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Quantum field theory methods are used in a consideration of the dynamics of a two-level system which is 
coupled in thermodynamic equilibrium with the radiation field of a resonator. The collective radiative 
effects depend on the ratios of the following quantities: the resonator's length a ,  the size L of the atomic 
specimen, the temperature T of the system, the wavelength k -' of the radiation, the frequency o, of the 
atomic transitions, and the density ps of atoms in the system. In the uniform-field case k -'>L the result 
of F G ~  [Sov. Phys. JETP 5, 501 (1957 are valid for the natural line width if o0>2.rrc/a. Under such 
conditions equations are given for the collective radiation shift and for the change of the g factor. All 
three effects are proportional to the number of atoms in the resonator. The interaction of the atoms with 
the longitudinal component of the field gives an additional radiative shift. If, however, wo-2ac/a, all 
collective radiative effects disappear, and the natural line width is determined only by the figure of merit 
Q of the resonator. For k -' 5 L a new. radiative effect appears; this is a smearing out of the resonance 
frequencies into a band of width. For oo <pZps, where p is the matrix element for the dipole transition, 
there exists a Eiose-Einstein transition temperature for the condensation of photons of all modes of the 
radiation field of the resonator, independent of the wave vector and polarization of the mode, provided 
that the position of the atomic specimen does not destroy the symmetry of the resonator. Otherwise the 
interaction of the atoms with the field leads to an induced symmetry breaking and the phase transition 
does not occur. 

PACS numbers: 05.90. + m, 32.70.J~ 

1. INTRODUCTION 

An important achievement of quantum electrodynamics 
is the remarkable agreement with experiment of the 
theory of radiative effects for a single atom. For  a se t  
of atoms, however, radiation effects can be decidedly 
c h y e d  owing to exchange symmetry.' In particular, 
Fain,* in work based on results of Dicke,' on the spon- 
taneous decay of a system of two-level atoms, showed 
that the natural width of the line from a gas of N atoms 
in thermodynamic equilibrium is 

7-Nhooyd2kT. (1 

Here w, is the frequency of the atomic transition, yo 
is the natural width of the line for a single atom, and 
T is the temperature of the gas. This result is derived 
on the assumption that the system of atoms interacts 
with only one mode of the radiation field of a resonance 
cavity and that its wavelength is much larger than the 
size of the two-level system (&-I>> L). 

Equation (1) is a phenomenological formula, since 
yo is itself the result of the interaction with the entire 
infinite se t  of modes of the radiation field. Doubt is 
aroused by the two-stage approach to the calculation of 
the natural line width, f i rs t  for one atom, and then for 
the entire system. Besides this, some authors believe 
that in the case of thermodynamic equilibrium in a sys- 
tem of atoms there a re  no cooperative effects in spon- 
taneous decay .= 

We believe that a natural way to  avoid these difficul- 
ties is to use the methods of quantum field theory in 
statistical  physic^.^ In this paper we consider the dy- 
namics of a two-level system which is in thermal equili- 
brium with all the radiation modes of a cavity resona- 
tor, for an arbitrary ratio uf the sizes of the resonator 

and the system of atoms. The purpose of this work i s  
to  investigate the effects of collective action and of the 
temperature of the system on such well known radiative 
phenomena a s  the natural width of the line, the radia- 
tive shift, and the change of the g factor, which occur 
when the atomic system is affected uniformly by the 
field, and also to consider new radiative effects that 
ar ise  in the case when the wavelength of the radiation 
field is less  than the size of the system of atoms. 

Particular attention is given to the dynamics of a 
system close to the temperature of the phase transition 
to  the superradiative which can occur when a 
threshold condition on the density of atoms in the re- 
sonator is  satisfied. This phase transition i s  the Bose- 
Einstein condensation of the photons of the radiation 
field," and therefore the thermodynamic phase of low 
symmetry is characterized by spontaneous coherence 
of the field.B'g We shall call  this phase transition the 
transition to  the spontaneous coherent state (SCS). The 
connection between the Bose-Einstein condensation 
and the spontaneous appearance of a coherent state in 
a Bose system has also been considered in Refs. 10- 
12. 

