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The effect of the electron-electron collisions in superconductors on the nonequilibrium distributions that 
arise upon the injection of quasiparticles is investigated. It is shown that a quasiequilibrium distribution 
of quasiparticles with a negative chemical potential arises in the superconductor at high injection rates. 
The results of the Wienson-Gray experhent [Phys. Rev. Lett. 41. 812 (197811 are discussed. 

PACS numbers: 74.20. - z 

In a recent investigation Willenson and Gray1 observed Here p is the chemical potential of the normal metal, 
on injecting nonequilibrium quasiparticles into a super- N(0)=mp,/n2 is the density of states at  the Fermi sur-  
conducting A1 film a quasiparticle distribution of the face, p, is the Fermi momentum, %=p/pF, and V, is 
form the Fourier transform of the electron-electron potential. 

v-e Connected with the electron-electron collisions in super- 
ne = exp ( F )  conductors a r e  two processes. 

with temperature T different from the thermostat tem- 1. The scattering of the quasiparticles on each other 
perature To and a chemical potential, v ,  that became with conservation of the total number of quasiparticles 
negative at  high injection rates. In Ref. 2 the conse- and the total energy [the third term in (2)]. The charac- 
quences of the existence of a negative chemical poten- teristic time of these processes is given by the formula 
tial of quasiparticles a re  discussed, and it is shown 
that so long a s  v < 0, the energy gap A >0, even if the 

i A'x z5. nkT 1" (3) 
temperature of the excitation is higher than the critical - ( a - a ) ,  x = -- - 

T.'~ temperature. This is precisely what has been experi- i' ,,(,)A -\ A ) "'~1s). 
mentally observed. where x is the dimensionless quasiparticle concentra- 

tion. 
In Refs. 3-5 the nonequilibrium quasiparticle distribu- 

tions that arise during injection, when the electron-pho- 2. Recombination (and impact ionization), when one 
non collisions a re  the principal energy-relaxation mech- quasiparticle with E 2 3A is created instead of three 
anism, are  theoretically investigated. However, none quasiparticles with & =A.  The characteristic time of 
of the existing theories predicts the possibility of the this process is given by the relation 
existence of a state with v<O. At the same time, the i / ~ F = a ~ A ~ x ~ / p .  (4) 
observation has repeatedly been made (see, for exam- The electron-electron collisions a r e  important if ?:= 
ple, Refs. 6-8) that the electron-electron collisions < T : ~ ,  where rth= ( ~ x A ~ x / ~ ~ ) - '  is the characteristic time 
can play an important role in the energy relaxation of of the quasiparticle recombination with emission of a 
electrons in metals with a high Debye phonon energy, in 

phonon, X is the electron-phonon coupling constant, and 
particular, in Al. 

6 is the Debye energy. This condition can be written in 
In the present paper we show that if the electron-elec- 

tron collisions a re  important, then their consideration 
allows us to account for the results of the Willenson- 
Gray experiment.' 

The electron-electron collision operator in a super- 
conductors has the form 

i "  de, derider 
Jee =%! E(E,z-az)t/,(E:-az, c / x ~ E S z I ~ z ~ 8 1 ~  ( [ ( f-n'n"n~ 

-n( i -n , )  ( i - n l )  ( i -n , )  ]M,S(e-El-eZ-e~) 
+3M,[n,( l -n)  ( i -n , )  (1-11, )  - (I-n,)nnznl]  .G(e+e,+e:-E,) 

+3M,[nn,(i-nJ (1-n,) - ( i - n )  (i-n,)n2nl16(e+et-e~-eaj~. 

terms of the parameter q: 

Experimentally, this parameter is  not well known, 
largely because of the absence of data on the quantities 
a, and %. In A l ,  X h ~ / 6 ~  -0.2, and therefore it may be 
inferred that the parameter 71 < 1. We shall consider the 
case when x<< 1. If q << 1, then the electron-electran 
scattering that conserves the total energy and the quasi- 
particle number turns out to be the fastest process. It 
establishes the distribution (I), which makes the scat- 
tering part of the operator J ,  vanish at  arbitrary v and 
T. The recombinational part of the J ,  operator is  less 
than the scattering part according a s  the parameter 

M,=-M, ( - e s ) ,  M a - M i ( - ~ 2 ,  - e l ) ,  x<< 1. 

