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The problem of excitation of rotations and vibrations of polar molecular ions by charged particles is 
considered in the quasiclassical approximation. The particles move along hyperbolic trajectories, the 
inelastic transitions being induced by charge-dipole interactions and are considered within the framework 
of the exponential approximation for the scattering matrix. An interesting point is that in a rotating 
reference system, the series in the argument of the exponential (the Magnus series) is cut off after the 
first term in the zeroth approximation with respect to the adiabaticity parameter <w)s,. In this way, 
an exact expression can be found for the scattering matrix elements. Calculations are carried out for both 
the differential and the total excitation cross sections for polar molecular ions excited by charged 
particles. The results of a numerical calculation of the cross section for rotational excitation of the CH' 
ion (j, =0-j,= 1) by electrons are compared with the results of other authors. The limits of 
applicability of the theory are discussed. 

PACS numbers: 34.10. + x, 34.50.H~ 

INTRODUCTION 

As is well known, the excitation of vibrational-ro- 
tational states of molecules is the basic mechanism by 
which slow charged particles lose energy in molecular 
gases. The cross sections with which such processes 
of excitation of vibrations and rotations of molecules take 
place a re  of significant interest in the study of low-temper- 
ature plasma if there is a large number of molecules and 
molecular ions in the latter. The vibrational-rota- 
tional excitation of neutral molecules in collisions with 
 electron^"^ and have been studied intensively, 
both theoretically and experimentally. However, the 
excitation of molecular ions by charged particles i s  
more difficult t o  study experimentally, and only a few 
theoretical communications exist on this subject. 

Within the framework of the Born-Coulomb approxi- 
mation, ~G&ova and Ob"edkov5 were the f i rs t  t o  con- 
sider the problem of dipole and quadrupole excitations 
of molecular ions by electrons. The rotational exci- 
tation of the CH+ ion by electrons was considered in this 
approximation in the work of Chu and Dalgarno.' The 
expressions for the cross  sections, obtained in quantum 
formalism, a r e  very cumbersome. Therefore, a much 
simpler quasiclassical method has been applied in a 
number of researches:-' a method that yields nothing 
in accuracy to  the quantum mechanical one.81g The 
transition probability has been considered in first-or- 
der perturbation theory with use of a Coulomb trajec- 
tory for the relative motion of the pair of colliding par- 
ticles. 

This paper t reats  the vibrational-rotational excitation 
of polar molecular ions in collisions with charged par- 
ticles in t e rms  of the quasiclassical method, with use 
of an exponential approximation for the scattering ma- 
trix. The essence of the method is as follows: the 
scattering matrix is represented in the form e-'*, 

where A is a Hermitian operator, perhaps expanded 
in a ser ies  of time-dependent integrals of the Harnil- 
tonian interaction commutators (the Magnus expan- 
sion).'' It is noteworthy that in the rotating system of 
coordinates, for the interaction of the type charge-di- 
pole, the ser ies  in the argument of the exponential is 
cut off at the first  term, enabling us t o  find an exact 
analytic expression for the elements of the scattering 
matrix in the nonadiabatic limit. 

The condition of quasiclassical behavior of the scat- 
tering in a Coulomb field is satisfied if the relative 
angular momentum of the pair of colliding particles i s  
large: L = ~ v a / f i = ~ , ~ , e ~ / F z v  >> 1, where a is the char- 
acteristic length (cf. Ref. 11, pp. 214, 596). This con- 
dition sets  an upper limit on the energy of relative mo- 
tion: E c 1 3 . 6 ( ~ , Z , ) ~ ~ / r n [ e ~ ] ,  where Z, is the charge 
of the molecular ion, Z, is the charge of the emerging 
particle, M is their reduced mass, m is the mass of 
the electron. In what follows, we shall assume that the 
kinetic energy E greatly exceeds the quantum ti(@), 
where (w)  is the characteristic frequency corresponding 
to  the internal motion of the molecule. The first  con- 
dition is necessary and the second sufficient to  intro- 
duce the trajectory and neglect contributions due t o  in- 

FIG. 1. Classical trajectory of a charged particle in the 
Coulomb field of a molecular ion. ?he origin coincides with 
the center of mass of the system. 
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elastic processes. The developed theory is valid in the 
nonadiabatic limit, i.e., the following inequality should 
hold: j3 = (w)a/v << 1. The latter condition is the most 
stringent in the case of Coulomb repulsion, since one 
should have j3 << 1/2a (see Eq. (2.7) below). 

