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A calculation method is developed that makes it possible to take into account the influence of the spatial 
dispersion and of the microscopic properties of a surface on the optical characteristics of the interface 
between a metal and vacuum. The method is based on the use of the Riemann boundary-value problem 
scheme. The equations are mmmged in such a way that they contain only electromagnetic-field 
components that vary slowly near the surface. The problem of the additional boundary conditions, which 
is being discussed in the literature, does not arise in this case. It becomes possible to express the 
observable quantities in terms of the spectral characteristics of the unbounded metal and of the integral 
characteristics of the surface. The method developed is applicable to the solution of the following 
concrete problem: 1) the calculation of the optical characteristics in the hydrodynamic model of the 
metal, and 2) the elucidation of the influence of the surface structure on the dispersion law of the surface 
plasmons. The results are compared with the experimentally measured dependence8 of the fnquencies of 
the surface plasmons on the potential discontinuity in electrochemical-systems. 

PACS numbers: 82.65. - i, 78.20.Bb. 73.20.C~ 

1. INTRODUCTION 

The advances in the experimental technique, and 
particularly modulation spectroscopy1 and the spectro- 
scopy of attenuated total internal reflection: have made 
it possible to obtain for the light-reflection coefficients 
and surface-wave characteristics quantitative data that 
a r e  much more accurate than the earl ier  ones. In the 
visible range and in the near ultraviolet, the observed 
relative effects of the influence of the electronic struc- 
ture of the surface of the metals turned out to be much 
larger in a number of cases than the natural parameter 
m/c ,  where a is a quantity of the order of the atom 
size, w is the frequency, and c is the speed of light. 
To this day, there is no satisfactory theory of these 
effects. Such a theory should take into account in suit- 
able fashion both the dispersion of the dielectric con- 
stant in the metal and the microscopic effects on its 
surface. The problems encountered in this case a r e  
described in Refs. 3 and 4. 

One of these problems is the insufficient number of 
ordinary conditions for the field discontinuities on the 
metal boundary in the case of a macroscopic descrip- 
tion, when more than two volume modes appear. Many 
variants of the additional boundary conditions (ABC) a re  
contained in the literature and a r e  critically reviewed 
in Ref. 4, where it is emphasized that the total micro- 
scopic problem of the reflection of lightdoes not require, 
in principle, any additional boundary conditions. It is  
proposed in Ref. 4 to carry out the calculations using 
microscopic models. It is clear, however, that the 
microscopic characteristics should enter at m / c  << 1 
only in the form of some averaged parameters that de- 
pend little on the details of surface models which a re  
usually remote from reality. The elucidation of the 
form of these parameters and the derivation of micro- 
scopic equations for the electromagnetic field, accurate 
to first  nonvanishing order in m / c ,  was one of the 
principal tasks of the present paper. To this end, we 
have reduced our problem to the Riemann boundary- 
value problem5 previously used in a number of physical 

problems,' and have shown that it has a unique solution 
for any number of volume modes. The gist of the meth- 
od consists of using the consequences of the analytic 
properties of the Fourier components of the fields and 
of the response functions, which automatically account 
for all the conditions on the surface of the metal. This 
approach is an extension of Ref. 7, where light reflec- 
tion was described by using the Wiener-Hopf mathe- 
matical formalism. In contrast to Ref. 7 and to papers 
of like character,8s9 in which it was possible to con- 
sider only the case of an abrupt boundary of a homo- 
geneous metal, the method used here makes it possible 
to take into account simultaneously both the influence 
of the spatial dispersion and the influence of the surface 
structure. Another question that ar ises  in the problems 
under consideration and is being discussed to this day 
in the literature1' concerns the uncertainties that ar ise  
in the analysis of the microscopic equation for field 
components that vary rapidly at the surface. The en- 
suing difficulties a r e  eliminated in the present paper by 
restructuring the equations in such a way that only field 
components that a r e  slowly varying on the surface (and 
are  continuous in the macroscopic theory) a re  left. This 
procedure was proposed and used earl ier  in Refs. 11 
and 12. 

The developed general scheme is used in this paper 
to  solve two problems of practical interest. First ,  in 
Sec. 4 we consider the influence of the properties of the 
surface on the reflection coefficients and on the disper- 
sion law of surface excitations in the hydrodynamic 
model of a metal. Second, in Sec. 5 we consider the 
influence of the potential discontinuity applied to a metal 
surface on the dispersion law of surface plasmons; 
this influence was investigated experimentally in Refs. 
13. 

