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The paper reports the discovery and investigation, through a qualitative analysis and a numerical 
experiment, of a stochasticity that arises as a result of the development of modulation instability in a 
nonequilibrium dissipative medium with a spectrally narrow amplification increment. A detailed 
investigation is camed out of a three-mode model describing the modulation decay of a pair of quanta in 
the same state into a symmetric pair (20, = o+ + o-) under the assumption that the o, quanta are 
produced because the medium is in a nonequilibrium state, while the o* quanta disappear because of 
dissipation. The phase space of this system is found to contain an attracting set (attractor), on which the 
motion of the system is aperiodic, and which describes a complex dynamics. The Poincark map 
corresponding to this attractor is similar to the well-known extension mapping of a segment into itself. 
The structure of the attractor is of the Cantor type, and the motion on it is characterized by a 
contiowus spectmm. 

PACS numbers: 05.30. - d 

1. INTRODUCTION 

Until recently, in dicuesing the problem of the onset 
of turbulence, the question of the specific methods of 
eliminating an instability developing in a viscous non- 
linear medium and the question of the mechanisms lead- 
ing to the appearance of disordered random motion 
were, as a rule, considered independently. The elim- 
ination of an instability was generally attributed to 
systematic intraspectral transfer of the energy of di- 
versely-scaled perturbations into the region of strong- 
ly damped small scales.' On the other hand, the onset 
of chaos was associated either with the excitation of a 
large number of independent pert~rbat ions,~ or  with 
some "conservative"  mechanism^.^ It has become 
clear in recent years a s  a result of intensive investi- 
gations of stochastic auto-oscillations in a dynamical 
system with a small number of modes that, in principle, 
the possibility of the onset of chaos in dissipative sys- 
tems can itself be related to the mechanism underlying 
the limitation of the instability.*-' In particular, the 
onset of stationary disordered motions in systems in 
which the stabilization of linearly amplifiable modes is  
effected by the decay7 or  parametric8 mechanism of 
energy transfer to damped perturbations of multiple 
scales has now been investigated in detail. 

Natural interest attaches to the observation of sto- 
chasticity within the framework of models in which sta- 
bilization is effected through the transfer of energy to 
neighboring (nearly unstable) scales. The simplest 
model of this sort can be obtained by generalizing the 
well-known Landau model2 by allowing for the broaden- 
ing of the spectrum in the course of the self-modulation 
(or self-focusing) of the wave packet, i.e., for the ex- 
citation of close modes. The basic equation then can be 
the nonlinear parabolic equation with complex coeffici- 
ents, 

framework of this model and the simpler, finite-dimen- 
sibnal model 

i=y(z-l+z"+7x, y=z(3z+l-zl)+yy, 
i=-2z (v+zy), (2) 

which is  obtained from (1) under certain assumptions 
(see below). 

The complex nonlinear parabolic equation (1) de- 
scribes the behavior of perturbations in nonequilibrium 
dissipative media near the instability threshold, where 
the spectrum of the unstable perturbations is narrow, 
and their increment is  s ~ n a l l . ~ ~  lo This equation has now 
been derived for different physical systems: for the 
Tollmien-Schlichting waves in hydrodynamic flows," 
wind waves on water, lo concentration waves during 
chemical reactions in a medium in which diffusion oc- 
c u r ~ , ~ ~  Langmuir waves in a plasma,lS etc. 

If the medium is slightly nonconservative, i.e., if the 
dimensionless parameters IJ.= P/n and r =p/a are  small, 
then the basic equation (1) i s  close to the completely in- 
tegrable nonlinear Schr'bdinger equation,14 and some in- 
formation about the nonlinear phase of the modulation 
instability in the model (1) can be obtained with the aid 
of an asymptotic method.15 Let us consider the vari- 
ation of the number, ~ = s \ a ( ~ d x ,  of quanta and the 
quasimomentum 

as  a result of the nonconservativeness of the system 
(Y+  0 , 8 # 0 , ~ * 0 ) :  

d~/dt--2yd~-2$j I G I ' & - ~ ~ J  lalbdz, 

dF'/dt=2yo~-2$j i(&'a,-a,'&)dz-2pj ilalz(w'-%*a) dz. (3) 