In first  section of the work, a formula is obtained for 
the elements of the scattering matrix with account of 
only the dipole term in the interaction potential. In 
the second and third sections, results a re  given of cal- 
culations of the differential and total cross  sections, 
both in the case of purely rotational excitations and in 
the case in which an effective excitation of vibrations 
of the molecular ions take place along with the excita- 
tion of the rotations. 

1. THE SCATTERING MATRIX 

We consider the excitation process 
M+(nj,m) +rA++M+ (n,j,m,) +A+, 

where j,, mi a re  the rotational angular momentum and 
its projection on the preferred axis before scattering, 
ni is the vibrational quantum number; jf,mf,nf a r e  the 
corresponding quantum numbers after scattering. For  
definiteness, we consider the collision of positively 
charged ions. The case of attraction is considered 
similarly. We assume the particle A+ t o  be structure- 
less. In the anisotropic part of the interaction oper- 
ator, we take into account only the dipole term 

dR 
V=Zae - 

R' ' 
(1.1) 

where R  is the distance between the mass  centers of 
the particles, d is the dipole moment of the molecular 
ion (relative to the mass  center of the molecule). 

Let the vector R lie in the plane x - z  that is perpen- 
dicular t o  the orbital momentum L. We direct the z 
axis along the relative velocity v, the x axis along the 
impact parameter b (see the drawing). The transition 
from the rotating system of coordinates is accom- 
plished with the help of the finite rotation operator 
exp(-irp(t)J,) (Ref. 12, p. 26). Here cp(t) is the angle 
between the c axis and the radius vector R(t). We set 
the time t = 0 as the instant of closest approach, so  that 
rp(-w) = 0 and rp(+w) = n - 8, where 0 is the scattering 
angle. 

In the zeroth approximation in (w)~,, where T, is the 
characteristic time of interaction, we get the following 
equation for the evolution operator: 

We shall seek a solution of Eq. (1.2) in the form 

~ ( t ,  -,) -e-"[t) exp (icp(t) I , ) ,  A (-=I =O. (1.3) 

Substituting (1.3) in (1.2), we get 
a -e-'A*)-[V ( t )  +tiip(t) J,]e-l*"'. 
at 

(1.4) 

In the rotating system of coordinates with the z axis 
directed along the radius vector R, we get dR- d,R 
and, consequently, @(t) = b v / ~ *  and v = z , ~ ~ , / R ~  depend 
on the time in the same fashion-a unique feature of the 
charge-dipole interaction. We therefore verify directly 

that the commutators 

[ V ( t )  +hip ( t )  I,, V (t') +hip(tr) I,] =O 

vanishes at different instants of time and the ser ies  in 
the argument of the exponential (the Magnus series) is 
cut off at the first  term. With account of (1.3) and (1.4), 
we find the exact expression for  the scattering operator 
(S = U(+W) -00)): 

where we have introduced the expression rp = rp(+w) = n 
- 8. Thus, the scattering operator is a function of the 
orbital mom'entum and the scattering angle and does not 
depend on the other characteristics of the trajectory. 

Let 

We consider a generating function of the form (see also 
Ref. 13) 

where ii and do not commute, but [g,[i?, 611=0, i.e., 
al l  commutators in which 6 is encountered more than 
once vanish. Differentiating n t imes both sides of Eq. 
(I.?'), we find a recurrence relation for the coeffic- 
ients Q,: 

Qn=[b ,  Q I - , l f  bQI-i, QQ-1. (1.8) 
The f i rs t  few coefficients a r e  given in the Appendix. 