2. INITIAL EQUATIONS 

We consider a metal that occupies the left-hand half- 
space xl< 0, where the plane x, = O  lies near the macro- 
scopically smooth boundary of a lattice of positive ions. 
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A monochromatic electromagnetic wave E(w, x) is inci- 
dent on the metal and has  an amplitude EO, a frequency 
W, and a wave vector that lies in the (x,, ~ 2 )  plane. 
We start  from electromagnetic-field equations of the 
form 

where summation over like indices is  implied. We have 
introduced in (l), in the linear-response approximation, 
a term with nonlocal dielectric constant c, ,(w , x, XI). 
We put 

eu(o, x, x') ==es(x, x') =eU'(x-x1)0(-2,') 
+6eiJ(xIl-x,', 21, Z , ' ) + ~ I J ~ ( X - S ' ) ~ ( ~ I ) ~  t2 

where c?,(x - x') is the dielectric constant of the homo- 
geneous metal1) and xll= (0, xz, x,). The term 6crl(xII 
- xtIl, x,, x:), which takes into account the influence of 
the surface, decreases rapidly over microscopic dis- 
tances at Ix, 1, - -, and we assume that 

The inequality (3) is equivalent to the condition that the 
distances over which the influence of the boundary on 
the electronic properties of the homogeneous attenuates 
is small compared with the wavelength of the light. Ac- 
cording to contemporary notions, this distance is of the 
order of fip;', where pf is  the momentum on the Fermi  
surface.14 We emphasize that even i f  (3) i s  satisfied 
the term with bc,, in (2) is decisive when it comes to 
describing experiments similar to those considered in 
Sec. 5, in which one measures the influence of the mod- 
ulation of the properties of metal surfaces on the opti- 
cal characteristics. 

To abbreviate the notation, we assume in (2) that 
averaging is  carried out at (x,l>> a over the three-di- 
mensional crystal cell; this assumption is justified 
when long-wave components of the fields a r e  considered 
and there a re  no short-wave longitudinal modes.15 
Averaging over the two-dimensional cell in the direc- 
tion along the metal surface is carried out at all x,. We 
change over hereafter from functions of the coordinates 
x,, to their Fourier components. The conserved value 
of the projection of the wave vector on the plane of the 
surface kll=k!l in the arguments of the functions will a s  
a rule be omitted. In place of Eqs. (1) and of the diverg- 
ing-wave boundary condition we can write down the inte- 
gral  equation 

where kll  = (0, k2, k,) and k, is the operator -ia/ax,. 
On changing to the Fourier component with respect to 
the coordinate x,, the operation k, turns into ordinary 
multiplication. 

Following the Ewald ~ c h e m e ' ~ . ' ~  we represent the 
one-dimensional Green's functions that enters in (4) 

exp [ik: Is,-z,'I ] =2iO(z,-2,') sin [k?(zl-2,') ]+exp [-ik/(z1-2,') 1. 

(5) 
Substituting (5) in (4) we obtain two equations: 

cZkikJ 
~ ( 6 , , - ~ )  [EJI(Z~', 2,") -8(zl'-z/)8~]E~ (2:)). 

0 (6) 

The first  equation in (6) is obtained from the condition 
that the terms proportional to exp(-ik:xl), cancel out as  
x,- --. It determines the normalization of E,(x,) and, 
since we seek hereafter only the ratios of the field am- 
plitudes, it is of no importance to us. We introduce the 
notation 

Dl (2,) - eu(z? ~I')E,(x~')&~'. (7) 

It follows1s from (6) that the relative increment of the 
functions E,(xl),E,(xl) and Dl(%,) is of the order aw/c 
when x, changes near xl = O  by amounts equal to atomic 
distances. We recall that in the macroscopic theory it 
is precisely these field components which have no dis- 
continuities on the surface. With the aid of the tensor 
ci;; (x,, x:) a E[/) (kll, x1, x:), defined by the condition2) 

j eIL(zl, ZF) e,: (z,", z,')dz,"=6(x1-z,'), (8) 

we can express the field components that vary rapidly 
near the surface, particularly El(x,), in terms of 
E,(x,), E,(x), and D,(x,). Taking into account the al- 
ready mentioned properties of 6&,,(x,, x:), we can 
furthermore put in (6), at the accuracy employed, 

where the quantities E; a re  the values of the slowly 
varying functions of x, a t  xl = 0: 

