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We analyze the problem of evolution of spatially nonhomogeneous models of the Universe over times 
when the characteristic scale L of inhomogeneity is considerably larger than the size of the event horizon 
ct .  In the approximation c t / L < l  we have constructed a mathematicai model embedded into a 
Friedmann space with isolated spatial inhomogeneity, generating rotating motions of matter with 
parameters corresponding to the vortex theory of galaxy formation. We show that the existence of pure 
vortex motions during the quasi-Friedmann stage leads for t 4  to the appearance of potential motions 
caused by a redistribution of matter into the inhomogeneities. This is due to the different character of the 
time variation of matter energy density at different points of the inhomogeneity. 

PACS numbers: 98.80.B~ 

1. INTRODUCTION At present there exist two alternative approaches to 

The presently observable large-scale isotropy and 
homogeneity of the properties of the Universe unfortu- 
nately does not allow one to conclude to what degree the 
Universe satisfied o r  did not satisfy these properties 
during the early stages of its evolution. The reason 
for this is the fact that the Friedmann solution, which 
describes the evolution of a homogeneous and isotropic 
Universe, for t- 0 becomes unstable with respect t o  
small perturbations of the metric, the energy density 
and the velocities of the motions of matter.' The an- 
swer to  the question: how fast does the Universe "for- 
get" a putative initial lack of homogeneity and isotropy 
is indelibly related to  the problem of initial conditions 
which in cosmology. However, since the latter prob- 
lem has remained unresolved to  this day, there is only 
one way to  analyze the early stages of evolution of the 
Universe: t o  reconstruct these from the structure of 
the Universe observable at the present epoch. 

Turning to  the vortex theory of galaxy formation:-6 
we have to  note that it requires the construction of an 
essentially non-Friedmann cosmological model for the 
early stages, including spatial inhomogeneities of the 
vortex type. These inhomogeneities must be respon- 
sible for the occurrence of intense vortex motions, 
which for t ateQ(te, is the instant of time when the ener- 
gy densities of radiation and matter become equal: 
ten = 3.7 x 1O1'(ah2)s can, according t o  Refs. 2-6, lead 
to  the observable picture of metagalactic structure. 
The incompatibility of an early Friedmann Universe 
with large-scale (L >> ct) spatial inhomogeneities of 
vortex type follows already from the instability (t - 0) 
of the Friedmann solution with respect to small vector 
perturbations of the metric above the horizon? 

The following question ar ises  naturally: how will 
such a spatially nonhomogeneous model evolve in time 
during the early stages of i t s  evolution? An answer to  
this question will shed light on the physical picture dur- 
ing the early nonhomogeneous Universe, and in particu- 
lar,  will clarify t o  what extent the putative difficulty of 
the vortex theory, related to  the chemical composition 
of primordial matter, i s  plausible. 

the problem of constructing a spatially inhomogeneous 
(in the differential sense) model of the Universe, which 
fo r  t >t,, should exhibit vortex motions of the matter. 
The first  approach ( ~ f . ~ . ~ )  requires identity of the geo- 
metric properties and of the anisotropies of deform- 
ations of space at each of i ts  points, i.e., a "group" 
homogeneity of the space under consideration. The 
velocity fieid of the particles in flat three-dimensional 
space can be described in a simplified manner in the 
following way. In an arbitrarily chosen plane z = const 
there exists a uniform flow of, particles with some 
orientation with respect to  the x and y axes. As z var- 
ies  the direction of the velocity vector varies period- 
ically, i t s  magnitude remaining constant. Rotational 
motions of matter, such a s  the motion of the particles 
around a closed trajectory, occur in this model only if 
one takes into account the interaction between infinitely 
close layers of moving particles, i.e., if viscosity i s  
taken into consideration. 

A second appr~ach'~' ' '  does not require taking into 
account dissipative processes in order to  obtain rota- 
tional motions. The latter can appear directly in the 
process of time evolution of the Universe a s  a conse- 
quence of a primordial spatial nonhomogeneity. How- 
ever, in this case one must give up the requirement of 
homogeneity of space not only in the differential sense, 
but also in the group sense, which complicates consid- 
erably the analysis of such models in distinction from 
the first  approach described above. 

