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It is shown that for electrons localized at the surface of liquid helium the cyclotron resonance shift Am is 
of twofold origin: a dynamic shi i  Amd due to interaction between electrons and thermal oscillations of 
the helium surface, and a static shift Ams due to the self-consistent deformations of the helium surface 
under the localized electron that exerts pressure on the free surface of the helium, and also due to the 
reaction of the deformation on the electron motion. The relative role of Amd and Ams in the limiting case 
of a low surface electron density n, is studied. It was found that in the limiting quantum case T <  fw,, 
where m, is the cyclotron frequency, the static shift Aws plays the dominant role. However, in the 
intemediite temperature range T Sf ioH,  the dynamic shift dod begins to compete with Ams and even 
turns out to be favored. The problem of the effect exerted on Am by a finite density n, of surface 
electrons is discussed. The concept is introduced of the characteristic density n,*, beginning with which 
the electron-electron interaction turns out to have a significant effect on the mean square displacement of 
the electrons from the equilibrium position and, consequently, on the value of the static shift Ams. The 
theoretical results describe correctly the existing experimental data for Am in the case of electrons 
localized on a He4 surface over a wide range of applied fields EL and electron densities. However, there 
are also some disrrepolncies which require additional investigation, both experimentally and theoretically. 

PACS numbers: 67.40.Fd 

INTRODUCTION change of the cyclotron mass of the electron can occur 
if we a r e  dealing with surface electrons localized in the The phenomenon of cyclotron resonance for free elec- 
vapor-liquid plane. Such a localization always arises trons localized on the surface of liquid helium has been 
upon increase of the applied field and decrease of the 

studied in detail in the experiments of Edel'man.l*z One temperature. The surface of helium at the place of 
of the interesting effects there proved to be the de- 

localization of the electron is deformed here in self- 
crease in the cyclotron mass of the surface electrons a s  consistent fashion. In turn, the resultant deformation 
a function of the intensity of the external clamping elec- of the surface serves a s  a potential well for the local- 
tric field. A discussion of the possible reasons for such ized electron. The process of localization of the sur- 
an effect i s  carried out in the present work. face electrons i s  materially facilitated by the initiation 

The effect of the applied field on the dispersion law of 
a surface electron in helium i s  not unexpected. It was 
noted in due course by the author and Monarkha3 that, 
in the presence of interaction of the electron with sur - 
face vibrations of the form 

(5 i s  the amplitude of the surface vibrations, r is the 
coordinate of the electron on the surface) the increment 
6&(k) to the dispersion law of the free surface electron, 
calculated in second order perturbation theory at T =0, 
has the form 

ezE12m 
8e (k) =y 

2nA(2aok)'" ' y-1, 

p and a are the density and coefficient of surface ten- 
sion of liquid helium, k is the wave number of the elec- 
tron, and k = 1 kl . However, this change in the spectrum 
was discussed in Ref. 3 only in connection with its di- 
verging character a s  k - 0  for illustration of the reasons 
leading to localization of the surface electrons and to 
the generation of surface anions. A s  will be shown be- 
low, the renormalization of the electron spectrum due 
to its interaction with thermal ripplons can have a bear- 
ing on the change in the cyclotron mass of the surface 
electrons. 

of a strong magnetic field perpendicular to helium sur- 
face, because the wave function of the electron here i s  
already localized on the helium surface in the limits of 
the Larmour radius. Consequently, the effect of the 
field EL on a charged spot of limited dimensions on the 
helium surface will automatically lead to the deforma- 
tion of the surface. A self-consistent calculation of the 
parameters of the emerging complex of localized elec- 
tron and local deformation of the helium, carried out in 
the limits of low temperatures in Ref. 4, gives the fol- 
lowing finite result: 

Here (uZ), (u')~, (u2)( a r e  the resultant, magnetic, and 
deformation localization lengths of the electron, respeo 
tively, H is the external magnetic field. According to 
the definition (3), the resultant length (uZ) of localiza- 
tion of the electron in a magnetic field on the deformed 
helium surface is somewhat smaller (because (uz), < m) 

than for a magnetized electron in a vacuum. Experi- 
mentally, the decrease in the effective localization 
length, and consequently the increase in the resonance 
frequency at fixed H, must be interpreted a s  a decrease 
in the effective mass of the electron under the action of 
the applied electric field. Consequently, the observed 

Still another, qualitatively different, possibility of decrease in the effective mass of the electron in the 
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quantizing magnetic field under the action of the applied 
electric field can be related to the phenomenon of self- 
consistent deformation of the helium surface under the 
action of the localized electron. 

The classical determination of the shift in the cyclo- 
tron frequency of deformation origin in the harmonic 
approximation, having the meaning of an upper esti- 
mate, can easily be obtained on the basis of the results 
of a number of  work^.^-^ Subsequently, Cheng and 
Platmans showed that in the presence of a strong mag- 
netic field, the problem of the effect of the self-consis- 
tent deformation of the surface of the helium on the val- 
ue of the cyclotron frequency of the surface electrons 
can be solved more accurately without the use of the 
harmonic approximation. However, the final quantita- 
tive results in that work6 were obtained only numeri- 
cally. The corresponding analytic solution of the prob- 
lem will be given explicitly below. 

With increase in the density of surface electrons, 
when the Coulomb interaction between electrons begins 
to exceed the kinetic and Zeeman energies of a single 
electron in the magnetic field, the one-dimensional 
approximation loses meaning and the problem of the 
shift of the cyclotron frequency must be solved again in 
the appropriate multiparticle terms. 