On the other hand, an exponential of the sum of two 
non-commuting operators can be displayed in the form 
of an infinite product of  exponential^.'^"^ We proceed 
in the following fashion: 

Q ( t )  =exp (ht/2) exp (dt /2)  exp( i t )  exp (cat2) exp(csta) . . . 
. . . exp(-cit/2) exp(-ht/2) 

=exp ( W 2 )  exp (q, t )  exp (qstS) . . . exp (-ht /2) .  (1.9) 

Comparing the expansion coefficients in (1.7) and (1.9) 
a s t - 0 ,  wefind 

qIab^, qs=l/,r[a, [h, % I ] ;  cz=-'/r[h, ^bl, ct='/.[h, [a,  b ] ]  (1.10) 

and so on. 

It is convenient t o  introduce more suitable notation 
for  the commutators [ii, 61 with increasing number 6:14 

s o  that 

It is shown in the Appendix that if [6, [G, 613 = 0, then 
there exists a simple formula in the general case, for 
arbitrary q,: 

Returning t o  our problem, we note that [J,, [J,, z ] ]  = z 
and, consequently, {;in-', 6) a pnd,. It remains to  make 
use of the formal theory developed above (see Eqs. 
(1.7)-(1.13)), to  obtain the result of interest t o  us. In 
the final form, the scattering operator has the following 
form in the dipole approximation: 
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where y is the angle between d and the a axis in the ro- 
tating system of coordinates. In the derivation of (1.14), 
use was made of the connection between the impact 
parameter and the scattering angle in the Coulomb field 
(Ref. 15, p. 70): 

We now discuss the region of applicability of the 
formula (1.14). First ,  in the anisotropic part of the in- 
teraction operator 

we have neglected the quadrupole term (k = 2), a correct 
procedure if 6, >> 6,, where 

Here Q is the quadrupole moment of the molecular ion. 
The corresponding integrals a re  calculated in elemen- 
tary fashion, s o  that we obtain 

The function f(8) reaches i ts  maximum value at 0 = n 
(backward scattering) and is equal t o  f(n) = 1/3. Thus, 
if we require 

then the contribution of the quadrupole interaction can 
be neglected throughout the entire range of scattering 
angles. 

Second, the adiabatic parameter (w)~,  should be 
small. In each case, we can expect that if the condition 

= (w)a/v << 1 is satisfied with a good deal t o  spare, 
then the boundary of the region of non-adiabaticity will 
have little effect on the calculation of the cross  sec- 
tions, at least for weakly excited vibrational-rotational 
states. The conditions enumerated above a r e  well sat- 
isfied if we consider the excitation of a heavy molecular 
ion, possessing a large dipole moment, by a light 
charged particle. If the excitation i s  produced by heavy 
particles, say protons, then it can be shown that only 
for the low-lying vibrational levels (or even pure ro- 
tation) will the entire set  of conditions i s  incontrovert- 
ibly satisfied. 

Keeping this circumstance in mind, we shall consid- 
e r  the molecule a s  a rotating harmonic oscillator. We 
can then write 

where de is the dipole moment of the ion a t  the equil- 
ibrium distance between the nuclei re: x = r - re is the 
vibrational coordinate. We introduce the notation 

where Be =A2/2~.v2, is the rotational constant, we is the 
frequency of vibration. The elements of the scattering 
matrix, after integration over the vibrational coordin- 

ates, have the following form: 

Here s = Inf - n, I ,n, (n,) is the greater (lesser) of the 
numbers n, ,nf; L; a r e  the Laguerre polynomials, d* 
a r e  the finite rotation matrices (Ref. 12, p. 68). 

For  further progress, we need the formulas 

where the expansion coefficients of this function in a 
series in the Legendre polynomials a r e  given by the 
expression 

and also 

The result (1.24) i s  obtained with the help of the well 
known formula of the d-function of doubled argument 
and the integral of the product of three d-functions (Ref. 
12, pp. 77, 84). The expression in the round brackets 
in (1.24) is the 3j symbol. In both equations (1.24) and 
(1.25), we have used the standard notation 

and also [ J2 ]  = W + 1, setting [J] = (W + I)''*; jb,'(x) is the 
s-th derivative of this function with respect t o  its argu- 
ment. 

Substituting the Eqs. (1.23), (1.25), in (1.22), we ob- 
t ain 

xdq;(f )~,(a)"" (6sinf). (1.27) 

Formula (1.27) for the elements of the scattering ma- 
tr ix is accurate within the framework of the semiclas- 
sical method. Under the assumptions made relative to 
the collision mechanism, it gives the answer to the 
stated problem in the most general form. 