The presence of even initially small irregularities of 
the vortex type (as well as of other types) necessarily. 
leads to  a local anisotropy of space.12 The development 
of the irregularities in the reverse-time evolution of 
the Universe i s  accompanied by a growth of the aniso- 
tropy of the deformation of space'' in the localization 
region of a given anisotropy. In turn, the growth for 
t - 0 of the deformation anisotropy related to  vortex 
motion, derived earlier by ~el 'dovich and Novik~v, '~  
leads in time to  an essential change in the character 
of the temporal evolution of a spatially nonhomogeneous 
Universe. As was shown by Tomita,l0 in the process 
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of the reverse-time evolution such a system gradually 
deviates from the Friedmann solution, and from a cer- 
tain time t ,  on goes over into Kasner asymptotic be- 
havior, i.e., becomes essentially anisotropic. The val- 
ues of t ,  at each point of a spatially nonhomogeneous 
model will be determined by quantities which describe 
the degree of anisotropy of the deformation of space at 
the given point. 

It is necessary, however, to note that the defor- 
mation anisotropy of an arbitrarily chosen volume ele- 
ment of matter is determined, in the most general 
case, not only by the local anisotropy of deformation 
introduced by spatial inhomogeneities. Moreover the 
background space into which vortex inhomogeneities 
a r e  embedded may have i ts  own anisotropies. Then 
t ,  at a given point of space will be determined by the 
total value of the deformation anisotropy with regard 
t o  the background space (a constant at each point) and 
by the vortex inhomogeneities. In this case, it i s  nat- 
urally impossible t o  relate uniquely the vortex para- 
meters to  parameters which determine the deform- 
ation anisotropy at each point of the spatially nonho- 
mogeneous model. And thus there ar ises  the necessity 
of appealing to additional hypotheses which allow one to  
define the geometry of the background space. 

The mathematical formulation of the problem, when 
the spatial irregularities a r e  embedded into a back- 
ground space which itself satisfies the requirements of 
group homogeneity is given in 82. 

In 83 we write down the solutions of the Einstein equa- 
tions obtained similarly to Ref. 10, and describing the 
evolution of a spatially nonhomogeneous model in the 
approximations L >> ct and u, << 1. Section 4 is devoted 
to an analysis of the characteristic stages of evolution 
of the model in the case when the deformation aniso- 
tropy at all points of space is determined only by vor- 
tex space inhomogeneities. The vortex parameters a re  
determined in agreement with the vortex theory of gal- 
axy In 85 special examples of the listed 
results a re  considered. 

2. AN INHOMOGENEOUS MODEL 

We consider an inhomogeneous space for which the 
metric in a synchronous reference system has the re- 
presentation 

for i=k=O 
g i k =  for i=O, kPO; i fO ,  k=O. 

( 0 )  0 )  
(2.1) 

y(*,e, es for i=a,  k=p. 

Assume that the coordinate functions e2'(xY) which re- 
present the set of three frame vectors labeled by a de- 
pict the structure of a background space into which 
spatial inhomogeneities may be embedded. Since the 
background space may exhibit its own anisotropy, in 
the absence of spatial irregularities the frame functions 
ebf' will determine to  which type according to the Bian- 
chi classification the space belongs. This, of course, 
is true only in the case when the background space it- 
self satisfies at least the requirement of group homo- 
geneity. 

Since nonhomogeneous spaces, in the most general 
case, do not allow coordinate transformations trans- 
forming the space into itself, the metric tensor which 
determines the geometry of a given space, must es- 
sentially be a function of coordinates which does not 
admit the invariance of independent differential forms 
of the type 

(Greek and Latin indices run over 1,2,3;  summation is 
understood over repeated indices) with respect to any 
three-parameter group of motions." Therefore in a 
synchronous reference system, where the spatial length 
element dl2 can be separated from the time interval 

dsZ=-c'dt2+dlZ, (2.3) 
the matrix y ,,,, which enters the expression of dl2 when 
expressed in t e rms  of the independent differential forms 
(2.2) 

must be a function not only of the time, but also of the 
coordinates, i.e., 

Thus, the presence of spatial irregularities in the mo- 
del under discussion, a r e  reflected only in the coor- 
dinate-dependence of the matrix y ha ,. 