The considerations just given allow us to rough out 
the program of action with regard to the elucidation of 
the problem a s  to the nature of the field dependence of 
the cyclotron mass of the electrons on the surface of 
the helium. The theory of the phenomenon should con- 
tain contributions from both channels of change of the 
effective mass of the electron. Under the conditions of 
a small self-consistent deformation of the helium sur- 
face and linearity of the equations that describe the 
vibrations of the helium surface, the problems of the 
static (due to self-consistent deformation of the helium 
surface) and dynamic (due to the thermal fluctuations of 
the helium surface) shifts of the cyclotron frequency 
a r e  not coupled and can be solved independently. The 
total change in the effective mass of the electron is the 
simple sum of the two independent effects. 

DYNAMIC RENORMALIZATION OF THE CYCLOTRON 
MASS IN THE SINGLE-ELECTRON APPROXIMATION 

The effect of the electron-phonon interaction on the 
spectrum of electrons in metals and semiconductors 
has been the object of numerous investigations. At the 
present time, there exist various methods for the solu- 
tion of this problem, which enable us to investigate the 
problem over a wide ranges of constants of the elec- 
tron-phonon interaction. Nevertheless, we shall limit 
ourselves in the present work to the simplest possi- 
bility of calculation of the dynamic renormalization of 
the cyclotron mass of the surface electrons, considered 
in the second order perturbation theory. 

1. We calculate first the increment to the dispersion 
law of the surface electrons due to their interaction (1) 
with thermal ripplons in the limiting case of sufficiently 
high temperatures T  >tiw,. The starting expression for 
6&(k) in second order perturbation theory has the form 

6e ( k )  --e2E,' le,la 
;ek,-ek+fiw: 

ek=fi'ka/2m, w,'=aqs/p, oa=eH/nzc, 
I E l  q'=S-1QP2(2nq+f)r Q1Z=hq/2poq, q=Iq I, (4) 

where k and q a r e  the wave numbers of the electron and 
ripplon, respectively, m i s  the mass of the free elec- 
tron, n, i s  the Bose distribution of the ripplons, and 
S i s  the area of the surface of the helium. 

Transforming in (4) from summation aver q to the 
corresponding integration, and carrying out the explicit 
integration over the angle between the vectors k and q, 
we find from (4) 

In the limit T--0, the expression (5) reduces to (2). If 
T # 0, then the integral over x cannot be obtained in 
general form. Because of this, it i s  necessary to use 
additional considerations, namely, that the energy of 
the electrons in which we shall be interested in the fol- 
lowing, i.e., the electrons excited by the resonant high- 
frequency field, have a scale not less than the tempera- 
ture of the medium: 

fizkz/2m>T. ( 5 4  

Setting T  = 0.1 - 1 K, which i s  of most interest in the 
applications, and taking into account the scale of k from 
(5a), it is not difficult to obtain for the parameter A in 
(5) the estimate A =  - Consequently, the argu- 
ment of the hyperbolic tangent in (5) becomes greater 
than unity only in the region of very large x >> 1, where 
the numerical value of the integrand is already suffi- 
ciently small. Thus, we conclude that we can use in the 
calculation of the integral, under the conditions (5a), 
the asymptotic form of coth at small values of the 
argument: coth hrSn= X - ' X - ~ ' ~ .  As a result, 

-- - - -- 
The transition from (6) to (2) takes place at tempera- 
tures T =  - K, 

Thus, the refined dispersion law of surface electrons, 
interacting through (1) with the capillary waves at finite 
temperatures and fairly large values of the momentum 
of the electrons taken with account of (6), takes the fol- 
lowing form 

The resultant spectrum ~ ( p )  i s  essentially nonpara- 
bolic. For this reason, it i s  natural, for the determi- 
nation of the cyclotron mass of the electron, to use the 
general rules usually employed in work with an arbi- 
trary dispersion law for the  electron^.^ That is, we 
set 

e ( p )  =const=e. (8) 

Equation (8) describes a closed trajectory in momentum 
space, having a definite area S(E). According to Ref. 7, 
the definition of the cyclotron mass in terms of S(E) i s  
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Using the given definitions and the concrete form of 
&(P) from (7), it is not difficult to  obtain the following 
expression for m*8: 

The expression (10) enables us to conclude that the rip- 
plon renormalization of the cyclotron mass  actually ex- 
ists and has a sign corresponding to a decrease in the 
cyclotron mass in the presence of an applied field. 

Under equilibrium (or quasiequilibrium) conditions, 
the quantity & is approximately equal ta  the mean ther- 
mal energy of the electron. Setting T = 0.5 K, EL = 300 
W/cm, ar =0.36 erg/cm2 and c = T,  we find from (10) 
the estimate (m* - m)m" = lo-=. 

2. In the opposite limiting case Ew,>> T the calcula- 
tion of the shift Aw due t o  the interaction ( I )  consists of 
the following. Using the set of wave functions for the 
electron in the magnetic field, we can calculate the 
ground (AE,) and the first  excited Landau level (AE,) in 
second order perturbation theory. The sought effect is 
EAw =AE, - AE,. Using the representation of {(r) in 
terms of the creation and annihilation operators of the 
ripplons, in analogy with (4), and the set  of wave func- 
tions of the electron in a magnetic field, which ar ise  in 
the calibration of the vector potential in the Landau 
form, we have the following expressions for AE, and 
AE, (see the similar calculations in Ref. 9): 

x=hq'lmoa, (ma and o, are taken from (4)) 

The investigation of the sums (11) and (12) in the gen- 
eral  case i s  rather complicated. However, in the re -  
gion of sufficiently strong magnetic fields, where 

the situation simplifies (actually, the region w, 2 w,m'" 
corresponds magnetic fields H 2 lo4 Oe). Neglecting 
the quantity o, in the denominators of (11) and (12) in 
this limiting case, in comparison with w,, transform- 
ing from summation over q to the corresponding two- 
dimensional integral and completing the resultant inte- 
gration over dq we get from (1 1) and (1 2): 

Here r ( x )  is the gamma function. 