The coefficients r,,(xl) introduced in  (9) a r e  equal to 

rcr (zr) - &;&:'8Ec1 (21; 21') 8,: (z~ ' ,  z,"), 

(11) 

riJ (2,) - j dzt16ei,(z1, zIr) 

3. GENERAL SOLUTIONS OF THE FIELD EQUATIONS 

After substituting (2) in the second equation of (6) and 
using (9), Eq. (6) is transformed at x, > 0 into a relation 
that expresses the field in the right-hand half-space 
E;(x,) =~,(x,)B(x,) in terms of the field E;(x,) =E,(x,)O$-x,) 
in the left-hand half-space and of the values of E;. The 
natural method of solving such equations is to use the 
mathematical formalism of the Riemann boundary prob- 
lem.5 To this end, we change over to Fourier trans- 
forms. From the second equation of (6), taking (2) and 
(9) into account, we then obtain 
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The term ik16 in the denominator of the Green's func- 
tion in (12) will not be explicitly written out hereafter. 
To solve the Riemann problem it is necessary to con- 
sider the analytic properties of the functions &yj(kl) and 
~,,(k,) that enter in (12). 

Confining ourselves for simplicity to the case of 
metals with nearly spherical Fermi surface, we put at 
kll =ql 

The form of the dependence of &,,(lkl) on k, is connec- 
ted with the form of the spectrum of the excitations in 
the unbounded metal, which includes in the general case 
N transverse and M longitudinal modes. These modes 
correspond to k, values iv$" (q l )  and *vLm) (kt)  (n = 1, 
. . . , N; m = 1,. . . ,M), which a r e  at fixed k! =kqI the re-  
spective roots of the equations 

The quantities v?), u p )  have positive imaginary com- 
ponents corresponding to damping. Without loss of 
generality, we can assume that &,&((kl) a r e  analytic 
functions of k, in the band lImkll< l/a This assumption 
is equivalent to the natural condition that &,,(x) de- 
crease exponentially with increasing Ixl 1. The behavior 
of &yj(kl) as kl- .o in the analyticity band is character- 
ized by the condition 

eiiP(kl) +GijerP . as. I k,l +m, (15) 

where cy is the local component of the dielectric con- 
stant. The quantities r,,(k,), in view of the connection 
between r,,(x,) and ~ E , ~ ( X , ,  x:) in accordance with form- 
ulas ( l l ) ,  are  also analytic functions of k, in the band 
IImk,l< l / a  and satisfy, being Fourier transforms of 
quadratically integrable functions, the condition 

We resolve the Fourier components of the quantities 
Ei(xl) into longitudinal and transverse components with 
the aid of the following definitions : 

EL*(ki) =ktEi*(k,)  = k f E X f  ( k t )  +k2E2* ( k , ) ,  
E ~ K *  ( k t )  =e,,kjEit ( k , )  =k,E,* ( k t )  , (17) 

E,,*(k,) = (6ijb-6it6jt) kjktEt* ( k t )  =kikzEz* ( k t )  --k,ZE,* ( k t ) ,  

where e,,, is a completely antisymmetrical tensor, and 
the second equalities a re  the consequence of the parti- 
cular choice of the coordinate frame. The quantities 
E ,  +(k,) and E ,, +(k,) coincide, apart from the coef- 
ficients, with the amplitudes of the electric-field in- 
tensities respectively in the s- and p-polarized waves. 
From (17) we get the relation 

E,Xt(k,)  -k,E,* ( k , )  =k2EE,* ( k , ) ,  

which determines the connection between E,, and EL at 
k2 = 0. From (12), (13), and (17) we get the equations 

The quantities E l ,  ,, ,,,(k,)(E;, ,, ,,,(k,)), by virtue of the 
definition E;(x,), a re  analytic functions of k, a t  Imk,>O 
(Imk,< 0). To solve Eqs. (18) we need additional condi- 
tions on the behavior of E;,, ,,,(k,) as Ik, 1 - .o in the 
half-plane Imk,< 0. As shown in the Appendix, 

ETB-(kt )  I lh , l -m=- i (kdk l )  Ela, ETY- (k l )  1 lk,l-m=-ik&', 

 EL-(^) I lk,lfm=-i(EL.+vL&;),  
(19) 

where the constant pi,  is expressed in terms of and 
r,, in accordance with formula (A.2). 