Assuming now that (I), like its conservative analog (for 
which yo = p  = p  =O), has a solution in the form of a train 
of solitons, 

for the complex wave amplitude a(x, t )  (the subscripts (4 

denote the corresponding derivatives). The present but with slowly varying amplitude A and velocity V, we 
paper is  devoted to the investigation of the nonlinear can derive approximate equations for A and V by sub- 
dynamics of the growth of perturbations within the stituting (4) into (3) and limiting ourselves to the terms 
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of first order in the small parameters 1 = j 3 / n - ~ s p / ~  
<<I (Ref. 10): 

From here it can, in particular, be seen that, a s  t - 0 0 ,  

all the solitons come to a stop and become equal in 
amplitude, i. e., 

It is possible that such an approach, when based on 
"averaging over the solitions," can be used to investi- 
gate the complex dynamics in the model (1) also. Evi- 
dently, to do this, we should take account of the inter- 
action of a few solitons, for example, because of the 
overlapping of their The problem of the auto- 
oscillation regimes in a quasistationary-soliton lattice, 
a problem which, it seems to us, is  of extreme inter- 
est, has, however, thus far not been raised by any- 
body.') And a s  to disordered motions in the model (I), 
there are now only results of direct numerical simula- 
tion. In Ref. 12 the model a, =a + ( I -  i/2) a, 
- (1 +4i) a I a 1 with a(x + L) = a(x) is  investigated, and 
stochastic regimes with decreasing spatial correlation 
functions are found. 

Below we investigate in detail the finite-dimensional 
analog of Eq. (1)-the system (2). With the aid of the 
methods of qualitative theory and numerical analysis 
within the framework of this model, we discover the 
appearance of stochasticity-stable disordered motions 
characterized by a continuous spectrum. 

2. ANALYSIS OF THE FUNDAMENTAL MODEL 

The spatial spectrum of the solutions to (1) for peri- 
odic boundary conditions (in a resonant cavity) is  dis- 
crete, and the equation is  equivalent to an infinite chain 
of ordinary differential equations for the complex amp- 
litudes of spatial harmonics (modes). However, al- 
though it is  not always possible to prove this mathemat- 
ically rigorously, it seems physically obvious that, be- 
cause of progressive damping with increasing mode 
number, this infinite-dimensional system can be trun- 
cated and converted into a finite-dimensional system. 
Much more complex is the question of the number of 
modes, the interaction between which should be taken 
into consideration in order not to lose the qualitatively 
important features of the original system. The simplest 
situation is  the one in which the spectral interval where 
the medium is  active contains only one mode, k, , and 
the satellites of this mode that arise a s  a result of the 
modulation instability are damped. Then the number of 
modes in the finite-dimensional model will be deter- 
mined by the number of satellites that fall within the 
modulation-instability band. The three-mode approxi- 
mation 

cio=%a,a,ao'e-'A"+~oaO+ oa0( 1 a. 1 '+2 1 a, 1'+2 1 all '), 

ciL2=oa~,a,'e'AY'-v~,2a,,2+oa1,z ( 2  IaOlz+ la,,A '+2 la,,, 1') 
(6) 

[where u =ia -p, A W  =2w(k0) - w(kJ  - &,)I turns out to 
be valid in the case illustrated in Fig. 1: The n ~ ~ d u l a -  

FIG. 1. Appearance of a 
region of instability in the 
wave-number spectrum 
for Re>Re* (Rez >Re * 
>Rei, where Re* is the 
critical value of the char- 
acteristic parameter, are 
Reynolds numbers) and 
the process of spectrum 
broadening: decay into 
the damped satellites ki , z. 

Rc, 

tion-instability threshold has been exceeded only for the 
pair of satellites k,, , =k,iAk. On account of the reso- 
nant character of the amplification, the damping con- 
stant v,, , =B(nAk), - yo increases for distant satellites 
k, =k,inAk, and the amplitudes of these satellites in 
the steady-state regime decreases rapidly with increas- 
ing n. 