The principal value of the sums over n in the expres- 
sions cited is determined by large n. Therefore, for an 
estimate of the convergence of these series,  we must 
use the asymptotic representation 

As a result, it is clear that the ratio r(n+3/4)/n! 
5 r ( n  +3/4)/r(n +1) behaves in the following manner a t  
large n: 

Thus, a t  large n, the ser ies  (14) and (14a) turn out to 
be identical with the ser ies  for the Riemann t; functions, 
i.e., they converge. Replacing the ratio r ( n  +3/4)nl 
by e"4n-"4 for all n, we can reduce the expressions for 
AE, and AE, to  the following final form: 

The accuracy of the numerical coefficients in these ex- 
pressions is limited by the value of the principal sig- 
nificant figures. For a more accurate calculation, i t  
is necessary to sum the ser ies  (14) and (14a) numeri- 
cally. 

It is interesting to note that the ground level is 
shifted more than the first  excited level. Formally, 
this is connected with the fact that nll the terms of the 
sum (11) a r e  negative, while in the expression (12) for 
AE, there a r e  terms of different signs. In the final 
analysis, the difference AE, - AE, proves to be posi- 
tive, i.e., the interaction with the zero vibrations of the 
surface of the liquid helium shifts the resonance cyclo- 
tron frequency toward higher frequencies. 

In the finite-temperature region, the quantity Aw (15) 
begins to depend on T. This dependence is contained in 
the general definitions of AE,, and AE, in the form of the 
factor 2n, +1, taken to  be unity in (11) and (12) (n, is 
the Bose distribution of the ripplons). Account of the 
temperature factor can be taken comparatively simply 
by use of the following approximation: 

which describes correctly the properties of the factor 
2n, +1  in the region of large and small w,. Using this 
approximation for 2n, +1 and performing calculations 
similar to the above, we can find the temperature 
dependence of AW": 

f i A o = y [ 6  77+4Tlho(gn)  I ,  

According to (16), the condition determining the small- 
ness of the temperature effect on Aw is not the inequal- 
ity T << Ew,, but the somewhat more complicated com- 
bination 

which contains the ratio of the temperature to  the ener- 
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gy of the ripplon with wave number q,, which has the 
scale of the reciprocal magnetic length. Thanks to sat- 
isfaction of the inequality w (9,) << w,, the requirement 
on the temperature (16a) proves to be much more strin- 
gent than T <<iiw,. For example, in the case H =  104 0, 
we have tiw ,x 1 K and Ew (9,) = K. A s  a result, the 
inequality (16a) begins to be satisfied starting with 
temperatures T 5 lo-' K. In the region T 2 lo-' K, the 
thermal ripplons turn out to have a significant effect on 
the value of Aw. 

Upon satisfaction of the inequality T >>E(q,), which is  
the inverse of (16a), the quantity A o  from (16) can be 
written in the form 

It then follows that the thermal part of Aw i s  identical 
with the classical expression for A o  (10) if we replace 
E by h , / 2  in the latter expression. This coincidence 
has a clear physical meaning and attests to the correct- 
ness of the given calculations. 

STATIC RENORMALIZATION OF THE CYCLOTRON 
FREQUENCY IN THE SINGLE-ELECTRON 
APPROXIMATION 

In contrast to the investigated dynamic shift of the 
cyclotron frequency of the surface electrons, which 
takes place both for weakly and for strongly excited 
electrons, a static shift of the cyclotron frequency i s  
possible only under conditions of weak excitation of the 
electron system, when each of the electrons is in the 
ground state for the greater part of the time. The rea- 
son for this limitation on the action of this mechanism 
is the necessity of the existence of the local pressure 
exerted by the localized electron on the surface of the 
helium in the clamping field. It i s  obvious that with in- 
crease in the degree of excitation of the electrons, the 
value of the electron pressure on the surface of the he- 
lium decreases, and the effect of the static shift of the 
cyclotron frequency vanishes. In this connection, the 
calculation of the static effect should contain informa- 
tion on the value of the shift and on the conditions under 
which a similar shift can be accomplished. 

1. The simplest possibility of estimating the renor- 
malization of the cyclotron frequency for surface elec- 
trons under conditions of the existence of a self-con- 
sistent deformation of the helium surface and a weak 
heating of the localized electrons is  connected with the 
use of the classical harmonic approximation. In this 
case, the approximation discussed in Refs. 3-5, the 
actual potential well eE,((r) under a localized electron 
is  replaced by a parabolic approximation, which is  
identical with the initial well in the region of the mini- 
mum. It is  evident that such an approximation de- 
scribes the effect of the self-consistent deformation on 
the different observed characteristics of the surface 
electrons in helium and can therefore be used only a s  
an upper estimate of these characteristics. Taking into 
account what has been said, and using the results of 
Refs. 3-5, we have the following classical equation of 
motion of the magnetized surface electron in an alter- 

nating field Ell parallel to the surface of the helium: 
eE11 - 4 - 1  i+o<q+ioaTi+T-lrl , 

eElle-"' e2Elz 
0: = ' ' m ( o t 2 - o z + o H o + i o l ~ )  ' 2nam(u2) 

Here (u2) i s  taken from (3), and r is  the characteristic 
relaxation time. 