The solution of Eqs. (18) in accordance with the gen- 
e ra l  scheme of Ref. 5, based on the use of the already 
mentioned analytic properties of &;,(k,) and r,,(k,) and 
on Eq. (17'), is given in the Appendix. As a result, the 
quantities E&(k,) and E;,,(k,), which determine the 
fields outside the metal, a re  given by 

1 
ErK+(kl )  - (k ,+i6)z+(k ,o)2-o' /cz  frs(k1)r 

1 
(20) 

E ~ M +  ( k t ) =  
(ki+i8)'+ (k,") '-oz/c' 

fr.u(kt),  

where the functions f ,(k,) and f ,,,&,), which have only 
pole singularities at Imk, a -l/a, a re  equal to 

The polynomials R ,(k,) and R ,,,(k,) and the function 
~2;(k,) and Gj(T, k,), which enter in (21) and a re  defined 
in the Appendix, a r e  expressed in terms of the quan- 
tities E!,, c;:) and rij for  any number of natural volume 
modes of the metal. In Eqs. (20) and (21) a re  left ex- 
actly two undetermined constants, E: and E:, in accord 
with the number of independent amplitudes in the inci- 
dent wave. 

To obtain the observed quantities, we turn to the co- 
ordinate representation and consider the asymptotic 
forms as  xl- .o. Using the analytic properties of the 
functions in (20), we have 

p=TE, TM, (k ," )Z=oVcZ-  (k,,')'. (22) 

In the expressions for E+,,(x,) and E&(x,), only two 
waves remain a s  x,- .o, corresponding to the poles in 
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(20) closest to the real  axis k, and proportional respec- 
tively to exp(iik;x,). The coefficient of exp(-ik?x,) can 
be set  equal to the amplitude of the field in the wave 
incident on the metal, so  that we can eliminate the two 
remaining constants E,S , E:. The coefficient of exp(ik:x,) 
specifies the sought amplitudes of the reflection coef- 
ficients r,(k?) and r,,(k;), which take the form 

The values of w, 5 w,(kll), which a r e  the roots of the 
equation 

correspond to the possibility of existence of solutions 
with one wave at xl> 0, which attenuates a s  x,- m. For 
real  w,, such solutions correspond to surface modes 
that attenuate in both directions a s  Ix, 1 - m. Complex 
w, with small imaginary components correspond to sur- 
face resonances that attenuate either because of the de- 
cay of the wave that goes into the interior of the metal, 
o r  because of the absorption over the characteristic 
time (2 (Imw, I)". 

4. OPTICAL CHARACTERISTICS IN  THE 
HYDRODYNAMIC MODEL OF A METAL 

We consider a problem in which the traditional1' ex- 
pression 

is  used for the bulk dielectric constant of a metal. The 
transition from the dielectric properties of the metal to 
the properties of a vacuum, however, will not be as- 
sumed here, a s  is  customary, to be jumplike. We as- 
sume only for the sake of brevity that the surface has 
axial symmetry, i.e., r,,(xl) = 6,,r,(x1), r,(xl) = r,(x,), 
and that r,(x,) = 0 a t  x,< 0. The last condition can be 
satisfied if the quantities I',(x,), which characterize the 
deviations from the volume properties, decrease over 
atomic distances from the surface, and there is a de- 
finite leeway in the choice of the position of the surface. 
In this case there can propagate in the volume of the 
metal two transverse volume modes with k, =iv(T1), iu(;) 
and one longitudinal mode with k, =iv,, where 

The functions ni,(k,) and f&;(k,) a r e  equal to unity under 
the case under consideration. 

Using Eqs. (A.7) and (A.8), we find that the Fourier 
transforms of the fields inside the metal take a t  Imk,< 0 
the form 

k1-v, 
E,,- (kt) =-ik,ESS 

(kl-vy)) (k1-v$)) 

ETx- (kr) =-iktEZa- 
(ki+A) (ks-vv) 

(kl-vg)) ( k l - ~ F ) )  ' 
(27) 

k,-v, 
E~-(k~)=-i(i+qit)E~'.~,(~) tkl-vL) . 