In studying radiative and thermodynamic effects in a 
two-level system the Hamiltonian usually used is that 
of Dicke, in which the interaction is of the following 
form: 

where S: are  atomic operators, and b,, and b;, a r e  
field operators. Since in the resonator there is already 
present a longitudinal component of the electromagnetic 
field, it is necessary to take into account also the longi- 
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tudinal interaction of the atoms with the radiation field, 
S;(b,, +b&). The longitudinal interaction is of no par- 
ticular interest from the point of view of radiative ef- 
fects, but it is essential in treating the phase transition 
t o  the SCS. For  T T ,  owing to the Bose condensation 
of the photons, a spontaneous macroscopic field arises,  
which breaks the high-temperature symmetry of the 
system. However, if the location of the atoms in the 
resonator is such that this symmetry is already re- 
moved, according to  the theory of phase transitions of 
the second kind as a theory of spontaneous symmetry 
breaking,I4 the phase transition in the system atoms 
+field must disappear. Owing to  the longitudinal inter- 
action, this is the situation in the present case. 

When the atoms and the field a r e  in thermal equili- 
brium with each other, the singling out of a single 
mode or  a finite set  of modes of the field i s  improper. 
Obviously the singling out of "one mode" of the atomic 
subsystem, i.e., the approximation of an actual many- 
level atom with a two-level system is equally improper. 
Nevertheless there a re  actual systems to which the 
present treatment can be applied, namely paramagnetic 
systems in a resonator. Therefore a number of the 
formulas and diagrams in the present paper refer to 
these systems. 

2. THE GENERAL APPROACH 

Applying the procedure of quantizing the electromag- 
netic field in a resonator in terms of standing waves,15 
we write the magnetic field in the form (E =1) 

where ok, a re  the eigenfrequencies of the resonator 
with volume V, p = N / V  is the density of atoms in the 
resonator, and 

where bko, b;, a re  photon operators for the field mode 
with propagation vector k and polarization a. The func- 
tions Hka(r) satisfy the normalization condition 

The electric field E(r) is quantized analogously. 

When direct spin-spin interactions a r e  neglected, the 
Hamiltonian of the system of spins plus radiation field 
is 

Going over to  the fermion representation for spin i, 
we write 

where aj,, aj: a re  operators for the lower energy level, 
and aj2,aj; a re  those for the upper level. 

hr.(r) =-1/2p(okap/2)" (Hk."(r) -iHkOu(r) ), 

Ek.(r) =-1 /z~(or~/2)"HkGz,  (7 

with p =gpg. This is precisely the same a s  the form 
of the fermion representation of the Hamiltonian of a 
system of two-level atoms plus the field, the only ex- 
ception being that for the latter the interaction is writ- 
ten in the form 

where daB a r e  the matrix elements of the dipole mo- 
ment of the atom. 

Let us introduce the temperature-dependent photon 
Green's functions 

and the fermion functions 

with un=2nm/P, o, =n(2n +l)/P, m,n =0, &I,. . . . . In 
diagrams the photon Green's functions will be repre- 
sented by wavy lines and the fermion functions, by solid 
lines. An ordinary arrow on a fermion line will indi- 
cate the lower atomic state Il), and an open arraw, the 
upper state 12). According to Eq. (6) the zeroth-order 
fermion Green's functions a r e  

The zeroth-order Green's functions of the f4'eld a r e  

Formally the number of modes of the radiation field 
of the resonance cavity in interaction with the system of 
atoms is infinite. Actually the nurnber of modes is 
bounded, since the boundary conditions with which the 
quantization of the field in the resonator is carried out 
a r e  violated for frequencies larger than the plasma 
frequency w, -1016. This makes it possible to retain 
only the bare part of the vertex function. For example, 
the condition that the second graph in the expression 

be small compared with the f i rs t  is a s  follows: 

p2pkTnlNof K1, (14) 

where n - Vwya3c3 is the number of modes of the radia- 
tion field in the resonator. For  the region interesting 
for our problem, temperatures kT - wo and atomic fre- 
quencies wo -pp2, the inequality (14) becomes tz a N 
or  p>> lV5. Comparison of the second and third graphs 
gives a similar inequality. 

Accordingly the Dyson equations take the form 
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where 

The existence of nondiagonal (anomalous) Green's func- 
tions G,,  and mass operators (16) is possible only be- 
cause d the longitudinal interactions in the Hamiltonian 
(6). 