The resonance frequency of Eq. (17) is  shifted in the 
limit w,>> w, relative to the cyclotron frequency w, in 
the direction of higher frequencies, by an amount 

Taking it into account that here (u2) = (u2), = 2cE/eH, we 
have, finally, 

Under resonance conditions, the stationary classical 
orbit of the electron has the dimensions 

The weakly-excited-electron approximation corresponds 
to a situation in which 

Using the definition of R (19) and the connection between 
w, and (u2),, w, =E/m(u2),, it is  not difficult to es- 
tablish the fact that the inequality (19a) is  equivalent to 
the requirement 

The inequalities (19a) and (19b) ensure that the electron 
is  predominantly in the ground state and, consequently, 
the effective action of the electron pressure on the sur- 
face of the liquid helium. Thus, these inequalities de- 
termine the region of existence of the static shift of the 
cyclotron frequency. In quantum terms, the time r,, 
corresponds to the time necessary for the transition of 
the electron from the ground state to the first excited 
state. 

Any deviation from the approximation (19a) in this 
case, if the static shift of the cyclotron frequency is  
fundamental, is  easily observed experimentally, be- 
cause the value of Aw begins to depend on the field in- 
tensity E l l  in this case. 

2. If w,>> w, the possibility appears of determining 
the shift Aw without use of the harmonic approximation. 
This fact was first observed in Ref. 6. We are speaking 
of a perturbation theory, the zeroth approximation of 
which is  the set of states of the electron in a magnetic 
field above a plane surface of helium. In a cylindrical 
system, which corresponds to the symmetry of the 
problem, these states a re  described by well-known ex- 
pressions for the spectrum and wave functions of the 
electron. The ground (JI,,) and the first excited (JI,,) 
states, which are  important for the dipole excitation, 
take the following form here (see Ref. 10, p. 495 of 
~riginal)~): 

$oo=n-"'rn-' exp (-?/2rn2), 

$o-,=Il-'"rrH-2 erp (-+/2rH2) e'rn, (20) 

rH1e(u2)a ,  E,,=hoH 

364 Sov. Phys. JETP 50(2), Aug. 1979 V. 0. Shikin 364 



Here cp is the angle in the cylindrical system of coordi- 
nates connected with the center of symmetry of the 
wave function, ri2 =eH/2cti, while n and I a r e  the 
principal and azimuthal quantum numbers. 

Taking into account the assumption that the electron 
is predominantly in the ground state, it is not difficult 
to conclude that the pressure exerted on the helium sur  
face by the electron is determined by the expression 

The idea behind the further calculation i s  the follow- 
ing. We write out the equation (21) for the static de- 
formation of the surface under the action of the pres- 
sure  P(r): 

H is the capillary constant of the liquid helium, and A, 
is the Laplace operator. Defining [(r) in terms of p(r) ,  
we can then seek the corrections to  the Landau levels 
for the perturbation energy eE,((r) from the unper- 
turbed wave functions of-an electron in a magnetic field 
(20). The solution (22), obtained in Ref. 3, has the form 

where J,(x) i s  a Bessel function of order zero. 

This shift of a given level a s  a result of the inter- 
action eE,( is determined by the expression 

It must be noted that, generally speaking, the solutions 
(20) a r e  degenerate in the azimuthal quantum number I .  
Therefore, the perturbation theory should be con- 
structed with account of the possible lifting of the de- 
generacy in this quantum number. However, the per- 
turbation eE,((r) has cylindrical symmetry (it does not 
depend on the angle cp) and therefore non-vanishing ma- 
tr ix elements a r i se  only for states with identical n and 
2. As a result, the general perturbation theory for de- 
generate systems is simplified in the given case. In 
particular, there i s  no need to determine the correct  
superpositions of the zeroth-order wave functions, and 
the matrix elements (23) can be computed from the 
wave functions (20). 

The perturbation eE,( lowers the energy of the elec- 
tron, i.e., each of the corrections AE,, has a negative 
sign. Therefore, a result of correct  sign i s  obtained 
for the shift of the resonance frequency if we define it 
by the expression 

The integrated expressions (24) in Y give the following 
result (Ref. 11, p. 735): 

Here L,(x) is the Laguerre polynomial: L, =l  -x. 

The expression in the square brackets in the inte- 
grand of (25) begins with a term proportional to x. For 
this reason, in the integration over q in (25) we can 
simplify the expression G(q),  setting the capillary con- 
stant in i t  equal to  zero. This procedure has a simple 
meaning. So long as we a r e  dealing with the calcula- 
tion of ((r), a finite expression is obtained for it only a t  
finite values of the parameter H (in the opposite case, 
the integral (22a) diverges logarithmically a t  small 
q < n ) .  If we a r e  interested in the difference AE,, 
- AE,,, then the logarithmically large components, 
which diverge a s  q-0, cancel each other and the re -  
mainder does not depend on n. Taking into account 
what has been said and integrating over q in (25), we 
obtain finally 

This result for Aw has a structure similar to the clas- 
sical estimate (18a) of Aw in the harmonic approxima- 
tion, but has only half the numerical coefficient. The 
value of A o  in (26) virtually coincides with the result 
for A o  from Ref. 6. 