a , = - d ( O )  &papk anP. 6 ( 7 - i ) ~ , ,  A s  in Ref. 5, we find the law of conservation of the 
( 4 ~ ) '  .- quasiparticle number to have the form 
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where xo is the dimensionless equilibrium quasiparticle 
concentration a t  To and I is the pump intensity. The 
number c (9) in (6) takes account of the quasiparticle 
multiplication during the injection, a s  well as the fact 
that not the entire absorbed energy goes into the pro- 
duction of quasiparticles with E = A. If x < q < 1, then the 
electron recombination [the last term in (6)] can be neg- 
lected, and the quasiparticle concentration is deter- 
mined by the phonon recombination, i.e., x (see, 
for example, Ref. 3). 

In order to find the energy conservation law, let us 
use a method similar to the one used in Ref. 5, and 
introduce the energy c,  (&, - A>kT) below which the 
electron-electron collisions become more effective than 
the electron-phonon collisions, i.e., below which 

where p is a number of the order of unity. 

We shall call the energy region A < & < c ,  the active 
region. The quasiparticles that a r e  created during the 
injection fall into the active region through the emission 
of phonons. Here frequent electron-electron collisions 
establish a quasi-equilibrium distribution, conserving 
the total energy in the process. If 6=d/t<< l , ,  where d 
is the film thickness, t is the coefficient of penetration 
of the phonons into the substrate, and I, is the mean 
free path of the phonons with energy higher than 2A, 
then the phonon distribution i s  an equilibrium distribu- 
tion with temperature equal to To, and the energy leaves 
the sample in the form of low-frequency phonons. Each 
phonon on the average carries away an amount of kinet- 
ic energy of the order of kT. As a result, the energy 
conservation law has the form5 

When x << q < 1, the expressions (6) and (8) determine 
the dependence of v and T on the pump intensity. [ ~ t  
follows from (6) that v-0 when x>q.] 

At low pump intensities, so  long a s  the quasiparticle 
concentration x < ( k ~ ~ / A ) ~ / ~ q ~ / ~ ,  the temperature T = To, 
a s  can be seen from (8), and the chemical potential in- 
creases monotonically with increasing pump intensity. 

If, on the other hand, x >  ( k ~ , / A ) ~ / ~ q ~ / ~ ,  then we have 
from (8) the relation between density of the excitations 
and the temperature: 

We have omitted the numerical factor, since because 
of the small powers with which they enter into the ex- 
pression (9), it i s  with a high degree of accuracy equal 
to unity. It follows from (9) that 

Since x it follows from the expression (10) that, 

FIG. 1. Dependence of the chemical potential of the excita- 
tions on the pump intensity. 

a s  the pump intensity increases, the temperature of the 
excitations increases, while v decreases. Further- 
more, for q < 1 ,  there always exists a temperature re- 
gion, TI < T < T,, in which v <O. The temperatures T, 
and T, a re  defined a s  the roots of the equation 

(kTJA)-' exp (-AlkT,) =q''9. (11) 

Furthermore, the solution to (11) vanishes only when 
q > 3.7, i.e., outside the limits of applicability of the 
theory. If even 77 = 1, A / ~ T ,  -4.5 and A / ~ T ,  -1.8. Cor- 
respondingly, the concentrations a t  these points a r e  
x, - lo-' and x, - 5 X 10", and a r e  much smaller than 
unity. 

Let us  briefly discuss what happens when the film 
thickness is increased. If I, <d<l,/x, then the effec- 
tive lifetime of the quasiparticles becomes ~kd'/l, (Ref. 
5), instead of ?Lh. As a result, qZ1' in the expressions 
(9) and (10) will be replaced by the quantity q2/92/ll,, 
and therefore the conditions under which distributions 
with negative chemical potentials can be observed be- 
come complicated, and, in general, the region in which 
v<O vanishes when q2192/1, > 1.35. 

The dependence v(I) is shown in Fig. 1 for two cases: 
a) q2/9i/1, < 1.35 and b) q219~/1,> 1.35. 

It i s  interesting to  attempt to estimate the quasiparti- 
cle concentration when the temperature of the nonequi- 
librium excitations becomes equal to T,. From (9) we 
have x(T,) =0.1q219, and the change 6A/AO = 2x =0.2qZ1'. 

Thus, for thin films and sufficiently small. values of 
q, the results of the theory a r e  valid right down to the 
nonequilibrium-excitation temperatures close to the 
critical temperature. 
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