2. RIGID-ROTATOR APPROXIMATION 

In the quasiclassical picture of the description of the 
excitation process, we assume that the emerging , 
charged particle moves along a hyperbolic trajectory 
in the Coulomb field of the molecular ion (see the draw- 
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ing). The differential cross  section of the scattering i s  
given by the Rutherford formulas (Ref. 15, p. 70) 

By virtue of our assumptions ( f i ( w ) / ~  << 1 and L >>I) ,  
nonadiabatic transitions do not affect the trajectory of 
the particle and the differential cross  section of the 
i-f transition i s  defined a s  

If n, =nf =0,  then we a r e  dealing with purely rotational 
excitation. Simple estimates show that for electrons 
the parameter a is small ( ( a  I<< 1) over practically the 
entire range of energies in which the developed theory 
is valid. For heavy charged particles, the condition 
1 a 1 << 1 i s  satisfied only at low energies-below the 
threshold of excitation of the vibrations. Therefore, 
the formulas given below for heavy particles have a 
limited region of applicability with respect to the en- 
ergy. The most radical situation a = O  corresponds to  
the rigid-rotator approximation. Inserting the elements 
of the scattering matrix (1.27) with a = O  in (2.2), we 
find the differential cross  section of transition exci- 
tation j, - jf(i #fl: 

The expression for the total cross  section of the tran- 
sition, obtained upon integration over all scattering di- 
rections, reduces to  quadrature. For  example, in the 
case of the transition 0 - j ( j=2 ,3 . .  .) 

(2.4) 
The integral on the right of Eq. (2.4) is calculated nu- 
merically without any special difficulty. So fa r  a s  the 
transition 0- 1 is concerned, the differential cross  
section behaves in the limit 8 -0 a s  6-'d8 and the total 
cross section diverges logarithmically at the lower 
limit (i.e., a s  b -m). The problem of divergence ar ises  
also in the case of excitation of neutral molecules by 
charged particles.'" 

The situation resolves into the following: the basic 
contribution to the cross  section o, is made by distant 
collisions, in which the curving of the trajectory takes 
place weakly. And, although the parameter p i s  small 
a s  before, the parameter Os, where c is the eccen- 
tricity of the orbit, can be a s  large a s  desired. Since 
@c represents the ratio of the collision time to  the per- 
iod of rotation of the nuclei, the nonadiabatic condition 
for the process i s  violated. However, this occurs at 
such impact parameters b, at which it i s  known before- 
hand that perturbation theory holds. 

In order t o  estimate correctly the trajectories both 
with b Q b, and with b > b,, we proceed in the following 
fashion. We carry out the change in variables in (2.1): 

Further, we so choose b ,  that 6/co<< 1, but still BE, 

<< 1. We can then write 

6 
- 

u., = 6n02 j e d r i l 2  (_) + 2 n d  I r d r ~ . , ( r ) .  (2.6) 
1 

where Po,,(&) is the transition probability calculated by 
perturbation theory:819 

The factor e-'" ar ises  because of the Coulomb barrier 
in the case of repulsion. In the case of attraction, it i s  
absent. The difference disappears in the situation to 
which we refer: p << l(e-'.@= 1). 

At small values of 6 / ~ ,  and BE,, both integrals in 
(2.6) depend on these parameters logarithmically. 
Therefore, at b - b,, the regions of applicability of both 
theories overlap and c, is eliminated from the final 
calculation: 

(2.8) 
Here C =0.577.. . is ~ u l e r ' s  constant, w i s  the fre- 
quency of the rotational transition 0 - 1. In the limit 
6<< 1 both expressions (2.8) and (2.7) a re  identical if 
we set co = 1 in the latter and assume that j3 << 1. It fol- 
lows from the above analysis that the expression in 
front of the logarithm should be large. 