3. Having determined the dynamic 4wd [ ~ q .  (16)l and 
static AwS [ E ~ s .  (18a) and (26)] shifts, it is not difficult 
to  conclude that in the limiting case of strong magnetic 
fields, w ,> w y  , the static shift i s  noticeably greater 
than the dynamic. In fact, 

Taking into account the corresponding parameters and 
setting w,w 10"- 1012 sec-', we obtain from (27) the val- 
ue 6 - 10-I - However, it mast be kept in mind that 
the temperature effect (16b) on the value of the dynamic 
shift A o  becomes significant in the region T > K 
with increase in the temperature. As a result, the con- 
tribution of the dynamic shift to the total value of Aw in 
the temperature range T 2 0.5 K begins to compete with 
the static AwS. 

In the region of quasiclassical behavior of the elec- 
tron, when i t  becomes possible t o  speak of i t s  trajec- 
tory, the determination of the local pressure (21) ex- 
erted by the electron on the helium surface loses mean- 
ing and the static shift AwS of the cyclotron frequency 
becomes insignificant. So far a s  the dynamic shift i s  
concerned, it takes the form A o  from (10) and contin- 
ues to be accessible to experimental study under the 
conditions Piw,<T,. A similar condition holds either in 
a weak magnetic field when the electron subsystem i s  
heated in an external electric field E,, parallel to  the 
helium surface. However, i t  is seen from the definition 
of Aw (10) that the electron temperature should not be 
very high, because the change in the cyclotron mass  
(m* - m)/m vanishes a s  T/E -0, E a T,. 

CYCLOTRON FREQUENCY SHIFT AT FINITE DENSITY 
OF SURFACE ELECTRONS 

With increase in the density of the surface electrons, 
free motion along the helium surface becomes difficult 
and the calculations of the cyclotron frequency shift, 
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based on the use of the concept of free motion of the 
electrons along the surface, become unsuitable. In this 
case, the solution of the problem should be sought in 
terms that are  more adequate for the situation being 
discussed. 

1. The situation becomes definite in the case of suf- 
ficiently large concentrations of surface electrons, 
when the possibility appears of speaking of a crystal- 
lization of a two-dimensional electron system on the 
helium surface. Under similar conditions, the elec- 
trons are localized at the sites of a definite lattice (for 
simplicity, a quadratic one) and oscillate about the 
position of equilibrium with mean square amplitude 
(uZ). The scale of this oscillation amplitude is  deter- 
mined in the general case by the Coulomb interaction, 
by the effect of deformation phenomena, and by the 
magnetic field. A s  a tentative relation, which gives a 
qualitative idea of the role of the various interactions in 
the formation of (uZ), we present here the result for 
(uZ) obtained from Ref. 12 under the assumption that all 
the electrons of a Wigner crystal, except the given one, 
are  fixed in their equilibrium positions: 

The expression (28) generalizes the definition (3) of 
(uZ) to include the case of a finite density of the surface 
electrons. Using (28) and the definition of the static 
shift of the cyclotron frequency from (18) 

which is  valid in the harmonic approximation, we can 
trace the influence of the finite density of the surface 
electrons on the shift of the cyclotron frequency. 

It is obvious that the role of the Coulomb electron- 
electron interaction in the investigated problem be- 
comes significant under conditions in which the Coulomb 
length (uz), becomes comparable with the magnetic 
length (uz),,. The inequality (uZ), 2 (uz), is  equivalent to 
the requirement 

n.>n.', n;= (H/4.64m'hc)v*. (29) 

In the case of a magnetic field H 2 5 x 105 Oe, the in- 
equality (29) gives a numerical estimate of the thresh- 
old density, n:2 lo7 cm-'. Such a density corresponds 
to an applied field Ef2 200 V/cm. Along with this, the 
critical density nC, at which instability of charged sur- 
face develops, has the scale nC,s 10'' ern-'. Conse- 
quently, there exists a wide range of densities n:s n, 
2 nz, in which the Coulomb localization of the electrons 
near the position of equilibrium at the sites of thewig- 
ner lattice is  fundamental. Neglecting the quantity (u2) 
in the definition (28) of (uz), (the smallness of this con- 
tribution to (uZ) i s  easily estimated), we represent the 
expression for Aw in the following form: 

In the limiting case n, << n: , this expression for the 
shift transforms into the expression for Aw from (18a). 
In the case n, >> n: the structure of Aw changes: 

n,<n; 

--(E)" , ns>n,.. (304 
4nammH h'a" (30b) 

If the parameters n, and EL a re  connected by the ex- 
pression EL =2aen,, then the field dependence of Aw 
(30b) takes the form AW a Moreover, in this lim- 
iting case, a dependence of Aw on H sets in: Aw oc H-'. 

2. The preliminary analysis of the situation with fi- 
nite density n, of the surface electrons enables us to 
draw one interesting conclusion. It turns out that under 
conditions when the external field above the charged 
helium surface is cancelled out, i.e., under the condi- 
tions E, =%wen, and w,>> w, we can carry out the calcu- 
lation of the quantity (uz) which enters into the deter- 
mination of Aw from (28a), without taking into account 
of the self-consistent deformation of the helium surface 
under the action of the electron pressure. In other 
words, to determine (uZ) it suffices to b o w  the value 
of (u2) for the electron lattice over the plane surface. 
Such a problem admits of a consistent solution, frge of 
the model assumptions on which the calculation of (uz) 
from (28) is  based. We have in mind the calculation of 
the spectrum of collective excitations of a Wigner crys- 
tal, and the determination of (u2) in terms of this spec- 
trum. Using the results of Fukuyamat3 we write down 
the quantity (uz) of interest to us at T = 0 in the follow- 
ing form: 

Here q is the wave number of the excitations and N is the 
total number of electrons. Taking into account the ex- 
plicit form of the spectrum (31a) we must note that no 
finite shift of the cyclotron frequency, independent of q, 
arises in the solution of the equation of motion of a Wig- 
ner crystal above the plane of the surface because 

In this sense, the assertion that it is  impossible to ob- 
tain the cyclotron frequency shift that i s  dependent on 
n,, made in Refs. 5 and 6, remains in force. However, 
the indirect effect of the Coulomb interaction on the 
quantity (u2), which follows from the definition (31) of 
(uZ), i s  sufficient onset of a dependence of Aw on n,. 