The equat im (6) can also be used directly to describe 
the resonance three-wave interaction of different types 
of waves in a medium with cubic nonlinearity if the con- 
servation laws 

are  fulfilled only for one set of three waves. 

Below we shall assume that the dominant mechanism 
underlying the limitation of the unstable mode a, is  the 
modulation interaction of this mode with the damped 
a,, , satellites, neglecting the nonlinear absorption (due 
to the generation of multiple harmonics, or to quasi- 
linear effects), i.e., we shall set p =0, =in. If the 
system in question is  near the linear-instability thresh- 
old, and to the mode a, corresponds the maximum in- 
crement (see Fig. I), then the satellites can be con- 
sidered to be equally damped: v, = v, = v =!(~k), - y,. 
In that case it follows from (6) that 

i.e., the amplitudes of the satellites become equal in 
time. Thus, considering the processes for a sufficient- 
ly long t , we can set a, = a,. As a result, instead of 
(6), we obtain the system: 

Bo=2BoB, sin @+4yBo, &,=-BOB, sin 0-2vB, ,  

where 

~ . . = 2  1 Z a , , , ,  I a . @= ( b u t t 2  arg 

7=7,/2Ao, s=sign ( a x ) ,  

and the differentiation is  carried out with respect to the 
dimensionless time T =Awt . If s = + 1, then the system 
(2) follows from (6), where x = ( 2 ~ ~ ) ' ~  cos(*/2), 
y = ( 2 ~ ~ ) "  sin(@/2), z =B1, T =Awt/2. 

The processes described by the formulas (2) and (9) 
a re  similar in many respects to the processes that oc- 
cur during the exchange of energy between two harm- 
onics, w and 2w, in a medium with quadratic nonlinear- 
ity.7118s '' In particular, for y = v=O, the system (9) 
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has the integrals 

B,+BBt=E, B, (2B0 cos @+2B,+B,-2s) =F,  (10) 

owing to which the general solution of the conservative 
system can be expressed in an explicit form in terms 
of elliptic functions. Using, in the case when y = v=O, 
the energy integral x2 + yZ + 42 = 2E, we can obtain from 
(2) the second-order system: 

which admits of a graphic qualitative investigation in 
the phase plane (see the phase portraits in Fig. 2). 
Since z>0, only the trajectories lying inside the circle 
x2 + y = 2E have a physical meaning. The prescription 
of the initial conditions on this circle is appropriate for 
an unmodulated wave: B,  = z  = 0, and the departure from 
this circle (the excitation of satellites) is possible only 
when s = + 1 ((YK>O) and E > i, which corresponds to the 
Lighthill criterion for the appearance of modulation in- 
stability (see Ref. 14). 

The system (2) i s  symmetric with respect to the sub- 
stitution x--x, y --y, and has an integral plane, z = 0, 
bounding the "physical " half -plane z >0. It corresponds 
to unmodulated waves ( 1  a, 1 =O). All the trajectories in 
this plane uncoil beyond all bounds, getting out of the 
unstable equilibrium state of the "focus" type: x = y =O. 
For xy < -v, the integral plane is unstable: the trajec- 
tories-leave it, which corresponds to satellite gener- 
ation-modulation instability, In the course of the de- 
velopment of this instability in the case when y<  v, the 
phase volume specified by the initial conditions shrinks 
monotonically: 

Consequently, the attracting se ts  (attractors) corre- 
sponding to the steady-state regimes with spatial mod- 
ulation have zero volume in the xyz phase space. 

The nontrivial equilibrium states: 

FIG. 2. The phase plane of the conservative system describ- 
ing the modulation decay of the fundamental harmonic into a 
pair of identical satellites. The equilibrium-state coordinates 
are: A)  x = [ ( 6 ~  + 4 ~ ) / 7 ] ' / ~ ,  y =O; B) x = O ,  = ( 2 ~  - 4 s ) ' l 2 ;  
C) x =s'/2, y =(2E -s) ' /2 .  