The differential cross  section of excitation from the 
level j, to a l l  the others i s  the sum over all  j ,  zj ,  in 
(2.3). The identity 

follows from the unitarity of the S matrix (see Eq. 
(1.27) with a =O). By virtue of this, we obtain 

We find the following expression for the total excitation 
cross  section: 

where 

3sin- sin 26 sinZ 6 sin 26 +-+----- 
46' 46' 26% 26 

+ ci (26)  ] . (2.12) 

Here ci(x) is the cosine integral (Ref. 17, p. 942). The 
result (2.12) is obtained directly with the help of Eqs. ' 

(2.4), (2.8) and (2.9). The summation in (2.11) is taken 
over even j. In the case of odd j, the 3j-symbol van- 
ishes. 

We also calculate the cross section for the rotational 
momentum transfer 

Because of the presence of the term 1 - cos8 under the 
integral, the integrand falls off rapidly a s  8 -0 and no 
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divergence occurs. After cumbersome calculations, we 
obtain 

where 

and by g,(b) we designate the integral (u #0) 

In principle, the integrals in Eqs. (2.4) and (2.16) can 
be obtained analytically, but the resulting expressions 
a re  so cumbersome (even in the case u =2)  that they 
a re  practically useless. It is much more convenient 
to  estimate these integrals numerically. 

It i s  seen from the expressions (2.12) and (2.15) that 
the plots of the cross sections a s  functions of energy 
have such a shape that a complex oscillating structure 
i s  superposed on a smooth curve. The amplitude of the 
oscillations falls off with increase in the energy and the 
frequency increases since 6 El". The oscillating 
structure of the cross  sections appears because of the 
presence of interference between the competing inelas- 
tic channels in the scattering. We emphasize that this 
is essentially a nonadiabatic effect. The interference 
develops between energetically close channels if they 
a re  separated from each other by no more than i i /r.  

3. APPROXIMATION OF A ROTATING HARMONIC 
OSC l L LATO R 

Let us consider the collision of a charged particle 
with a polar molecular ion, accompanied by excitation 
of combined vibrational rotational transitions. The ex- 
citation of the oscillations takes place effectively in the 
nonadiabatic limit, i.e., the condition p<< 1 should hold 
also for vibrational frequencies. As before, we assume 
that ti(w)/E <<I, i.e., the transferred energy is less 
than the initial. The differential cross section of the 
excitation of the vibrational-rotational transition ni j, 
-nf j f ,  obtained from (2.2) and (1.27), can be written as 

where 

J L x  JILL% 
G.(JLlJ,L.)=~PL2~~L.'xZ1 (o  o ) 2 (  ) a .  

0 0 0 
(3.2) 

We note that in (3.1), i#f, i.e., at n, =nf the rotational 
momenta j, # jf and vice versa. 

If the finalrotational state of the molecular ion i s  not 
fixed, then, summing in (3.1) over all jf including the 
value jf = j,, we obtain the differential cross  section of 
excitation of the vibrational transition n, - n f .  In the 
nonadiabatic limit, it does not depend on the value of 

the rotational momentum preceding the collision, since 
the expansion coefficients S, do not depend either on 
the value of the initial o r  of the final rotational momen- 
ta. With the help of Eqs. (1.24), (1.25), and using the 
property of completeness of the Legendre polynomials 
and the important formula (Ref. 12, p. 76) 

we find 

n ! "  
+ n,) = n,! sin l d y ( a  cos ~ ) " a x p ( -  a' cosZ 7 )  

X [L.<'(a%easz 7 )  ]'da,l. (3.4) 

Let us  investigate an important case: the excitation 
of a molecular ion from i ts  ground vibrational state by 
a charged particle. In this case, the differential cross  
section of the transition is expressed in t e rms  of a 
confluent hypergeometric function (Ref. 17, p 954) 

We obtain the following expression for the total cross  
section of excitation of the vibrational transition 0 - n: 

where 

w=p,"B.lfio,) 6', (3.7) 

a(,) is the probability integral (Ref. 17, p. 944). 

Simple transformations lead to the following result: 

naz 
o ( O - t n ) = - - [ F , ( O , I ) - F , ( 1 , 1 ) ] ,  n = 2 , 3  ,..., 

n! 
(3 .f3) 

where F,(O, 1 )  = w/3, 

Here Ei(-x) is the integral exponential function (Ref. 
17, p. 939). 