In the limiting case n, > n: , where n: is taken from 
(29), the dependence of (uz) (31) reduces to the expres- 
sion (see Ref. 14): 

which is  identical, apart from a numerical factor (x l ) ,  
with (u;) from (28). Thus, the approximate scheme of 
calculation (28)-(30) has an accuracy no worse than the 
scheme (31) if in the latter we use the long-wave appro- 
imation for the functions w,(q) and w,(q). More accu- 
rate results for (uZ) and Aw can be obtained with ac- 
count of the correct behavior of the dependences w,(q) 
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and w,(q) in the region of large values of the wave num- 
bers. The weakest point in this and the other approxi- 
mations i s  the use of the harmonic approximation for 
the connection between Aw and (uZ). There i s  still no 
consistent determination of Aw a s  a function of n,, sim- 
ilar to Aw from (26) in the single-particle approxima- 
tion. A discussion of this question will be given in a 
separate paper. 

3. In concluding the discussion of the problem of the 
static shift of Aw under conditions of finite density of 
the surface electrons, it is necessary to estimate the 
role of the temperature in the formation of (uZ),. As- 
suming, for simplicity, a system of electrons in the 
liquid state, i.e., neglecting the contribution to  (uZ), by 
the transverse mode of oscillations, we can write down 
the following expression for the mean square shift 

Estimates based on (32) show that the thermal part of 
the mean square shift (uZ), under the conditions n,= 109 
cm-z and T 2 0.5 K amounts to 1-1% of the value of 
(u2), a t  T =O. This estimate enables us to conclude that 
the role of the temperature in the formulation of (uZ), i s  
not large in the region of parameters T << V, of interest 
to us. 

4. In the case of finite dimensions LZ of the area oc- 
cupied by the electrons on the helium surface, the ob- 
servation of a plasma shift of the cyclotron frequency of 
the form 

Ao=sre'n. L-'l~no,, 

i s  possible. Estimates of this cause of the 
shift Aw a r e  contained in the work of ddel'man.z For 
the concrete of the electron-system dimensions used in 
the experiments of Ref. 1, the plasma shift Aw turns out 
to be unimportant. 

DISCUSSION OF THE RESULTS AND COMPARISON 
WITH THE EXPERIMENTAL DATA 

The presented analysis shows that, of the two pos- 
sible types of renormalization of the cyclotron frequen- 
cy of the surface electrons (dynamic and static) under 
conditions of weak heating of the electron system and 
sufficiently low temperatures, the principal role i s  
played by the static renormalization. This circum- 
stance qualitatively distinguishes the electron system 
on the surface of the liquid helium from the other elec- 
tron systems with electron-phonon interaction (semi- 
conductors, metals), for which there exists only the 
dynamic shift of the location of the cyclotron frequency. 

The observed value of Aw is closely connected with 
the behavior of the mean square displacement of the 
surface electrons in a magnetic field and, consequent- 
ly, can be used for the study of this important charac- 
teristic of a multiparticle electron system on a helium 
surface. 

Rigorous calculation of the quantity Aw requires a 
departure from the framework of the harmonic approxi- 
mation in the description of the self-consistent deform- 
ation of the helium surface and its effect on the motion 

of the electron system, and also complete information 
on the electron spectrum in a magnetic field over the 
plane helium surface for a l l  wave numbers. 

The qualitative behavior of Aw as a function of the ap- 
plied field El, which i s  connected with n, by the relation 
EL - anen,, i s  the following. If T << Pio, (more accurate- 
ly, if the inequality (16b) i s  satisfied), then, throughout 
the entire range of clamping fields, the shift Aw i s  of 
static origin. In the range n, << n: it is described by the 
expression (26), and on going to n,>n: it grows rapidly 
in correspondence with (30), owing to the additional 
localization of the electron wave functions, which is 
governed by the Coulomb interaction. In the case 
T 2 fiw ,, in the region n, < n: , the principal role is 
played by the dynamic shift Aw. Its behavior i s  de- 
scribed approximately by identical formulas, (10) with 
E " h H / 2  and (16b). On going to  the region n,> n:, the 
expression (30) for Aw with (u2), from (28) is again val- 
id, because, as already noted in the comments on the 
derivation of (uZ), (32), the temperature T << ezn:'z has 
little effect on the (uZ), of Coulomb origin, while no dy- 
namic shift Aw occurs in the region ns>n$ in accord 
with the considerations given above. The third possi- 
bility T >>fiw, i s  of little interest from the viewpoint of 
the study of Aw. 