FIG. 3. The types of 
equilibrium states in the 
half-space z > 0 .  

correspond to stationary spatial modulation. In this 
case the growth of the unstable mode a, is  restricted 
a s  a result of i ts  decay into the damped satellites. It 
follows from the conditions x2>0, z > 0  that two pairs of 
such equilibrium states ( * x +  and *x-) exist when 3y/4 
< v < (4 + 3 y2)/4-y. When v = (4 + 3 y2)/4 y, the equilibrium 
states merge a t  the points x+ =x- =* [(4 + 3 y2)/8] and 
disappear. Finally, when v = 3y/4, the equilibrium 
states * x+ recede to infinity, and only one pair of equi- 
librium states, *x- , symmetrically located with re- 
spect to  the axis x = y =0, remain. In Fig. 3 we show 
the corresponding partition of the plane of the param- 
e ters  y and v. It is not difficult to show that the equi- 
librium states a t  the points *x- are always unstable. 
The stability threshold for the equilibrium states *x+ 
in the plane of the parameters y and v has been de- 
termined numerically. 

When the equilibrium state x+ loses its stability, a 
stable limit cycle is produced from it. The motion of 
a phase point along this limit cycle corresponds to the 
periodic variation in time of the spatial modulation. 
The disposition and shape of the stable limit cycles 
have been investigated with the aid of numerical cal- 
culations on a computer, as well a s  with the aid of an 
analog-digital simulation of the system (2). 

Figure 4 shows the regions in the (y, v)-parameter 
plane that correspond to the various spatial-modulation 

FIG. 4. The possible regimes of stabuization of the unstable 
mode a o :  I) the static-modulation region (the stable equilib- 
rium state occurs at the point x,); 11) the region of periodic 
variation of the modulation (limit cycle). The hatched modu- 

1 lation region oscillates with a doubled period. The region of 
complex motions is the solidly painted region. Stabilization 
is impossible above the curveAB C. 
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regimes: the stationary regime, the periodic regime, 
and then the regime in which the period of the modula- 
tion (limit cycle) i s  doubled. These regimes appear by 
turns a s  the ratio y/v is increased. As a result of a 
series of transformations, the limit cycle correspond- 
ing to the simple modulation regime is transformed into 
an extremely complex attracting set that densely fills a 
region of phase space. 

3. NUMERICAL INVESTIGATION OF THE 
STOCHASTICITY 

As the direct numerical solution of the complex non- 
linear parabolic equation (1) shows, for r=p/cy<< 1, 
p 5 p/n - 1, the development of the modulation instabil- 
ity in an active medium can lead to the establishment of 
a stationary turbulent regime.'' The observation and 
investigation of such a regime within the framework of 
the model (2) form the content of the present section.') 

Let us note that the investigation of the qualitative 
characteristics of the complex stationary regimes is 
based on the numerical solution of the system on a com- 
puter. In this case the results of the investigation of 
the qualitative structure (topology) of the attracting sets  
(attractors) in phase space do not depend on the accur- 
acy of the calculation (up to lo-'). The correlation func- 
tion, the spectrum, and the other statistical character- 

FIG. 6.  Three-dimensional phase portrait of the complex mo- 
tion (the xy-projection). v =  1.1, 'y = 0.87. 

istics obtained by averaging over the ser ies  (ensemble) 
(Fig. 7b). It is only in the vicinity of the boundaries of 

of realizations, also turn out to be just as "crude."') 
the region of complex regimes in the parameter space 

The region of complex aperiodic regimes occupies in that "traces" of limit cycles in the form of some bunch- 
the complex plane of the parameters y and v a relative- ing of the phase trajectories a r e  noticeable; "peaks" 
ly narrow area in the shape of a "tongue" stretched then appear in the spectrum. 
along the ray y/v = const (see Fig. 4). At smaller val- 

We carry  out the investigation of the structure of the 
ues of the ratio Y/V, there appear unstable limit cycles, 

 c complex,, attractor with the aid of the PoincarC map- 
whose shape may, however, be fairly complicated. 

