for the physical 
charge-exchange mechanism since they gave different 
forms for the dependence of the charge-exchange cross  
section on the ionic charge. chubisov7 gave numer- 
ical estimates of the exchange energy for the interac- 
tion of an atom with a MCI in the quasiclassical ap- 
proximation, but he did not take account of the con- 
tribution from electron states with nonvanishing orbital 
angular momentum I .  

In this paper we develop a method that makes i t  pos- 
sible, within the framework of the quasiclassical ap- 
proach, to obtain an analytic expression for the ex- 
change energy A(R) for the interaction of any atom 
with an MCI. The expression obtained by this method 
fo r  the EIE is the f i rs t  term in an expansion in powers 
of Z"~/R, SO the criterion for the validity of the results 
is that R>> zln, where R is the internuclear distance. 
This inequality justifies the use of the quasiclassical 
method to calculate the electron wave function in the 
subbarrier region. 

Let us  f i rs t  consider the interaction of a hydrogen 
atom in i ts  1s ground state with a point (structureless) 
charge z ,  taking account of the transition of the elec- 
tron from one charge to the other: 

In the limit R - .o (when the nuclei a r e  far apart) there 
a re  terms of two types: E,(R) and E,(R), which cor- 
respond to the localization of the electron on only one 
of the two charges, i. e. ,  they correspond to the initial 
and final states of process (1): 

and 

The last  term in (3) corresponds to the Stark splitting 
of the ion levels in the field of the proton, n, nl, and 
n2 being the principal quantum number and the para- 
bolic quantum numbers, respectively, of the Stark 
states of the electron in the ion. 
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FIG. 1. 

It is evident that the last term in each of (2) and (3) 
can be neglected when 

In this case the positions R, of the points where terms 
(2) and (3) cross  depend only on the charge of the ion 
and the principal quantum number: 

At the crossing points of terms (2) and (3) the states 
of the system in which the electron moves about only 
one center or  the other have the same energy: E,,(R,) 
= E,(R,) . However, the possibility that the electron 
may undergo a subbarrier transition from one potential 
well to the other leads to splitting of the terms into 
two terms Eh and E: lying close together, which cor- 
respond to states in which the electron moves in both 
wells a t  once. Thus, the exchange splitting of the 
terms does not have a dynarnical origin (is not asso- 
ciated with the motion of the nuclei), but is due to the 
penetrability of the potential barrier separating the 
two centers (see Fig. 1). 

2. EXCHANGE SPLITTING AT LARGE NUCLEAR 
SEPARATIONS 

Since electron transitions take place a t  large inter- 
nuclear distances (R >n2/z) one can use the previously 
developed asymptotic theoryz2 to determine the EIE. 
The asymptotic method is based on the idea that when 
the electron is far  from the nuclei the EIE 

will be determined mainly by the electron distribution 
close to the line joining the two nuclei (the internuclear 
axis R). The problem therefore reduces to that of 
finding the values of the wave functions 9, and 9, 
centered on the hydrogen atom and the ion, respect- 
ively, in the vicinity of the internuclear axis. 

Near the internuclear axis, the electron moves in a 
potential of the form 

where x is the distance of the electron from the proton 
along the axis R. The potential barrier (7) has i ts  
maximum at  the point x,= R/(z'/' + I) ,  where we have 

U (x,)  -Ex ( R )  =- (Z+z') "R+i/2+z/R=1/2-2z'"/R. (8) 

When the internuclear distance R is smaller than 
2(1+ 2zif2), so  that IE,,(R) I < I UJR) I, the electron 
moves in a generalized orbit that encompasses both 
nuclei; then the motion of the electron cannot be sep- 
arated into motions in different potential wells and the 
concept of EIE is meaningless a t  these distances. 
Hence formula (6), which determines the frequency of 
subbarrier electron transitions from one nucleus to the 
other, is valid only when 

R>2 (1+&"). (9) 

By comparing (5) and (9) we can easily determine the 
values of the principal quantum number nfor the states 
in the MCI that interact with the term EH(R) at  dis- 
stances R > 4Z1I2: 

z > n ~ 2 " z a ' ~ .  (10) 

From inequality (10) we can find the values of the ionic 
charge 2 for which the number of ionic terms E,(R) that 
interact with the hydrogen term EH(R) will be greater 
than unity: 

z>4. 