The coordinate functions e',O'(xU) form a set of vectors 
reciprocal to  the coefficients et ,(xU) of the 1-forms 
(2.2): 

a la) - e5 In) etb'=8.b, = e,.,eb (2.5) 

The operations of raising and lowering of Greek indices 
a re  defined in terms of y,, and yaB(y E P  = 6;) and for 
Latin indices in t e rms  of the matrices y,,,, and yhb' 

(Y ( a c ) ~  '") = 6,) a -  

The projections of the Einstein equations, describing 
the evolution of a universe with inhomogeneous 3- space, 
onto the corresponding frame vectors in the synchro- 
nous coordinate system considered here can be written 
in the form 

( W  
' /~ (x:~:I (~) -x(~)I (~) )  = X  (P+E) u(.)u', (2.7) 

'/l(-y)-lh( (-y)"'x::;)'+~::; =x (p+e)u, . lu(b~+x8."(p-' / ,~) ,  (2-8) 

where E,P, (uq,uk,) a r e  respectively the energy density, 
the pressure of matter and the components of the 4-vel- 
ocity; T is the contraction of the energy-momentum 
tensor; XI:; =y(bc)j/ hc, (here and in the sequel the dot 
denotes differentiation with respect to  time c t ) ;  

P : ~ ~ = P , D ~ ~ , ~ ~ ~ ' ,  

and, in its turn, P: is the Ricci tensor of 3-space with 
the metric dl2 = y,,dx"dxs. 

Here PI:! has the form: 

~ ~ ~ = ~ ~ ~ ~ ~ { r ~ ~ ~ , ~ ~ , - r ~ ~ P d ~ . ~ ~ ~ + r ~ ~ ~ ~ r ~ ~ ~ ~ - r ~ . " ~ , r ~ , 9 : , ~ .  (2.9) 

Moreover, in (2.7) we have introduced a notation yhich 
allows one t o  write the equation in a compact form and 
reminiscent in i t s  structure of the covariant derivative 
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of a mixed second-tank tensor: 
0)  0)  0 1  ( I )  111 ( 5 )  

~ ( a ) ~ ( s ) = ~ ( * t , ( r ) + r ~ t r ~ ~ ( o )  - ~ I ~ ~ T X ( I I  . (2.10) 

In their turn, the functions ri::, have the form 

where 

Finally, Cf,,, which in the inhomogeneous models plays 
the role of the group structure constants, have the 
same form a s  for  the homogeneous models, and for 
the same reason we have conserved the same notation, 
a s  well a s  for  the functions a:,,: 

cC ~-e(alev,(bl-e(b)ev,(a). - " (C) " (2.14) 

In Eqs. (2.9), (2.10), (2.12), (2.14) and everywhere 
below, the symbol (f) after the comma denotes the dif- 
ferentiation in the direction ( f), related to ordinary 
differentiation with respect to the coordinate xu by2' 

m 
' ~ . o ) " ~ . a e ( t p  (2.15) 

The equations (2.6)-(2.8) represent a rather compli- 
cated system of partial differential equations (PDE), 
which can be analyzed only if one considers more con- 
crete physical problems. Below we shall investigate 
a spatially nonhomogeneous model of the Universe for 
t <tee, including inhomogeneities of the vortex type, 
which at times close t o  tea correspond in their para- 
meters to the vortex motions adopted a s  initial con- 
ditions in the vortex theory of galaxy f o r m a t i ~ n . ~ - ~  

3. LARGESCALE SPATIAL INHOMOGENEITIES 

Whereas fo r  the vortex theory of metagalactic struc- 
ture2-5 an essential requirement is that the sizes of the 
fundamental energy containing vortex, L, and of the 
event horizon, ct, should be close to  each other a t  the 
instant tea when the matter energy density and radiation 
energy density become equal, for t <tea the character- 
istic scale of the inhomogeneities which produce a vor- 
tex of the required scale will exceed the s ize  of the 
horizon. Thus, one of the approximations simplifying 
the analysis of the equations (2.6)-(2.8) for t <tee is an 
expansion in terms of the small parameter c t / ~  << 1. 
In this approximation one may neglect in the left-hand 
side of Eq. (2.8) the terms of P I : ;  of order L-' vis-a-vis 
the other t e rms  which a r e  of order (ct)". However, 
this is not always admissible over the whole interval 
of times 0 Q t s tea, since it is possible that, as will 
be shown below, after the onset of the Kasner stage 
and further for t -0, the t e rms  in along directions 
with negative Kasner exponent become important. Al- 
though this situation has its specificity, it i s  similar 
to  that which can be encountered in the investigation of 
homogeneous models, when we a re  dealing with the 
change of Kasner regimes (cf., e.g., Ref. 15). 

As a second assumption, also simplifying the investi- 
gation of the system (2.6)- (2.8) and yielding a more in- 
tuitive picture of the evolution of a spatially nonhomo- 
geneous Universe during the stage t <tea, we assume: 

i.e., we shall assume that the velocities of the motions 
of matter at a time near t,, a re  small. It should be 
noted, however, that like the f i rs t  assumption, this 
second assumption has a limited range of applicability 
for t - 0, since during the Kasner stage the separate 
components of the velocity may increase taking on 
relativistic values (cf. infra). 