Using the relations between the fermion Green's 
functions and the spin polarizations9 

we can readily write out the mass operators (16) in the 
following form: 

zll (r) =-z kkg(r)cto, (18) 
h 

where 

2 like($) (sl+)+~.:(r1) ( ~ i ) + 2 ~ ( r j )  (SI')]. (19) ck#- -- 
a k a  ] 

From the equations of motion for the field variables it 
follows that 

cr.-(cpt.N-'>. 

Substituting Eqs. (11) and (18) in Eq. (15)' we get 

The quantity 

has the meaning of an effective longitudinal field, a s  
can be seen from the Hamiltonian (6) or (8)' and the 
quantity 

(E(r)  + 1 A (r) lZ)'h-aaq (r) 12. (22) 

is obviously the total effective magnetic field acting on 
a spin located at  the point r (or the total electric field 
acting on the atom). 

To obtain the equations for self-consistency, we sub- 
stitute the Green's functions (20) in Eq. (17). Then 
from E qs . (1 9) we find 

Then from the usual rules of the diagram technique 
we write the diagram equation for the photon Green's 
f u n ~ t i o n : ~  

If we introduce the matrices 

D(o,) =D(ko, k'o'; o m ) ,  

Do(om) -Do(k~, om) 6tr-6.. ., 

Eq. (24) takes the simple form 

D-DO+D8D. 

In the one-mode case the temperature a t  which the 
photon Green's function with w, = O  has a singularity 
gives the temperature of the Bme-Einstein condensa- 
tion." Generalizing this condition to the many-mode 
case, we find from Eq. (27) the following equation for 
the temperature of the Bose-Einste in condensation T,: 

Det [E(o) -Do-'(0) ] -0. (28) 

The transverse susceptibility of the system is deter- 
mined by analytic continuation of the polarization 
Green's f unction4 lo 

In analogy with the photon Green's function (24) we can 
write out the equation for the polarization function 

Let us introduce the notation 

Then Eq. (29) takes the form of a system of linear al- 
gebraic equations 

[Do (ka, om)Et, rp.. (urn) -G~t.G~~.lXt.a,(r, om) 
11'0' 

= x II,,,, (r, o r n ) ~ E  (r). (30) 
'.a 

Accordingly the resonance frequencies can be found a s  
the roots of the equation 

Det[B(Q) -Do-'(52) 1 =O. (31) 

where (a) is defined in Eq. (25). Comparison of Eqs. 
(28) and (31) shows that the spectrum of the collective 
excitations must include a soft mode. 

Because d the Bose condensation of the photons a 
nonvanishing average field i y N - l h )  appears for T 
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-S T,16 However, if the first  sum on the right side of 
Eq. (23) is not equal to zero, a condensate of the field 
exists at arbitrary temperature. Accordingly, the 
longitudinal interaction can make the phase transition 
to a SCS forbidden, because at any temperature the 
system is in a state with induced symmetry breaking. 

3. THE UNIFORM-FIELD CASE k-' >> L 

Let us suppose that the size of the atomic specimen 
is much smaller than the wavelength of any mode of the 
radiation field in the resonator. Clearly this is an un- 
realistic condition, since it would require an enormous 
density of two-level atoms in a specimen of micro- 
scopic dimensions. Nevertheless, this limiting case is 
interesting for two reasons. First ,  it can be compared 
with ~ a l n ' s  result, Eq. (I), and second, it models the 
experimental situation when the dimensions of an atomic 
o r  paramagnetic specimen a r e  much smaller than those 
of the resonator. 

Let us find the coupling constants between the radia- 
tion field of a resonator and an atomic system. Here 
we take the rectangular resonator with sides a, b, and 
d. The structure of the field in such a resonator has 
been shown, for example, in Poole's book." Norma- 
lizing the field according to  Eq. (4), we have from (7) 
for TE waves 

At, ( r )  = 2 p ( n o t p ) "  kJk (k .  sin k a  cos k,y 
(k.2+k,z) " 

-ik,  cos k~ sin k,y)  cos k,z, (32) 

E t l  ( r )  =-2p(nokp)"'(C+k, ' )  "k-' cos k s  cos k,y sin k,z; 

and for TM waves 

Atz(?) =-2p(notp)"(k2+k,')-"(k.~os ks sin k,y 

-ik, sin k a  cos k,y) cos k,z, (33) 

Etz(r) =o, 

where kx = nm/a, k ,  = m/b, k,  = nfid; m, ti, and p a r e  
positive integers. 