To evaluate the wave functions 9, and 9, in (6) that 
specify the behavior of the electron below the potential 
barr ier  when i t  is centered on the proton o r  the MCI, 
respectively, we adopt the quasiclassical approach and 
express the wave functions in the form 

and 

with 

22 22 

R I - I  r ,  

and 
zz 2 2 p = - + - - E -  ) I h .  

( n z  r  I,-,, 

Here pH and p, a re  the quasimomenta of the electron 
centered on the proton and the ion, respectively, r, 
and rz are  the distances of the electron from the proton 
and the ion, and A and B a re  constants. The constant 
A can be evaluated by matching wave function (11) to 
the well-known ground-state wave function of the 
hydrogen atom; the result is 

A=e-'/2vG. (15) 

The constant B can be evaluated from the condition that 
the oscillating wave function for the electron in the 
broad potential well of the MCI,'~ 

be normalized; the result i s  

B='/,C=z/2'nnA. (16) 

In calculating the integral (6) we make use of the fact  
that i t  converges rapidly near the internuclear axis. 
For the integration surface S we take a plane perpen- 
dicular to the internuclear axis a t  distances R1 from 
the proton and R2 from the MCI (so that R, + Rz = R) . 
Then the position of the electron on the plane S near 
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the axis R can be specified approximately as 
rr=x+ p2/2z, r%=R-x+pz/2(R-x), (17) 

where x is the distance along the internuclear axis from 
the integration surface S to the proton and p is the 
radius vector in the plane S that specifies the distance 
of the electron from the internuclear axis, so that in 
formula (6) we have dS = 2npdp and 0 -C p Q Rl . 

Let us  evaluate the EIE near the term-crossing point 
where pH wp,. Substituting (11) and (12) into (6) and 
assuming that the integral in (6) is determined mainly 
by the exponential dependence of the wave functions (11) 
and (12) and converges rapidly in the region p -C Rl, we 
obtain the following expression for the exchange inter- 
action: 

where 

and pm, is the maximum value of the electron quasi- 
momentum at  the point xm, = R1 = R / ( Z ' ~  + I ) ,  where 
d ~ / d x l  = 0. 

Thus, when pH = p, the EIE is independent of the posi- 
tion of the integration plane S with respect to the nu- 
clei and, as should be expected, i t  is determined, ex- 
cept for a factor outside the exponential, by the pen- 
etrability of the potential barrier.  

Let us  divide the range of integration x = { c ,  b} in (18) 
into the two intervals c x <R/(z + I), 'in which the 
interaction of the electron with the MCI can be treated 
as a perturbation, and R/(z + 1) < x  Q b, in which the 
field of the proton can be treated as a perturbation. 
On expanding the electron quasimomentum (13) or (14) 
within each region in the small perturbation parameter 
we obtain a series of tabulated integrals whose sum 
gives the integral in formula (18) except for a term of 
order z"/R: 

Substituting formulas (15), (16), and (19) into Eq. 
(18), we finally obtain the following expression for the 
exchange interaction: 

It is easy to obtain two limiting values for Ano(R) from 
Eq. (20): 

and 

Equation (21) agrees with the result of a recent calcula- 

tions in which the action of the MCI was replaced by an 
electric field of strength E = Z / R ~ .  The EIE (22) for 
R >2z can be obtained from the asymptotic theory, in 
whichz2 

where R, = R/(z + 1) and K2 = zR/(z + 1) a re  the dis- 
tances from the integration plane S to the proton and the 
MCI, Rl + Rz = R, and cp, and cp, a r e  electron wave func- 
tions centered on the proton and the MCI, respectively. 