Making use of these approximations and choosing as 
equation of state for matter during this stage of evolu- 
tion of the Universe the equation of state of ultrarela- 
tivistic matter p = ~ / 3 ,  we rewrite the system of (2.6)- 
(2.8) in the following simpler and more convenient form 
for the further analysis: 

It should be noted that the equations (3.3) and (3.4) do 
not involve the characteristics of matter: the energy 
density and the velocity of matter. Consequently they 
a re  a system of equations describing the evolution of 
the geometric model under consideration with time. 

Integration of Eq. (3.4) yields 

where X =  (-y)1'3,A $ j  a r e  arbitrary functions of the 
coordinates, slowly varying over scales c t  and satisfy- 
ing the condition A :; = 0. In the linear approximation 
the coordinate functions 

A,o=A::; e,'"e(:, 

correspond t o  vortex perturbations, gravitational waves 
and to the nondiagonal part of the potential perturba- 
tions in the Lifshitz expansion1 in t e rms  of eigenfunc- 
tions of the linearized nonregular part of the metric 
tensor. 

The relation (3.5) determines in fact a deformation 
of the elements of the medium under consideration. 
The diagonal part characterizes the change of the spe- 
cific volume of the medium under deformation, and the 
nondiagonal part, containing only the t e rms  with A $;, 
describes the anisotropic deformations of different 
elements of space. Since the A a r e  determined only 
by giving a Cauchy hypersurface and are,  in general, 
functions of the coordinates, one should expect that at 
different points of the space under consideration the . 

anisotropy deformation will be different. The regions 
of space with identically vanishing values of A I:; will 
evolve without experiencing any deformation anisotropy, 
i.e., according to  the Friedmann law. 

Further, substituting (3.5) into (3.3) and integrating 
the equation so obtained, it is easy to  obtain a relation 
which determines the time-dependence of X: 
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here 

R, = const (-loz5 cm), to is an arbitrary slowly varying 
function of the coordinates, which according to1' deter- 
mines a retardation at each point of the irregularities 
when the system comes out of the cosmological singu- 
larity (in the linear approximation t,/t corresponds to  
that part of the function pQ in the Lifshitz expansion1 
for potential perturbations, which was removed by in- 
finitesimal coordinate transformations).') We shall as- 
sume below that the spatially nonhomogeneous system 
under consideration comes out of the singular state si- 
multaneously at each point of space, i.e., that t, does 
not depend on the coordinates. Then, without loss of 
generality one can set t,=O everywhere. 

Integration of the system of equations (3.5) by means 
of the method proposed in Ref. 10 allows one to repre- 
sent the matrix y ,,,, in the following form : 

1, c-d 
a = )  s,={ o, 

where 

In the general case the matrix M:: in (3.7) defines a 
local reorientation of the frame vectors e',OJ in the field 
of spatial inhomogeneities. However, in order to  fac- 
ilitate the remaining analysis of the solutions we shall 
assume that the background space does not exhibit i t s  
own anisotropy and the frame vectors e',O' introduced 
before now reflect the presence of local space inhomo- 
geneities. The latter fact will in general contradict 
the definition of ez'  given before, a s  characteristics 
of the background space. However, such a redefinition 
of the e',O' allows one to  use all the relations introduced 
above without any changes of notation, and the matrix 
M z  reduces in this case t o  the form 

Then the matrix y ,,,, takes the form 

The coordinate function pa in (3.8) satisfies the con- 
ditions 

and is determined by the relation 

where r, are  the eigenvalues of the matrix A I:;. 
The equalities (3.6), (3.8), (3.10) describe completely 

(within the framework of the assumptions made above) 
the time evolution of the geometry of the space under 
discussion within the causally connected region. One 
should however note to  highest order in the parameter 
c t / ~  << 1, within this causal region A If i does not depend 
on the coordinates, i.e., for a given element of space 
of size ct the matrix A I f ;  is an array of constants which 
determine the deformation anisotropy of the selected 
element of the medium. Since the model under consid- 