Substituting (27) in (A.9) we get 

Using next (21)-(23) and (A.7), we obtain expressions 
for the amplitudes of the reflection coefficients r,(k;) 
and r,,(k?) of s- and p-polarized light, respectively, in 
the form 

where - - m 

r,= j r , ( ~ ) d z , ,  r , ~  j rr(z l )dzl= j r s ( ~ l ) ~ l  (30) 
0 P 0 

and the coefficients A and E:/E: a r e  determined from 
(28). The parameters /3 and r in the expression (25) for 
the bulk dielectric constant usually satisfy the inequal- 
ities 

so  that 

Far  from the volume-plasmon frequencies, i.e., at 
lwZ - w ~ / & ~ ( w ) ]  >> ~'k!~, we obtain from (28) with the aid 
of (31) 

In this case the expressions for the light-reflection co- 
efficients agree in the zeroth order in ]&o)112p/c and 
wr,/c with the known Fresnel formulas.16 It should be 
noted that in expression (25) foe the dielectric constant, 
and accordingly (27) for E;(k,), when dispersion is ex- 
cluded, acquire an incorrect behavior a s  k,- - if we 
simply s e t  the parameter equal to zero, and this be- 
havior affects substantially the results of the calcula- 
tions. The reason is that &(w, k) and E,(k,) tend as  k, - m in a nonuniform fashion to their limiting values in 
8. If we assume p = O  from the very outset, then formu- 
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las  (28) and (32) take the madified form 

Expression (29) for r,,(k;) agrees in f i r s t  order in 
wr, /c ,  when (33) is taken into account, with the formu- 
las previously obtained without allowance for spatial 

and differs from the result  obtained 
when the limit p-  0 i s  taken in the final expression. An 
analysis of formulas (29) shows that at  ri(k1) = O  the in- 
fluence of the spatial dispersion on the reflection coef- 
ficient of s-polarized light is particularly substantial a t  
I&,(w) 1 >> 1, i.e., at  frequencies corresponding to inter- 
band transitions in the metal. In the case  of p-polarized 
light the influence of the spatial dispersion is  signifi- 
cant, in addition, at  frequencies close to those of the 
volume plasmons. 

The reflection coefficient (29) of p-polarized light has 
a pole corresponding to the existence of a surface plas- 
mon. In the simplest case r,(kl) =0 ,  but when spatial 
dispersion i s  taken into account we obtain for the dis- 
persion law of the surface plasmon, in the nonrelativis- 
tic limit at E,(w) = 1, the relation 

Relation (34) is similar  to that obtained in Ref. 18 in the 
so-called dielectric model,') and differs from the lat ter  
only in the coefficient in front of the te rm that depends 
linearly on Ikll 1 in the imaginary part  of w,. In the case  
of the dielectric model, the quantities r, and rll do not 
vanish but a r e  equal to I?, =0, rll =igw:/2w3, and this 
leads to the usual result. As seen from (34), the pres-  
ence of spatial dispersion leads to an additional su r -  
face-plasmon level width that depends on Ikll 1 .  The 
position of the level of the surface plasmon also depends 
on Ikll 1, and the coefficient of the t e rm linear in Ikll I is 
positive.4) This conclusion agrees with the results  of 
measurements of the dispersion law of surface plas- 
mons propagating along an aluminum-vacuum boundary. lg 

5. INFLUENCE OF THE SURFACE STRUCTURE 
ON THE DISPERSION OF SURFACE PLASMONS 

In this section we confine ourselves t o  media that can 
be described by a local dielectric constant &(w)  
=E(w, k)l,,,, i.e., we assume that p=O. In contrast to 
Sec. 4, however, we do not assume here  that r,(x1) = 0 
a t  xl< 0. In thip case Eq. (24) for the dispersion of the 
surface plasmons takes the form 

where E, is the dielectric constant of the external med- 
ium, which i s  no longer assumed to be vacuum, and 

- (36) 
rll= J l-z(x,)dz,. 

-- 
In a three-layer model, which is characterized by 

introduction of a dielectric constant &, which does not 
depend on the coordinates xl and x:, of an intermediate 
layer with a finite t ransverse dimension d ,  Eq. (35) 
goes over into the equations obtained in Refs. 3 and 21. 
The second te rm in the left-hand side of (35) takes into 
account the influence of the surface layer. This te rm 
turns out to be relatively smal l  in the parameter  aw/c 
in the case  considered below. Using this circumstance, 
we can write down the following dispersion law for the 
frequency of the surface plasmons: 

Here w:(klI) i s  the frequency of the surface plasmon that 
propagates along the boundary of a two-phase system 
E(W)/E~,  which is the solution of the equation 