When z = 1, the second term in the argument of the 
exponential in (20) vanishes, and the exchange interac- 
tion between a hydrogen atom and a proton is given by 

which differs by only 8% from the well-known formulaz4 
A = (4/e)~e-.. This gives an idea of the magnitude of 
the e r r o r s  in our calculation. 

Expression (20) for the exchange potential for the 
interaction of a hydrogen atom with an MCI is valid for 
an s electron. Let us extend this result to the case in 
which the electron orbital angular momentum I be- 
comes different from zero when the electron under- 
goes a transition to the MCI. 

In this case the wave function for the electron in the 
MCI has the form 

Y , = ( ~ ~ + I ) ' ~ P ~ ( C O S  ~ , ) p , , ( r , ) ,  (23) 

at distances a t  which the field of the proton hardly 
distorts the central field of the MCI. Here cp,,(~) is 
the radial wave function for the electron and is given 
in the quasiclassical approximation by the known form- 
ula (12) in which the constant B is independent of I 
despite the fact that the quasimomentum of the elec- 
tron in the MCI does depend on the orbital angular 
momentum I :  

where fi and O2 a re  the spherical. coordinates of the 
electron in the MCI (we recall that the projection of the 
electron angular momentum onto the axis vanishes, so 
that the electron wave functions a re  real and do not 
depend on the azimuthal numbers). 

The following conclusions can be drawn from an 
analysis of expression (24) for the quasimomentum of 
the electron in the central field of the MCI: 

1) When ,!(I+ 1) << n2 the centrifugal energy 1 ( 1  + l ) / ~ i  
may be treated as a small addition to the kinetic energy 
pi = z2/n2 - 2z/y2 of the s electron centered on the MCI, 
and the quasimomentum (24) may be expanded in powers 
of the small ratio of the centrifugal energy to the kin- 
etic energy: 

p.:=po+1(1+1)/2r2'p.f . . .: 
2) For values 1 w n of the orbital angular momentum, 

the potential barrier between the two Coulomb centers 
is virtually impenetrable and the contribution to the 
charge exchange from states with 1 -n may be neglec- 
ted. 
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For small values of I the quasiclassical expression 
for the radial wave function can be written in the form 

where go corresponds to zero orbital angular momen- 
tum and Po = ( z 2 / n 2  + 2 / R  - 2 z / r ) ' I 2  is the quasimo- 
mentum of an s electron in the MCI. 

We shall assume, as before, that the main contribu- 
tion to the integral (6) comes from values of the angles 
such that lo2 < I ;  hence the angular dependence may be 
neglected and the Legendre polynominal in (23) re- 
placed by unity when l<< n .  In that case the main de- 
pendence of the exchange interaction potential on the 
angular momentum 1 will be due to the radial wave 
function9 (25) : 

where Ano(R) is the EIE (20)  fo r  zero orbital angular 
momentum. 

Formula (26)  admits a simple generalization to the 
case in which the electron moves in the field of two 
arbitrary charges z 2  and z 1 ( z 2  > z l ) .  It is sufficient to 
make the substitutions R - z l R  and z - z 2 / z 1  in Eq. (19) 
and take account of the fact that p,, = 2,:  

3. THE GENERAL CASE 

If the atom and the MCI have complex electronic 
structures, the exchange energy for the interaction be- 
tween them at  large distances will be due to subbarrier 
transition of one of the outer atomic electrons to a 
level of the MCI that is available to i t  in accordance 
with the Pauli principle and the vector addition rules. 
Then we may assume that the electron moves in the 
Coulomb fields of the two atomic cores with charges z, 
and z .  In that case the wave function for system (1) 
in the initial state has the form 

Here the summation is taken over the spin projections 
m, and M, for the ion and the atom, respectively, so  
that wave function (28)  corresponds to a total spin of 
I= S, + s, with projection M, = m, + M s  for the quasi- 
molecule, and \ktqVLSYS is the wave function of the atom, 
which, in accordance with the fractional parentage 
s ~ h e m e , ~ \ a n  be written a s  

where I ,  is the orbital angular momentum of the outer 
electron, G & ~  is a fractional parentage coefficient, @'a 

and a' are  the wave functions of the atomic core and 
the MCI, 

[L,, jL, j 7  1 
mz rn, 

is a Clebsch-Gordan coefficient, and lm, LM, and 1,p 
a re  the orbital angular momenta of the atomic core, 
the atom, and the electron, respectively, together with 
their projections. 