We give the solutions of the compatibility equation 
(23) for three cases: 1. A paramagnetic system is 
placed in such a way that (,,(r) =O. One can see  easily 
from Eq. (32) how this can be done. As for a system 
of two-level atoms, this condition is fulfilled if the di- 
agonal matrix element of the dipole moment is equal to 
zero. 2. The weak-coupling approximation, with 

3. The one-mode approach. 

1. In the case in which the longitudinal interactions 
a r e  equal to zero, the mass operators (16) vanish, and 
the polarization operators can be calculated by means 
of the Green's functions (11). The result contains only 
the following polarization diagrams: 

For  m #O the matrix (25) takes the simple form 

Substituting this expression in Eq. (31), we find 

where according to Eqs. (12) and (35) 

a.=at.(Q) =- ( 8 2 - ~ 0 2 )  ( Q z - ~ r b ) / 4 ~ o ~ t ~ 1 A r ~ ( r )  Izth   BOO/^). 

Expanding the determinant (36) into a sum, we get the 
equation for  the resonance frequencies of the system 
atoms plus radiation field: 

If the characteristic dimension a of the resonator is 
such that the frequencies 51 and o, are  comparable with 
2nc/a, then, a s  can be seen from the graphical solution 
of Eq. (37) shown in Fig. 1, 

where a,, a r e  the points of intersection of the curves 
in Fig. 1. Accordingly, in this case the natural broad- 
ening is determined only by the figure of merit  of the 
resonator. 

If, however, C2 -w,>> 2nc/a, we can replace the sum 
over ko with an integralL8 

The result then is that the numerator in Eq. (37) takes 
the form 

8'-oo2(1+26/oo-2ir lo , ) ,  

where 

Equation (38) is the expression for  the collective radia- 
tive broadening of the line, and Eq. (39) is the collective 
radiative line shift. The change of the g factor is ob- 
viously given by 

FIG. 1. Graphical solution of Eq. ( 3 3 ) .  Curves 1-7 give the 
function 4 xk, I A,, 1 2 ~ o W k , / [ f 2 2  - bk,2 1; curve 8 is the function 
( Q ~ -  u;)th(p ~0/2). The dashed straight line corresponds to 
the temperature T, of the Bose condensation. 
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where g is the Land6 factor for  an isolated paramag- 
netic atom. 

For the line width (38) to have meaning, it is neces- 
sary that 

'f=o0. 

In the radiofrequency range w, -10l0 this condition is 
satisfied for N <<loz4, i.e., practically always. In the 
optical region, on the other hand, this condition leads 
to the inequality N << lo7, which violates the condition 
for the applicability of the theory in question, Eq. (14). 

Since 5,, =0, the thermodynamic averages of the field 
quantities vanish, (yko N -Ih) =O. They can appear 
spontaneously, however, for T c T,. We find the tem- 
perature of the Bose condensation from Eq. (37) by 
setting i-2 = 0: 

This result was f i rs t  derived by Wang and H i ~ e . ~  

For  kT,> w, we have from Eq. (29), to good accuracy, 

Since the argument of this section is based on the uni- 
form-field assumption k'I>> L, the sum over k actually 
has (a/~)-' a s  an effective upper limit. Consequently, 

where p, is the density of atoms in the specimen. In 
a previous paperIg it was shown by simple examples 
that modes with k'l S L give no contribution to T,. 

2. Weak coupling approximation. It follows from Eqs. 
(32) and (33) that an inequality analogous to (34) also 
holds for the longitudinal coupling constants. Then 
from Eq. (22) we get 

and Eqs. (21) and (22) take the following form: 

If we substitute Eq. (42) in the Green's function (20) and 
use the fact that A =O, it is not hard to guess that all 
the results of this approach can be obtained from Eq. 
(37) by replacing w0/2 with E (r). Accordingly, a s  be- 
fore the natural width will be of the form shown in Eq. 
(38), and to the radiative shift (39) and the g-factor 
correction (40) we must add the quantity 

Thus, unlike the natural line width, the radiative line 
shift depends on the position of the two-level system in 
the resonator. 