Turning t o  the discussion of the experimental data2 
for Aw , it is not difficult to make it clears' that they re -  
fer to the intermediate case T 2 fiw,. In fact, for the 
two frequencies f, =w;)/2a=18.5 X lo9 sec-' and fz 
=37.75 x lo9 sec-I and for the minimum temperature 
T S 0.4 K, used in Ref. 2, the ratio T/Ew, has a scale 
0.3 -0.5. Consequently, in the region n, < n; , along with 
the static shift AwS (26), we need to take into account 
the dynamic shift (16b). The resulting expression for 
Aw takes the following form: 

In comments on this limiting case it is stated in Ref. 2 
that the expression Aws =eZPi8n(ufi describes correctly 
the parametric dependence of the shift Aw for electrons 
above the surface of He4, but i s  numerically somewhat 
below the observed shift Aw. It is obvious that the 
presence of a temperature term in Aw (33) solves the 
problem of the increase in the theoretical value of Aw 
by a factor of 2-3 (at T/tio,- 0.3-0.5) in comparison 
with AwS. However, an additional dependence of Aw on 
the temperature and magnetic field ar ises  here, the ex- 
istence of which in the experiment has as yet not been 
clearly determined. 

With increase in the intensity of the applied field and 
consequently, in the density of the surface electrons, a 
kink i s  observed on the experimental plot of Aw(E,), in 
the direction of an increased dependence of Aw on E,. 
From there on the value of Aw continues to be quad- 
ratic in El and independent of H. Only the slope of the 
plot of Aw against changes (see Fig. 4 @ Ref. 2). 
The onset of a similar kink in the Aw(e)  curve can be 
put into correspondence with a transition of the system 
from the region n,<n: to  the region n,>n:. Here, in 
accord with (30), the mean square displacement of the 
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electrons becomes a function of the field EL; this leads 
to  an additional dependence of AW on EL and can be in- 
terpreted a s  a change in the slope of the Aw(e)  curve. 
However, in this case, the theoretical value of Aw 
ceases to be a quadratic function of EL and begins to  
depend on the magnetic field, in qualitative disagree- 
ment with the observations. In this situation, it is 
meaningful to  carry out a numerical comparison of the 
theory and experiment in the region n, > nz with the aim 
of clarification of the possible scales of the discrep- 
ancy. 

The behavior of the combination (1 +(UZ)~/(U~)~)"~, 
which enters into the expression (30), a s  a function of 
E, for the magnetic fields H, and Hz, corresponding t o  
the frequencies f, =18.5 x lo9 sec-' and fz=37.75 X lo9 
sec-I used in Ref. 2, is shown in Fig. 1 (curves 1, 2). 
The departure of this expression from unity begins in 
the range of fields EL= 100-200 V/cm, which agrees 
qualitatively with the location of the transition region 
on the experimental plot of Ao against E, in the case 
of electrons on an He4 surface (see Fig. 4 in Ref. 2). 
The corresponding A W ( ~ )  curve, constructed on the 
basis of (30)4) and the numerical data of Fig. 1, is 
shown in Fig. 2. For convenience in the comparison 
with the experimental graph of Fig. 4 from Ref. 2 the 
quantity 6H = - (rnc/e)Aw is used in Fig. 2 in place of 
Aw. The solid curves 1 and 2 a r e  the results of calcu- 
lation of 6H for the magnetic fields H, and Hz. The 
dashed line e between the curves 1 and 2 corresponds to 
the position of the experimental data from Ref. 2 for 
6H(E,) in the case of electrons on an He4 surface and 
for various directions of the magnetic field. The additi- 
tional curve o illustrates the Aw(F,) dependence (26) in 
the case n, < n:. The experimental data a t  low intensi- 
ties EL, lie somewhat lower than the curve o, and then 
make the transition to the curve e in the region of the 
kink. Moreover, the open circles in Fig. 2 indicate an- 
other series of experimental values, obtained in the 
following fashion. Beginning with some density n: > n: , 
the connection between EL and n, was discontinued, after 
which only the intensity of the clamping field changed, 
without an increase of the number of electrons on the 
surface of the helium. 

On the basis of the data of Fig. 2, we can conclude 
that the static shift AW (30), with account of the influ- 
ence of electron-electron interaction on (uZ), gives the 
correct scale of the value of the observed effect over a 
wide range of clamping fields and densities of the sur-  
face electrons. A reasonable explanation is found for 
the appearance of a kink (in actuality, we a r e  dealing 
with a smooth transition from the asymptote form at 
n, < n: to the opposite limiting case n, > n:), and also for 

FIG. 1. 

FIG. 2. 

the appearance of experimental points in the intermedi- 
ate region between the line o and the line 1 in the case 
when there is linear connection between E, and pz, and 
n, increasess more slowly than EL. It is meaningful also 
to  note that the non-quadratic theoretical behavior of 
& a s  a function of EL is almost not noticeable in the 
coordinates 6H(D,) and a t  limits of EL used in the ex- 
periment. A more serious problem is the absence in 
the experiment of a dependence of 6H on the magnetic 
field H in the region n,>n:. The accuracy of the ex- 
perimental data in the wide range of densities should 
enable us to observe the difference between curves 1 
and 2, but this is actually not the case. Still another 
difficulty within the framework of the proposed inter- 
pretation a r i ses  when the experimental data for 6H a r e  
considered in the case of electrons aver an He3 surface. 
No initial section of 6H(E,) dependence along the line o, 
with slope corrected to another value of the surface 
tension, appears in these data. The experimental 
points 6H for electrons above He3 therefore immedi- 
ately undergo transition to  a regime which could de- 
scribe the limiting case n,>n: (see Fig. 4 in Ref. 2). A 
possible explanation of the similar behavior of 6H(EL) in 
the case of electrons above He3 can be connected with 
the loss of the homogeneity of the mean density of elec- 
trons on the helium surface and the appearance of elec- 
tron drops having a local density greater than the aver- 
age. The onset of such formations i s  facilitated for the 
case of liquid He3 and can prevent the creation of the 
situation n,< n;. 