From (35)-(37) we s e e  that the influence of the struc- 
ture of the surface layer on the dispersion law should be 
particularly substantial at  large Ikll 1, a t  which the 
quantity &(w) approaches -&,. This conclusion agrees  
with experimental r e s ~ l t s . ' ~  

Equation (37) can be used to describe the dependence 
of the experimentally obtained1' dependence of the f re-  
quency of the surface plasmons on the potential discon- 
tinuity on a metal-electrolyte boundary. In the calcula- 
tion of the dielectric constant we shall take into account 
the influence of the potential drop cp on the distribution 
of the electron density near the surface. To describe 
this effect, we retain in the dielectric constant only the 
plasmon component. By the s ame  token we disregard 
the effects of the influence of the potential drop on the 
electronic transitions. Noticable effects of s imilar  type 
can be expected only in the parameter  interval cor res-  
ponding to  proximity of the threshold of external photo- 
emission o r  to resonant frequencies of transitions in a 
double layer. 

In the considered very simple model we have 

where N ,  is the concentration of the electrons in the 
volume of the metal and p(xl) is the electron density, 
which depends on the distance to the surface. Near the 
zero-charge pointz2 the function p(xl) can be represen- 
ted in the form 

Here Q is the metal-surface charge and depends on the 
potential drop, while po(xl) is  the distribution of the 
electron density at  the zero-charge point at  Q =0 ,  and 
f(x,)  does not depend on Q. The explicit form of the 
functions po(xl) andf(xl) for a number of metals were 
obtained in Refs. 23. Under the foregoing assumptions, 
we obtain from (36), (39), and (40) the following expres- 
sions for  the quantities drl,/dcp and dr,/dq, which 
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enter in (37) and specify the dependences of the surface- 
plasmon frequency on the potential drop 

where C(q)  = d ~ / d p  i s  the differential capacitance of the 
double layer.22 We note that in the case Re&(w)< 0 and 
small  damping in the volume of the metal (Im&(w)<< 1) 
we have 

and the value of Imdr,/dq remains of the same order 
as  ~ e d r , / d p ,  and can be  expressed in the form 

To determine (42) we used the already noted11a4 c i r -  
cumstance that the main contribution to ImI', in the 
case of small  volume damping is made by the region 
near the point xl = $, where ~ e & ( g )  = 0. In the case of 
metals, 4 = 1-2 A and (dfix,)/dx,),~< 0. 

 measurement^'^ of the spectra of attenuated total in- 
ternal reflection from the (111) face of Ag in a 0.5 M 
solution of NaC10, have shown that a t  tZw: = 3  eV, a t  po- 
tentials more positive than the zero-charge point, 
dtZw,/dp= -2 x lo-' ~ V / V  and IdtZw,/dq~ 1 is  much less  
than this value for potentials more negative than the 
zero charge. At the same time, according to (37) and 
(41) the natural frequency of the plasmon surface sat is-  
fies the relation 

where the constant 5 is expressed in te rms of the bulk 

FIG. 1. Experimental check on Eq. (43). Top-dependence of 
the capacitance C on cp in accordance with the data of Ref. 25; 
the potential is reckoned from the zero-charge point Q = 0. 
Bottom: straight line-calculation by formula (43), 
circles-experimentally measured values of dt iodd cp ,I3 

divided by the values of C ( q )  shown in the-upper figure. The 
quantity 6 [Eq. (43)] is plotted in arbitrary units. 

dielectric constants and the distribution function of the 
charge in the surface layer. As seen from the figure, 
the experimental-data reduction in Ref. 13 confirms 
.Eq. (43). It is important here  that the differential cap- 
acitance of the considered system changes strongly (by 
an approximate factor of five) in the vicinity of the 
zero-charge potential,25 which lies in the measurement 
interval. The results  of the experiments of Ref. 13 con- 
f irm also the conclusion that follows from (37) and (42) 
that the width of the surface-plasmon level should in- 
crease with increasing potential drop. 