eration is essentially nonhomogeneous, in distinction 
from the homogeneous models, one cannot say anything 
on the fate of other arbitrarily chosen volumes of mat- 
t e r  in terms of the solution at one given point in space. 
The character of evolution of the former will be deter- 
mined by their appropriate array of constants A?;, (the 
index i labels the chosen volume &ement). In principle 
a situation is possible when the deformation anisotropy 
of space i s  the same at each of its points, i.e., the ma- 
tr ix A g; is strictly coordinate-independent. In this 
case (adding the condition that the geometric properties 
be identical at all points of three-space) the space under 
discussion can be considered as homogeneous. A field 
of vortex velocities in such a space can be defined by 
means of a special choice of the frame  vector^.^'' An 
investigation of the character of the evolution of such 
models is significantly simplified compared t o  the gen- 
era l  case since the Einstein equations reduce to a sys- 
tem of ordinary differential equations, and the solution 
at an arbitrarily chosen point allows one t o  draw con- 
clusions about the evolution of the model as a whole. 
However, such an approach to  the problem of the pos- 
sible appearance of intense vortex motions in the Univ- 
erse,  in spite of its simplicity and attractiveness, does 
not exclude other hypotheses, but on the contrary, by 
its results makes them necessary. 

In spite of the fact that in the approach considered 
here the functions A vary little over scales ct, the 
values of the space derivatives of these functions at an 
arbitrary point inside the region ct a r e  not necessarily 
close to  zero. This allows one, using Eqs. (3.1), (3.2) 
(3.5), (3.8), (3 .lo), to  relate quantities which charac- 
terize the deformation anistropy of space with the vel- 
ocity of matter relative to  the chosen synchronous 
frame: 

where 

The components of the physical velocity, defined in 
the approximation uCa)u ,, , << 1, u&O = -1 by the relation 

(a) 112 
v ,,, = [u ,p ] (no sum over a), can be written with 
the aid of (3.8), (3.12) in the form 

The relations (3.6), (3.8) (3.10), (3.11), and (3.12) de- 
scribe, within the domain of applicability of the ap- 
proximations circumscribed above, and within the span 
of a separate causally connected region, the time evo- 
lution of the geometry of space, the energy densities of 
matter and of the vortex velocity field, i.e., these so- 
lutions allow one to  obtain a general idea on the evo- 
lution of matter in a given space element, where the 
geometry varies with time in a known manner. It 
should be noted that the solutions given here have,a 
Kasner asymptotic behavior for  t - 0, and a Friedmann 
behavior for t - m: 
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3/4 (ct)  ' t-rm 
na={ 

S/rsR,2p-Z[J/B~-~ROct]-'1; t+O ' 

Thus, the spatially nonhomogeneous model, being es- 
sentially anisotropic on the scale of the irregularities 
during the early stages, isotropizes itself with the pas- 
sage of time and gradually goes over into the Friedmann 
solution. The instant of isotropization of space at a 
given point will be determined by its degree of deform- 
ation a t  the given point. And since the system under 
consideration is essentially inhomogeneous, i.e., the 
degree of the deformation anisotropy of space varies 
from point to  point, the isotropization of space will oc- 
cur at different times in different regions of space. 

4. THE CHARACTERISTIC STAGES OF EVOLUTION 

For a more pictorial concept on the evolution of a 
spatially nonhomogeneous system in the stage t <tee we 
estimate the characteristic times when the functional 
time-dependence of all  i ts  characteristics undergoes a 
significant change, namely: t, the instant of isotrop- 
ization of the system, t, the time when, on account of 
a kinematic increase of the velocity of matter motion 
relative to the synchronous reference system they be- 
come relativistic, t,, the instant of time from which on 
spatial curvature begins t o  play an essential role in the 
dynamics of the system under consideration, i.e., 
when it becomes necessary to  take into account PI:; 
in the solutions of Eqs. (2.8). 

In fact the time t, can be considered as the instant 
when the asymptotic behaviors written out above go 
over into each other. Before t, we a r e  dealing with a 
vacuum solution, the presence of matter does not in- 
fluence in fact the functional time dependence of the 
metric, and for t larger than t, the influence of matter 
on the behavior of the system is substantial, leading t o  
an isotropization of the model. We therefore define 
t,, e.g., as the point of intersection of the curves ~ ( t )  
given by (3.17), corresponding to  the two asymptotic 
regimes. It is easy to  see  that to  this point corres- 
ponds a value t, equal to  

tr-96/8cRo. (4.1) 
Making use of the latter relation, the exact solution 
(3.6) and (3.11) which determines the parametric de- 
pendence of the energy density of matter on time as 
one goes from the Kanser regime to the Friedmann re- 
gime can be replaced, according t o  Ref. 16, by the 
more intuitive asymptotic expression 