An interesting possibility of explaining the different 
behavior of the localized electrons above the He3 or  He4 
surfaces appears if we turn to an earlierL5 calculation 
of the profile of the vapor-liquid boundary of liquid he- 
lium. According to this calculation, the profile of the 
He3 boundary i s  much more friable (stretched out by 
about 20 A) than in He4 (the thickness of the transition 
layer for He4 i s  about 2-3 A). This circumstance can 
lead to a significant difference in the behavior of the 
localized electrons over the He3 and He4 surfaces. 

The author is sincerely grateful to Yu. P. Monarkha 
and V. S. 6del'man for numerous discussions, useful 
remarks and for furnishing the data of researches found 
in press. 

 or the thermal part of the problem, the series (11) and (12) 
converge much better than in the case T =  0. Here the char- 
acteristic ti, at which the integration over q is cut off, can be 
determined from the condition x =  @ 2 / m w H  x 1. For (LIH - lof0 seci, the quantity q=  10' cmY . A s  a result, in the 
thermal part of the problem, the neglect of energies w k )  in 
comparison with W H  in the denominators of (11) and (12) is 
valid for much weaker magnetic fields than if the inequality 
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(13) i s  used. 
2 ) ~ s  one of the possible states that must be taken into account 

in the dipole excitation of electrons in a magnetic field, i t  is 
also necessary to consider the state 

However, the matrix element for the exciting alternating 
field eE,r/ cos p between the s ta tes  9oo and vanishes: 

a s  a resul t  of integration over r .  
3'We a re  dealing with information obtained under the conditions 

rl1>>r (see (19b)). 
4)~ctua11y, a definition of Aw lower by a factor of two than Aw 

in (30) i s  used in the calculation of Aw, in order that the val- 
ue of Aw in the region n, < n: coincide with the value of Aw 
from (26) and not with the classical  resul t  (18a). 
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Results are presented of measurements of the thermal conductivity of perfect and of plastically deformed 
crystals of pure lead (certified 99.9999% Pb) in the normal and superconducting states in the 
temperature interval 0.6-7.5 K. Judging from the thermal conductivity in perfect crystals of 2 4  mm 
diameter in a zero magnetic field, the maximum phonon mean free paths are limited by scattering from 
the surface, and the maximum electron mean free paths are limited by scattering from impurity atoms. In 
a strongly deformed sample at temperatures T - 1 K the quasiparticle free paths are limited by scattering 
from dislocations, and the principal role in the phonon thermal conductivity is played by the flutter 
effect, i.e., scattering of phonons by vibrating dislocations. At temperatures T >  2 K the phonon and 
electron mean free paths are limited by the mutual scattering of the quasiparticles. A comparison of the 
experimental data with the predictions of the theory of thermal conductivity of pure supemnductors 
shows that the behavior of the phonon component of the thermal conductivity agrees in practice with the 
theory, while the temperature dependences of the thermal conductivity of the electronic component differ 
substantially from the theoretical ones. 

PACS numbers: 74.30.Ek. 74.70.Gj, 72.15.Eb, 72.15.Qm 

1. INTRODUCTION 

T h i s  work  is a continuation of a c y c l e  of s tud ie s ,  
init iated by  u s  earlier,'-$ of k ine t i c  phenomena i n  p e r -  
f e c t  bulky c r y s t a l s  at low t e m p e r a t u r e s .  Such invest i -  
ga t ions  are e s s e n t i a l  f o r  a b e t t e r  unders tanding of the  
role of v a r i o u s  relaxation m e c h a n i s m s  of exci ta t ion and  
of ene rgy- t r anspor t  m e c h a n i s m s  in  p e r f e c t  c r y s t a l l i n e  
s t r u c t u r e s  at low t e m p e r a t u r e ;  t hey  are also of i n t e r e s t  
f r o m  the  point of v iew of u t i l i t a r i an  material s tudy,  a n d  
c a n  s e r v e  as a b a s i s  f o r  the product ion of c r y s t a l s  with 
speci f ied  physical  p r o p e r t i e s ,  f o r  t h e  development  of 

phys ica l  me thods  f o r  the a n a l y s i s  of highly pu r i f i ed  
m a t e r i a l s ,  etc. T h e  ob jec t s  of t he  p reced ing  m e a s u r e -  
m e n t s  w e r e  so l id  h e l i u m  a n d  b i smuth ,  a n e a r l y  pe r fec t  
d i e l e c t r i c  a n d  semimetal, r e spec t ive ly ,  with low car- 
rier dens i ty  p e r  a tom) ,  w h o s e  t h e r m a l  conduc- 
t iv i ty  at he l ium t e m p e r a t u r e s  is d e t e r m i n e d  by  t h e  re- 
laxat ion p r o c e s s e s  i n  the  phonon s y s t e m .  It w a s  na tu ra l  
to choose  as the nex t  object  a supe rconduc to r ,  s i n c e  
t h e  thermal conductivity of a supe rconduc to r  in the  
n o r m a l  state, jus t  as that  of a n o r m a l  me ta l ,  is d e t e r -  
mined  ma in ly  by  the  e l e c t r o n i c  componen t  x,", while  in 
the  supe rconduc t ing  state at T << T, it is d e t e r m i n e d  
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