3. The one-mode approach. This approach is only a 
model, but it enables us to elucidate some features of 
the influence of the longitudinal interaction for  the case 
of an arbitrary coupling between the two-level system 
and the radiation field. The compatibility condition (23) 
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FIG. 2. Temperature dependence of the mean field amplitude 
( q f f  ' I 2 ) .  

takes the following form: 

where 

For  simplicity the subscripts for the mode and the 
radius vector have not been written explicitly. 

If we set  5 =O in Eq. (44), we get an equation of state 
which has been found in a number of  paper^.^*^^^ The 
solution of Eq. (44) is shown in Fig. 2. The smaller 
the value of f ,  the closer the behavior of the mean 
field (y N -Ib) a s  a function of temperature comes to 
spontaneous appearance. We call attention to the fact 
that for  w,=O the equation of state (44) goes over into 
an equation of the Curie-Weiss type: 

with the temperature of the phase transition given by 

4. COMPLETE FILLING OF THE RESONATOR, 
L >, k-' 

Let us consider another limiting case, in which the 
resonator is filled completely with atoms with macro- 
scopically uniform density. If we take spins a s  the two- 
level objects, a paramagnetic-crystal resonator is a 
practical realization of this case. In the normal un- 
ordered thermodynamic phase T s T, a system of two- 
level atoms coupled with the radiation field of a rec- 
tangular resonator must be invariant under a number 
of discrete transformations, for example, rotation 
through 180" around the z axis, o r  an inversion of co- 
ordinates, x - -  x and y -- y. We recall that the ex- 
ternal field along which the spin is quantized is in the 
z direction. In the case of a cylindrical resonator the 
Hamiltonian (6) must obviously be invariant under ro- 
tations around the z axis. The thermodynamic averages 
(S,) and (s,) must be equal to zero, because there is no 
preferred direction in a plane perpendicular to the z 
axis. In fact, according to  the solution of the Dyson 
equation (15) we find that C,, =El, =O. Then it  follows 
a t  once from Eq. (17) that there i s  no polarization in 
the normal phase and no transverse field, these being 
effects that can ar ise  only owing to spontaneous sym- 
metry breaking in the system during a phase transi- 
t i ~ n . ~  '9 

If, however, the atoms a re  located in the resonator 
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FIG. 3. Temperature spectrum of resonance frequencies of a 
two-level system placed in a cylindrical resonator. Natural 
frequencies of the resonator are shown as dashed straight 
lines. The length of the resonator is equal to its radius, and 
x=' 2s wo= wTMOIO. 

in such a way that there a re  no such symmetries a s  
those mentioned above, the diagrams (16) a re  different 
from zero. There is no phase transition, since, a s  can 
be seen from Eq. (23), an order parameter exists a t  
any temperature; it is the constant field given by the 
linear superposition of the (qkoN-lk). All of this is in 
agreement with Landau's theory of phase transitions 
of the second kind, considered a s  a theory of spontan- 
eous symmetry breakit~g.'~ 

Substituting Eq. (35) in the matrix (25), after summing 
over the atoms for sl # 0  we find 

with all  of the other elements equal to zero.') For  
sl =o, 

E,,. ,,(O) =np20tp(k,Z/k2)n(0)+npzotp(l-k,'/kz)n(0), (46) 
Err, rr ( 0 )  =npaotpII  ( 0 ) .  

Substituting (45) into Eq. (31), we find the resonance 
frequencies 

By sorting all of the states of the radiation field ac- 
cording to ku, we cannot construct the temperature 
spectrum of resonance frequencies of the system for 
T a  T, shown in Fig, 3. This spectrum has the follow- 
ing features. 

1) The spectrum of the frequencies slk, given by the 
interaction of the two-level system with the TM radia- 
tion field contains a bunch of closely spaced soft 
modes, whose frequencies decrease a s  the temperature 
i s  lowered according to a T-I law, and near T, go to 
zero according to a law (T- ~ , ) l ~ .  The thickness of the 
bunch goes t o  zero a s  (T - T ~ Y ~ .  In Fig. 3 this bunch 
of soft modes is shown by double shading; 

2) If a TM mode of the field is  resonant to the transi- 
tion frequency w,, the spectrum contains an individual 
soft mode with width determined only by the figure of 
merit Q of the resonator. With decreasing frequency 
the frequency of this mode behaves like T - '~ ,  and for 
T - T, it behaves like (T - ~ , ) l ~ .  