One can also represent in a similar asymptotic form 
the solutions which describe the evolution of the veloc- 
ity field (3.14) and the time change of the scale factor: 
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It can be seen from the relation (4.1) that t, is pro- 
portional to  the quantity 5 which characterizes the de- 
formation of space at the given point. Since in the case 
under consideration at t - 0 the deformation anisotropy 
is generated by the field of vortex velocities at an in- 
stant of time close t o  that when the energy densities of 
matter and radiation become equal, it is natural to as- 
sume that the magnitude of the deformation anisotropy 
of space at ah arbitrary point due to  an individual vor- 
tex will be determined by the value of the velocity of 
matter in that vortex at t -t,,. Since in any individual 
vortex the velocity vanishes a t  the center of the vortex4' 
and outside the vortex, it is also natural t o  assume that 
there will be no deformation anisotropy of space in 
these regions, and that it will attain i t s  maximal value 
in the intermediate region of the inhomogeneity. 

Taking into account these considerations, one can 
imagine the evolution of the spatial inhomogeneities in 
the following manner: At the first  instant of time, 
when the vortex just disappears beyond the horizon, 
the whole system evolves according to  Friedmann's 
law. Further, a s  t - 0  there appears a stage when the 
system gradually goes over from the Friedmann behav- 
ior to  the Kasner behavior, f irst  in the regions with 
maximal deformation anisotropy, then towards the cen- 
t e r  and the periphery of the vortices, as the influence 
of the deformation anisotropy spreads. The other re- 
gions continue to evolve according t o  a law close to  
Friedmann's. With time the deformation of space be- 
comes substantial for all  the anisotropy regions. Thus 
with time, a s  t - 0, the whole system goes over into a 
Kasnerian evolution regime. 

As was noted above, initially the small velocities of 
motion of matter after the system enters the Kasner 
stage, begin to  grow along different directions for t - 0 
according to  a law determined by the second relation 
(3.16), and starting from some time t,, they become 
relativistic. This circumstance does not influence the 
character of the time evolution of the geometry of 
space, since the Kasner solution is a vacuum solution, 
i.e., the influence of matter is negligible. However the 
form of the functional dependence on time of all phys- 
ical characteristics of the system is radically changed, 
in particular that of the energy density and the velocity 
of matter motion.17 

Since, according t o  the second equation (3.16), the 
component of velocity along the direction with the Kas- 
ner  exponent p, (p,>p, 2p1) grows faster than the 
others for t - 0, and consequently attains i t s  relativistic 
value earlier than the others, it makes sense to  define 
t, by the condition t =t, when u .,u ',' becomes compar- 
able to one, as was done by Tomita." It is easy to  see 
that in this case t, will be 

where 
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Making use of the Lifshitz-Khalatnikov relations" 
which a re  valid during the vacuum stage and have been 
obtained from the equations of relativistic hydrodynam- 
ics: 

(where in general C Q, and C a re  arbitrary functions of 
the coordinates), and knowing the explicit form of the 
solution for t > t,, (3.13)-(3.16), it is easy to obtain ex- 
pressions for c and u ,,, which reflect their functional 
time-dependence in the ultrarelativistic stage. 

It is first  necessary t o  relate the functions C ,,, and 
C with the quantities which have been introduced ear- 
lier. This is easily done if one substitutes into (4.6) 
the relations (3.13)-(3.16) valid for t >t,: 

Then, since in the ultrarelativistic stage (t <t,) 

one can obtain from (4.6) by means of relations (3.18) 
and (4.7) the expressions f o r  c and u b), valid for t >tr: 

Since the velocities of motion of matter relative to  
the chosen synchronous reference system become rela- 
tivistic for  t <t,, the proper time T in a comoving ref- 
erence system will differ from the time t. The relation 
between these two times is given by 

where the components of the physical velocity v (,, are  
related to  the components of the four-velocity by means 
of the relation 

(no summation with respect to  a). Then, making use of 
(4.9), (4.10) and the last relation we obtain (cf. Refs. 
17, 11) 

Substituting this into (4.8) we obtain for the energy den- 
sity 

It should be noted that similar to  the way in which the 
model gradually, within the scale of a single vortex, 
goes over from a Friedmann regime t o  a Kasner regime 
of evolution, also gradually, starting from regions with 
initially maximal velocities towards the edges and the 
center the velocities of matter relative to  the reference 
system (2.1) will attain relativistic values. Moreover, 
if matter moved with relativistic velocities already for 
t close to  t,, then the compatibility condition for the 
system (2.6)-(2.8) in the approximation L >>ct implies 
that in fact immediately after the appearance of the vor- 
tex above the horizon, a Kasner evolution regime s tar ts  
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in those regions where the deformation of space is max- 
imal. 