At small w, the 0 -n  transition cross  section behaves 
as 

while in the other limiting case the dependence on w be- 
comes universal: 

o(O+n) =naZw/3(n! ) ,  (3.12) 
since E, (1.1) vanishes at large values of the parameter 
w .  In the first  case (w << 1) the cross  section depends 
on the energy as E"-', while in the second case (w >> 1) 
the dependence is universal-E ". 

The differential cross  section of the vibrational tran- 
sition 0 - 1 behaves a s  0-'dO at small scattering angles 
and the total cross section diverges logarithmically at 
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the lower limit. Proceeding in the same fashion a s  in 
the derivation of Eq. (2.8), we find 

In Eq. (3.13), y=ec=1.781.. . ; p= wa/v, were w i s  the 
frequency of the vibrational transition 0 -  1. The region 
of applicability of Eq. (3.13) i s  limited by the condition 
that the expression under the logarithm sign be large. 
We note that l /ml '% E i.e., at large w ,  the cross  sec- 
tion depends on the energy a s  E-'1nE. 

4. DISCUSSION OF THE RESULTS 

In the derivation of the existing formulas, we have 
made several assumptions. The most significant of 
them is the condition of the nonadiabatic nature of the 
process, i.e., the collision should be brief in compari- 
son with the period of motion of the nuclei of the mol- 
ecular ion: 

Here w and E a re  expressed in electron volts. As is 
seen from this expression, the excitation by heavy par- 
ticles (in comparison with electron excitation) will be 
nonadiabatic under the condition that the energy of the 
heavy particle be greater than the electronic energy by 
an order of magnitude. If, at a specified energy, the 
condition 1 holds in the case of Coulomb attraction, 
then in the case of repulsion we should have p << (2r)-', 
which i s  equivalent to  an increase in energy by a factor 
of 3.4. 

We consider a specific example: 

The threshold value of the energy of this reaction is 
u = 0.00351 eV. Data a r e  given in Table I of the calcu- 
lation of the differential cross-section doo,,/do. The 
calculation was carried out from the formulas (see 
(2.3)) 

d a o t  12 sin z-z ccw z - = jlt (0,67q0), i l ( 4  = yZ- 3 (4.1) 
do q o  

*This notation means 5.27 x10m3. 
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TABLE I. Differential cross sections (in units of a; of exci- 
tation of the rotational transition 0 - 1 of CH' in collisions 
with electrons (q is in atomic units). 

TABLE 11. Total excitation cross section of the rotational 
transition 0- 1 of CH+ in collisions with electrons. 

where 
e qo=2k.sin-, q-Ikt-ktl=qo 
2 (4.2) 

de.,ldo, 4 
f7zyh , l1*l 

In Ref. 18, the differential cross  section of this process 
was calculated in the Glauber approximation (the eikonal 
approximation). As is seen from Table I, the results of 
both methods a re  practically identical even a t  energies 
of 0.01 eV. Thus, in the limit E >> w our method is 
equivalent to  the Glauber approximation, but, in con- 
t ras t  with the latter, the calculation of the differential 
cross  section doo,,/dO according t o  Eq. (4.1) i s  much 
simpler of cf. Eqs. (18), (19) in Ref. 18). 

do.,ldo. 4 -1 'I 

Table I1 gives the data of a calculation of the total ex- 
citation cross  section of the rotational transition 0 - 1 
according t o  the formula (2.8) at different energies. 
Data on a,, obtained in the Born-Coulomb approxima- 
tion: in the quasiclassical approximation,8 and in the 
eikonal approximat i~n '~  a re  given for  comparison. As 
is seen from Table LI, the quantum-mechanical and 
semiclassical methods give approximately the same 
results in the region of their applicability (6 << 1). 
Hence the theory predicts that the cross  section is 
maximal at the threshold and falls off monotonically 
with increase in the energy. In contrast with Refs. 6 
and 8, the cross  section ao, calculated in Ref. 18 van- 
ishes at the threshold, owing t o  the inapplicability of 
the eikonal approximation near the threshold. The 
comparison indicates the excellent agreement of our 
data with the calculations of Refs. 6 and 8 in the limit 
,¶ << 1. However, already at 0 = 0.2(E = 0.10 eV) the con- 
dition of applicability of the formula (2.8) is violated 
and the divergence becomes considerable. At 8 1, 
the expression (2.6) [and also (2.8)] loses any meaning. 
In this case, a rather accurate approximation for the 
excitation cross  section of the rotational transition 
0- 1 can be obtained if the phase in the expression (2.6) 
is replaced by 

ez-i 'I, 
A = *{[If::'' (98) 1.- (@a) 1') 2 

(4.3) 
dm.,/&, 0: 

f;yb 1 tI-1 

and co is allowed t o  become infinite: 