3) Since kZ,< Iza, the interaction of the atoms with the 
TE modes gives another bunch of closely spaced modes, 
which a r e  shown in Fig. 3 by shading. Unlike the re- 
sonance frequencies Qk,, this bunch of frequencies does 
not contract to  zero for T-T,. In the neighborhood of 
T, the width of the TE band of resonance frequencies 
slk, becomes comparable with the atomic transition 
frequency w,. 

4) Independently of the ratio of o, and the frequency 
of the radiation field, the temperature a t  which the 
frequencies of the soft modes go to zero can be deter- 
mined from the equation 

If we substitute (46) in Eq. (22), we can verify that a t  
the critical point (48) a Bose-Einstein condensation 
occurs for  both the TE and TM radiation fields. Sub- 
stituting the matrix elements (45) in Eq. (30), we find 

and from this and Eq. (29) we get the transverse dy- 
namic susceptibility of the system atoms plus radiation 
field 

X+ - ('2) = N n ( Q )  - 4 0 0 n  (Rj k I o j )  I . (49) 

The density of states of the collective excitations in 
the band can be written in a form which is used in band 
theorfO 

According to  Eq. (47) we find that Van Have singulari- 
ties occur a t  T =Tc  and T =a. 

5. DISCUSSION 

The two limiting cases examined in Secs. 3 and 4 show 
that the ratio of the dimensions of the resonator and of 
the atomic system plays an important part in the dy- 
namics of a two-level system coupled to a radiation 
field. A rather important distinction between different 
types of temperature behavior of this dynamics can be 
made. 

1. If the atoms a re  placed in a resonator which is s o  
large that the dimensions of the system of atoms a r e  
much smaller than the wavelengths of the radiation 
field of the resonator and the frequency of the atomic 
transitions i s  much larger than the fundamental proper 
frequency of the resonator, there is a collective radia- 
tive line width (38) and a collective radiative shift (39). 
Depending on the position of the atomic specimen in the 
resonator, there may also be an additional radiative 
line shift owing to a longitudinal coupling between the 
radiation field and the atoms. For  paramagnetic atoms 
there i s  a corresponding radiative change of the g fac- 
tor, Eq. (40). All of these effects a r e  proportional to  
the number of two-level atoms in the resonator. , 

If, on the other hand, the atoms a r e  uniformly dis- 
tributed in the resonator and the atomic transition fre- 
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FIG. 4. Field spectrum of resonance frequencies for T=4.2 K. 
WTYOIO= loi1. The shaded region represents the set  of fre- 
quencies QkI(TE), and the doubly shaded region, the fre- 
quencies nr2 (TM). 

quency is comparable with the fundamental frequency 
of the resonator, as is the case in ordinary EPR re- 
search, the spectrum of resonance frequencies con- 
s is ts  of a se t  of discrete lines, as shown in Fig. 1. 

2. In the other extreme case considered here, the 
cavity of the resonator is completely and uniformly 
filled with atoms. In this case a new radiative effect 
appears: a band spectrum of resonance frequencies. 
According t o  Eq. (43) the width of the band is 

r-npap.odkT, (50) 

if kT > o, > paps. On the other hand, if T >> T, and 
w,<l.r2ps, 

r-ooT./T. (51) 

To obtain a more exact expression for  the band width 
r,  a specific resonator must be considered. Figure 3 
shows the temperature dependence of the resonance fre- 
quencies of a two-level system placed in a cylindrical 
resonator. 

Resonance studies of paramagnetic systems usually 
use scanning over values of the externirl magnetic 
field." The dependence of the resonant frequencies for  
paramagnetic system plus radiation field on the external 
field H, is shown in Fig. 4. To  make the radiative ef- 
fects clearly visible in Fig. 4, we have taken the ex- 
treme density gaps =0.9. Physical situations a r e  
often encountered in which the atomic specimen is much 
smaller than the resonator and a t  the same time much 
larger than the wavelengths of the leading radiation 

modes of the resonator. Unfortunately, the calculations 
a r e  very difficult in this case. 

The writer is very grateful to G. M. zaslavski! and 
the members of his seminar for valuable criticism and 
discussion of this work, and to K. zhazhevskii for  a 
discussion of the question of the upper limit on the fre- 
quencies of the radiation field of a resonator. 
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