Thus, if one moves backward in t ime from the instant 
when the energy densities of radiation and matter a r e  
equal, then in the more general case, when the veloc- 
ities of matter at the initial time a r e  not too large, one 
will observe the following picture. The spatially non- 
homogeneous system gradually forsakes the Friedmann 
solution and starting from time t ,  (different for each 
causally connected region) goes over into the Kasner 
regime. In spite of the fact that starting from t =t, the 
velocities of motion of matter attain relativistic values, 
the solution remains Kasnerian up t o  t -t,, since the 
influence of matter on the metric is negligibly small. 
Starting from this time it is necessary to take into ac- 
count in Eqs. (2.8) the curvature of space. 

The latter circumstance is related to  the fact that for  
t -0  the t e rms  which enter into P t i  which have the 
characteristic structure 

will grow along directions with Kasner exponent p, 
faster than 

and at the instant corresponding t o  t, both expressions 
become equal in order of magnitude, whence we obtain 
for t, 

The quantity I which enters the expressions (4.13), 
(4.14) represents the coordinate distance over which 
there is a noticeable change of the geometric proper- 
t ies of space. But since in the most general case the 
latter a re  determined by two factors: the geometric 
properties of space itself, without taking into account 
inhomogeneities, and the geometric properties of the 
inhomogeneities embedded into the background space, 
then one should take for in (4.13) l = min{L ,PI. The 
proper dimensions L and Lfcorresponding to  the char- 
acteristic sizes of spatial inhomogeneities and of no- 
ticeable changes of the curvature of the homogeneous 
part of space will be determined by the product of a 
scale factor with the appropriate coordinate distances 

and 9. The analysis of the evolution is considerably 
simpler for t t,, when L>> 9. In this case the Univ- 
e r s e  evolves according t o  laws which a r e  proper to  
homogeneous models, which is understandable, since 
the two inequalities L >> ct, L >>Yeliminate in fact the 
inhomogeneities from the equations which determine 
the geometric properties of space. The character of 
evolution of such a system for t imes t <t, will be deter- 
mined by the Bianchi type t o  which the model 
belongs. 

For L <<Ythe earliest stages of evolution of the World 
can be investigated only in the case when one succeeds 
in excluding P I : ;  from the equations (2.13) by means of 
some "model considerations." 
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5. A UNIVERSE WITH A VORTEX 

As a particular application of the results obtained 
above one may consider the case when a single vortex 
is embedded into a background space which in itself 
(i.e., in the absence of the irregularity) satisfies the 
requirements of homogeneity and isotropy. One can 
represent this mathematically in the following fashion. 
We place the coordinate system at the center of the 
spatial inhomogeneity and prescribe on a spacelike 
Cauchy hypersurface the matrix A:, which enters the 
relations (3.5), (3.13) and into the definition of 5 ,  in 
the form 

where 

(x, y ,z a r e  the Cartesian coordinates). Such a repre- 
sentation of the matrix A: corresponds t o  prescribing 
a vortex inhomogeneity with rotation in the & , z )  plane. 

It is necessary to  note that the form of the functions 
A: was chosen out of the consideration that at the 

' 

stage when the deformation anisotropy of space i s  
small, i.e., when it can be considered a s  a small per- 
turbation of the Friedmann solution (t >t,), the velocity 
field inside the inhomogeneity corresponds to  a vortex 
motion of matter. It is easy t o  see  that in this case, 
for t >t, the components of the vortex velocity can be 
represented in t e rms  of the previously introduced quan- 
tities in the form: 

from where one can see  that the vortex velocities a re  
proportional not only to  the derivative of the function cp 
which determines the degree of spatial deformation a s  
a function of the increasing distance from the center of 
the inhomogeneity but also to the value of the function 
itself. Consequently, in those regions where the vortex 
velocities vanish identically the anisotropy of deform- 
ation of the space must necessarily vanish. 

The explicit form of the function cp can be chosen, 
e.g., from consid.erations of localization of the inhomo- 
geneity in some region of space. This condition can be 
satisfied, in particular, by the following expression 

cp=pp' exp I-pn- (~Y/.ZL)~] (5.3) 

(here p is a normalization constant). 