6. CONCLUSION 

The calculation method developed in Secs. 2 and 3, 
based on a solution of Riemann boundary-value problem, 
makes it possible to express the light-reflectbn coef- 
ficients and the dispersion of surface excitations in 
te rms of the spectral characteristics of the volume of 
the crystal  and the properties of its surface. In the 
considered method, a condition on the behavior of the 
Fourier  components of the fields a s  kl- is  used in 
place of the ordinary boundary conditions on the sur-  
face, which entails certain difficulties, a s  stated in 
the Introduction. Using the information that follows 
from the field equations (6) on the analytic properties 
of these Fourier components, a s  well a s  the connection 
given by relations of the type (17') between the longi- 
tudinal and transverse components, it becomes possible 
to obtain an unambiguous solution of the problem of 
light reflection in the f i r s t  nonvanishing order in the 
parameter aw/c, without resorting to concrete micro- 
scopic models. The surface properties enter in the ob- 
served quantities via a finite number of parameters I',,, 
which a r e  expressed in t e rms  of averaged microscopic 
characteristics. Such a description makes it possible to 
dispense with the so-called three-layer model cus- 
tomarily used to take into account the influence of the 
surface,  wherein the microscopic effects a r e  described 
with the aid of the macroscopic Drude formula and 
which contradicts qualitatively, for example, the r e -  
sults  of experiments on e l e c t r o r e f l e ~ t i o n . ~ ~  It is impor- 
tant that in contrast to the three-layer model, in the 
considered approach it becomes possible to describe 
satisfactorily effects connected with the strong enhance- 
ment of the p-polarized field in the surface layer,  which 
occurs whenever Re&(w, x,) approaches zero. These 
effects include, in particular, the appearance of a 
specific absorption. 

An essential feature of the present paper is  the study 
of the coefficients of the asymptotic forms of the waves 
a t  large distances from the surface. This yields, for 
example, the dispersion laws of the surface excitations 
in the form of conditions that ,these coefficients become 
infinite (the appearance of poles). Such an approach 
yields in general form, by starting from the spectral 
properties, important characteristics of the dispersion 
laws, in analogy with the procedure used in the inves- 
tigation of the properties of the S matrix in the quantum- 
mechanical scattering theory. 

The application, in Sec. 4, of the developed theory, to 
the so-called hydrodynamic model of a metal has made 
it possible to determine the frequency intervals in 
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which, for  example, in modulation measurements, it is  
necessary to take simultaneously into account the spatial 
dispersion and the influence of the microscopic struc- 
ture  of the surface. The derived formulas show a non- 
uniform dependence of the observed quantities on the 
microscopic parameters that enter both in the spatial 
dispersion and in the characteristics of the surface. 
The use of the theory has made i t  possible to obtain in 
Sec. 5, for the f i r s t  time ever,  a description, consis- 
tent with experiment, of the influence of the surface po- 
tential drop on the dispersion law of the surface plas- 
mons. The obtained formulas make i t  possible to use 
the experimental data on the dispersion law to draw con- 
clusions concerning the electronic structure of the sur- 
faces. 

APPENDIX 

To solve Eqs. (18) by the Riemann boundary-value- 
problem method it is necessary to supplement them with 
conditions on the behavior of E;,,, ,,(k,) a s  Ik, 1 - *, in 
the half-plane Imk,< 0. According to (15) and (17) we 
have 

0 a 
dy  ik,  

~ = ~ - ( k , )  =kz eih*z~Es(xI)dx,=k2 eiuEs (L) - = - - Ess, 
-- - r p ( I - i d )  

kr kt ,,+- kt 

Estimates of the integrals in (A.l) a r e  obtained by in- 
troducing a new integration variable y = k , ~ ,  and deform- 
ing the integration contour with allowance for  the fact 
that Imk,< 0. The constant y , ,  in (A.l) is  the discon- 
tinuity, a t  x, = 0, of the function y,,(x,), the value of 
which is obtained from the equality obtained with the 
aid of (2), (7), and (9), 

- (A.2) 
Vu=-i lirn k,  j eihl'firlj ( s , ) d x ,  as k,+m. 

We now represent  the factors - W ~ C - ~ & , ( ~ , )  and 
cL(k1), which enter in ( la ) ,  in the band (Imk, 1 < l / a  in 
the form 

where Ak,) (n,,(k,)) a r e  analytic functions a t  Imk, 
> - l /a  (Imk,< l/a). From the aforementioned proper- 

t ies  of &,(k,) and &,(k,) i t  follows that 9:,, can be ex- 
pressed with the aid of the Cauchy formula in the form 

The functions in (A.3) were chosen such that 
SZf,,,(k,)- 1 a s  kl- m in their analyticity region. We 
expand next the product f2~,,(k,)r,,(k1) in the band 
IImk,l< l / a  into a sum of functions G ( k l )  that a r e  ana- 
lytic, respectively, a t  Imk,> - l /a ,  Imkl< l/a: 

where, taking into account the properties of 9f,,(k1) 
and r,,(k,), we can equate 