At 6 << 1 the result of perturbation theory (2.7) follows 
directly from the expression (4.4), and at @<< 1, the 
result of the nonadiabatic theory (2.8). Table I1 illus- 
t ra tes  the accuracy of the formula (4.4). The function 
~ ? ' ( i x )  was approximated by i t s  limiting value at fl<< 1 
(p >> 1) and at larger values of the argument. 
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Equation (3.13) for the excitation cross  section of the 
vibrational transition 0 - 1 can be modified in analogous 
fashion. It is of interest t o  note that in the calculation 
of the anharmonicity in vibrations of nuclei, a similar 
modification is required for the transitions 0 - n with 
n 2  2. The f a d  is that the divergence that is character- 
istic for the transition 0 - 1 as 0 - 0 in the harmonic ap- 
proximation appears in all transitions without exception. 
It appears in first  order in w ,  since the matrix element 
(0 lx -x,"-' is different from zero in the anharmonic 
approximation. Here x, is the anharmonicity constant. 

Within the framework of applicability of our theory 
we can obtain a better expression for the excitation 
cross section of the vibrational transition 0- n(n 2 2) 
if we carry out its symmetrization, i.e., replace v by 
( v , ~ ~ ) ' ' ~  and multiply by the factor vf/v,.' The cross  
section symmetrized in similar fashion satisfies the 
detailed balancing principle. 

The author is grateful to  A. I. ~ u r h s t e i n  and A. B. 
Doktorov for discussion of the results set forth in the 
work, and for useful advice, and to  N. N. Lukzen for  
help in numerical calculations. 

APPENDIX 

We now derive Eq. (1.13) of the text. It is useful to 
write out the first  coefficients of the expansion (1.7) 
rewriting them in the notation of (1.11): 

The latter equality is written with account of the f a d  
that 26[ii,S]=[i,S], since [6,[;i,i]]=0. Further, dif- 
ferentiating both sides of Eq. (1.9) n times, we obtain, 
at t =0, 

Q'" (0)=(iO, qr), Q'"(0) ={a1, qt)+{do, qt2), 

(A.2) 
Q'" (0) =Sl,{d', q,)+ '/2{i1, q?)+ (in, q?) +6(d0, qJ), 

generally, 
"-1 (n-k)! n 

Q ' n ' ( ~ ) = z y ( k ) ( & q n - k )  
k-U 

The structure of the omitted terms is greatly compli- 
cated with increase in n. It is not difficult to  see  by 
comparing (A.l) with (A.2) that the sum of all commu- 
tators of the type {hk, q:-J with m = 1 should be equal t o  
{>-I, b}, i.e., the following equality should hold: 

(n-k) ! 

k-0 

We emphasize that the equality (A.4) is valid if and 
only if 

[ b ,  [d, b]1=0 (A.5) 

432 Sov. Phys. JETP 50(3), Sept. 1979 

and all other commutators in which 6 is encountered 
more than once vanish. For  example, in the general 
case we would have had 

and the assertion made before formula (A.4) would have 
been untrue. For arbitrary n, by virtue of the relation 
(A.5), we have 

q,=f (n) (in-', L), n=i, 3 . .  . . (A.7) 

Substituting (A.7) in (A.4), we obtain 

(A. 8) 

The prime on the sum indicates that the summation is 
carried out over such k for which n - k is an odd num- 
ber. Let 

f (n-k) = 
P 

(n-k)!2"-' ' 

where we choose p from the normalization condition 
(A.8). Since 

(see Ref. 17, p. 17), we find that p =  2 and, with account 
of (A.9) and (A.7), we obtain the result (1.13) given in 
the text. 
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