The inhomogeneity amplitude A, which enters into the 
relations (5.1) and (5.2) can be estimated starting from 
the condition that at the instant when the energy den- 
sities of radiation and matter a re  equal, t,,, the spatial 
inhomogeneity under consideration must lead to  vortex 
motions with parameters corresponding t o  the vortex 
theory of galaxy f0rmation,2-~ whence, by analogy to  
Tomita's reasoning,1° one can obtain for  A, the following 
estimate 

where w =v/c, and a! is the vortex spreading parameter 
(cf .4).5 ' 

In t e rms  of the eigenvectors 

cos y+sin y 0 cos 7-sin 7 

12 0 (5.5) 
-cos yf sin y 0 cos yfsin y 

the matrix (5.1) can be transformed to  diagonal form, 
with the eigenvalues along the diagonal: 

Then, considering that in the case under discussion 

one obtains for the Kasner exponents which determine 
the dynamics of the early stages of evolution of the mo- 
del in the vortex localization region the following val- 
ues: 

i.e., within the framework of the model under consid- 
eration the Kasner exponents a r e  coordinate- indepen- 
dent. Consequently at different points of the spatial 
inhomogeneity the character of the temporal evolution 
will differ only by the time t ,  when each volume ele- 
ment goes into the Kasner stage. This i s  related to  
the fact that t, is a coordinate function: 

The same can be said about the instant of time when the 
velocities of motion of matter relative to the chosen 
synchronous reference system become relativistic: 

It is necessary t o  note that in leading order of the 
parameter c t / ~  << 1 the chosen model does not require 
taking into account the spatial curvature in solving Eqs. 
(3.1)-(3.4) up t o  t =O. This is easily verified by sub- 
stituting (5.5) and (3.18) with the Kasner exponents (5.6) 
into the expression (2.6) for P j;,'. However, before one 
can asser t  that this solution is asymptotically correctly 
describing the evolution of the model up to  t = 0, it i s  
necessary to  prove rigorously that if one takes into ac- 
count higher orders in ct/L << 1 in P ; ;  there do not 
appear t e rms  which grow for  t -0 faster than t". 

6. CONCLUSION 

The spatially inhomogeneous model described in the- 
last section with a single vortex embedded in a homo- 
geneous and isotropic background space, can be con- 
sidered a s  a special case of a more general problem, 
when the background space is more o r  less uniformly 
filled with a large number of similar inhomogeneities. 
Without indulging in the mathematical analysis of the 
possible peculiarities of such models one may assert  
that they preserve all the properties enumerated above, 
i.e., in the process of the reverse evolution in time, in 
the localization region of any inhomogeneity, the system 
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will gradually deviate from the isotropic solution, 
changing from a Friedmann character of evolution t o  a 
Kasner behavior. In the same manner gradually, start- 
ing from regions with maximal value of the velocity and 
encompassing larger and larger regions of inhomogen- 
eity, the system will go over into an ultrarelativistic 
stage. 

It should also be noted that the initial presence of only 
vortex motions of matter leads with time (t - 0) to  the 
appearance of intense potential motions. These po- 
tential motions will be responsible for the redis- 
tribution of matter through space, related to dif- 
ferences in the evolution of the system in different 
regions. The appearance of potential motions (for 
t- 0) from pure vortex motions is not the result of 
generation of the former by the latter, a s  would happen 
in hydrodynamics. This is a specifically relativistic 
effect, related t o  a rearrangement of the character of 
evolution of the model a s  a result of the development of 
the deformation anisotropy of space introduced by the 
vortices. For instance, in distinction from Fried- 
mann's law of time variation of the matter energy den- 
sity c -te2 in those regions where the solution has a 
Kasner asymptotic behavior we obtain E -t-"3. 

Thus, one of the consequences of the presence of 
spatial inhomogeneities in the early Universe one can 
consider a change of i ts  temperature history, which, 
as should have been expected, will be different in dif- 
ferent regions of the inhomogeneous space. 
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"we have in mind inhomogeneity of three-space . 
2'1 do not give here a detailed derivation of the equations (2.6)- 

(2.8) with the relations (2.9)-(2.15), in view of its length. I 

only note that it is analogous to the derivation of the same 
equations in the case of homogeneous  model^?^ Here and 
everywhere below we have in mind homogeneity in the group- 
theoretic sense. 

3 ) ~  detailed comparison of the linear approximation of the so- 
lutions with the analysis of ~ifshi tz '  can be Eound in Tomita's 
paper?0 

4 '~t is assumed here that there is no overall displacement of 
the vortex relative to the synchronous reference system. 

5 ' ~ h e  introduction into (5.4) of the parameter or presupposes, 
of course, the presence in the system of a large number of 
inhomogenities of the type under consideration, which lead 
to the appearance of intenswe vortex motions which for t> t ,  
participate in the process of hydrodynamic mixing. Here 
this parameter is introduced only for the purpose of a quanti- 
tative comparison of the parameters in which we a re  interes- 
ted. 
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