With the aid of (A.3) and (A.5) we can rewrite Eqs. 
(18) in the form of three equations whose right- and 
left-hand sides contain functions that a r e  analytic a t  
Imk,< 0 and Imk,> 0, respectively. Correspondingly, 
the two parts  of these equations a r e  analytic continua- 
tions of each other and constitute throughtout an analy- 
t ic  function of k,, they a r e  equal (when the behavior of 
E-(k,)  a s  k,-m), whichfollowsfrom @.I), i s  takeninto 
account) t o  certain polynomials, which we shall desig- 
nate by ~ , ( k , ) ,  ~ , ( k , )  and &,,(k1). This solves the 
Riemann boundary-value problem ,' with 

Comparing the functions on the right- and left-hand 
sides in (A.7) a s  k,- m, we find that R ,(k,), R,,(k,), 
and &,(k,) a r e  polynomials of degree N, N + 1, and M, 
respectively, i.e., the degree of the polynomials de- 
pends on the number of natural modes of the metal. The 
next task  is to determine the coefficients in the poly- 
nomials R(k,). We use f i r s t  the condition that E-(k,) 
should have no poles in the lower half-plane and conse- 
quently the numerators in (A.7) should vanish a t  k ,  cor-  
responding to zeros  of the denominators that lie in the 
lower half-plane a t  k, = -v$" and k, = -vp', respectively. 
Taking into account Eqs. (A.l), we get 
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N "We note that the quantity E;;) ( x l  , ) does not coincide in the 
general case with the component, defined in standard fashion. 

"-1 of the inverse tensor (c-l ( x i ,  x; )) 11. 

xx. ,-(T,  - v ~ ' ) E . ~  [E,.  II ( v ~ ' . . ' - u ~ ) ) ] - i ]  . 3 ' ~ h i s  model corresponding to a choice of the dielectric con- 

"'+" stant in the form 
I 

E,,( .T, .  z,') ==6,,[eo(ti-tt') 0 ( - I , )  0(-2%') +8(zt-zsr)O (z,) 1. 
RT,(k,) -ikJCZa(k,+A) II 

"-1  *'We note that the question of the choice of the sign of lklll in 
- 

the dispersion law was the cause of a controversy both in the 

[E,. II (U:.r-U;.)]- '  ["F) xu- (T, -VF) + k x X I j - ( c  -vy IBj ' } ,  analysis of the experimental data of Ref. 19 a d  in the theory 

n'+n of this phenomenon. 20 

B.(kl) = i [ E ; + ( ~ . + i . ) E / l ~  {k,+vL!" 
'A*8) 'M. Cardona, Modulation S p e c t r o s c o ~ ,  Academic, 1969. 

,"-I 
'A. Otto, in: Optical Properties of Solids. New Development, 

B. 0. SeraDhin. ed.. North-Holland. 1975. D. 677. . . 
3v. M. Agranovich, usp. F ~ Z .  Nauk iis, 199 i1975) [sov. ~ h y s .  

Usp. 18, 99 (1975)l. ". .-?" 's. I. Pekar, Zh. Eksp. Teor. Fiz. 74, 1458 (1978) [Sov. Phys. 

where 

x"~i=t lim xli-(h, k,)  k ,  as . kt-+-.  

Equations (A.7) and (A.8) contain four not yet deter- 
mined constants, Ef(i = l , 2 , 3 )  and A. Their number can 
be reduced with the aid of (17'),  from which we get at 
k2 = 0 the two conditions 

[E,,-(k,) - l t lE~-(k , )  ] =O for k,=*ik,,0. (A.9) 

At kl=iki l  it is necessary to substitute in (A .9)  the 
analytic continuation E;,(kl) and E,(kl),  from the re-  
gion Imk,< 0 into the region O< Imk, = kt<< l / a  specified 
by formulas (A .7) ,  which a r e  valid also a t  Imkl< l / a .  
It is convenient to use Eqs. (A.9) to eliminate the con- 
stants A and E:, which a r e  not connected directly with 
the asymptotic form of E(x)  a s  xl-  a. In t e rms  of these 
constants, (A.9) is a system of two equations whose 
solutions a re  too unwiedly to write out here explicitly. 

Solving Eqs. (18)  with the aid of (A.?) ,  we obtain 
Eqs. (20) and (21) .  
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