After transition of the atomic electron to the outer 
shell of the MCI, the wave function for system ( 1 )  
becomes 

The functions q'a and q C  in (29) and (30) a r e  the one- 
electron quasiclassical wave functions (11) and (12) 
centered on the atom and the MCI, respectively, with 
the coefficients A and B a r e  given by 

where $ / 2  is the binding energy of the outer electron 
in the atom. 

After cumbersome calculations that we omit, one 
can obtain the following expression for the exchange 
energy in the interaction of any atom with a MCI in 
the quasiclassical approximation: 

where 

is Wigner's 6 - j  symbol, A. is an asymptotic coefficient 
that specifies the magnitude of the electron at the per- 
iphery of the atom: 

cp(-rn) =Aar'a/l-le-1' 

N, is the number of valence electrons in the atom, S,, 
s, ,  and I a r e  the spins of the atom, the ion, and the 
whole system, I=S,+ s, ,  and s, and s, a r e  the spins 
of the atomic core and the ion after change exchange. 

4. CONCLUSION 

In this paper we employed the quasiclassical approach 
to obtain an analytic expression for the exchange energy 
in the interaction of an atom with a multiply charged 
ion for the limiting case of large distances between the 
interacting systems ( R  > z 1 I 2 ) .  The exchange-interac- 
tion potential A(R) is expressed in terms of known par- 
ameters of the atom and the multiply charged ion: the 
charge z  of the ion, the binding energy y2/2 of the elec- 
tron in the atom, and the magnitudes of the orbital 
angular momentum and spin of the electron in the atom 
and in the ion (the projection of the orbital angular 
momentum onto the line joining the nuclei is zero- 
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the electron is in a o state). 

There a re  two ranges of values for the distance R 
between the nuclei of the interacting systems in which 
the exchange-interaction potential A(R) is represented 
by different functions of R. Thus, when R >> 22, Eq. 
(20) for the exchange interaction reduces to the limiting 
expression (22), which can be derived within the frame- 
work of the known asymptotic theory. '' When 42'' 
< R  <22, the asymptotic theory is inapplicable, owing 
to the fact that when 2>4 the asymptotic expression for 
the wave function for the electron centered on the ion 
cannot be used a t  these distances. At the same time, 
the calculations show that the quasiclassical method 
worked out here correctly gives the interaction both in 
the intermediate range 42'" <R < 22 and in the asy- 
mptotic limit R >22. In addition, the quasiclassical 
approach allows the results to be easily generalized 
to the case in which the electron's orbital angular mo- 
mentum I ceases to be zero when the electron makes a 
transition from the atom to the MCI. 

The authors thank B. M. Smirnov for useful advice 
and valuable critical remarks. 
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Stimulated photoassociation in the field of an intense 
electromagnetic wave 
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The quantum-mechanical problem of the stimulated transition of a system in the field of an intense 
electromagnetic wave from the continuous spectrum to a bound state having a finite lifetime is 
considered. The formulas derived are used to calculate the stimulated production of mesic atoms and the 
mesic molecule ddp. It is shown that the probability for the production of such systems may be 
considerably enhanced in the presence of an external electromagnetic field. 

PACS numbers: 03.65.Ge, 36.10.Dr 

1. Transitions from the continuous spectrum to a ity for such transitions in atomic collisions may be con- 

bound state with spontaneous emission of a photon a re  siderably enhanced in the field of an intense electro- 
possible in particle collisions. A s  a rule, however, the magnetic wave, however, on account of stimulated pho- 
probability for  such transitions is small. The probabil- ton emission.13 

437 Sov. Phys. JETP 50(3), Sept. 1979 0038-5646/79/090437-04$02.40 O 1980 American Institute of Physics 437 