ping. For this purpose, let us select in phase space the 
At large values of the ratio y/v, the complex set in 

phase space becomes unstable: the phase trajectory 
leaves it, uncoiling without restriction in the process. 
Thus, when the increment y greatly exceeds the mag- 
nitude of the dissipation v, limitation a s  a result of 
modulation instability i s  impossible: The fraction of 
the w, quanta that is lost a s  a result of decay into sat- 
ellites is small, and the fundamental mode a, grows 
without restriction a s  a result of the linear instability. 

plane z = z + ,  which intersects this attractor and passes 
through the equilibrium state (13). We shall now con- 
sider the mapping of this plane into itself by the phase 
trajectories that originate from the plane and subse- 
quently again intersect it. If we take the successive 
points of intersection of the plane by one phase curve, 
we obtain the intersection of the attractor by this plane 
(Fig. 8). To the limit cycles in the intersecting plane 
corresponds a finite number of points, which a r e  mapped 
into each other. The "complex" attractor, on the other 

A realization, i.e., a solution with prescribed initial 
hand, looks significantly different in the intersection 

conditions, that is typical of the complex regimes (see 
(Fig. 8). Let us note i ts  principal properties found in 

Fig. 5), does not exhibit any noticeable periodicity (see 
the numerical experiment. 

also the representation of the trajectory in phase space 
in Fig. 6). As a consequence, the autocorrelation func- 1. The divergence of the trajectories. The succes- 
tion of the process is a decay function (see Fig. 7a), , sive maps of two neighboring points in the intersecting 
and the spectrum for the given resolution (AW =0.03) i s  plane find themselves farther and farther away from 
broad, with no strongly pronounced discrete components each other with each period-the trajectories on the 

FIG. 5 .  Oscillogram of 
the complex motion: v  
= 1.1, y =  0.87. 
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attractor a r e  unstable. 

2. Finiteness. If the initial point is chosen near the 
attractor, then i ts  subsequent maps "wander" over the 
attractor without going outside its limits. This, cou- 
pled with the instability, leads to a complex "entangle- 
ment" of the trajectories-to intermixing. 

3. "Horseshoe." A rectangle in the intersecting plane 
is mapped into a curved figure reminiscent of a horse- 
shoe. The intermixing of the phase trajectories i s  de- 
termined by the successive application of such a trans- 
formation. 

4. "Cantor property." The successive points of in- 
tersection of the intersecting plane form strongly pro- 
nounced layers. The points densely fill each of these 
layers. In the case of a sufficiently large number of 
points (long realizations) we can observe a finer lamin- 
ation of each coarse layer, so  that the structure of 
their intersection turns out to be similar to that of a 
Cantor set. 

5, "Hyperbolicity." Points taken in the intersecting 
plane near the attractor a r e  very quickly attracted to  
the attractor, finding themselves after a small number 
of mappings in one of its layers. At the same time 

3 :. . . .  . . :. '.7 . . . .  ". :.: 
f .' '2 .: $.' 
:; .... FIG. 8. Two-dimensional 
:.' .-: " Y="? point map for the complex v r t . 1  .... . . .... motion. ... 

Z . . .: 
. .: 

2 :  

FIG. 7. Statistical char- 
acteristics of the complex 
motions, obtained by av- 
eraging over the statistic- 
ally independent realiza- 
tions: a) correlation func- 
tion, b) spectrum. 

there occurs dong  each of the layers a stretching of an 
elemental a rea  because of the above-discovered diver- 
gence of the trajectories. 

The enumerated properties of the Poincari! mapping, 
which were found in the numerical experiment, allow 
us to  assumez1 that the "complex"modulation regimes 
correspond within the framework of our model to a 
strange attractor in the (x, y , z )  phase space."') 
The transition from the stable limit cycle to the strange 
attractor can be followed, as is usually done in finite- 
dimensional models, in a one-dimensional (model) point 
transformation. Indeed, let us consider the mapping of 
the y axis in the intersecting plane, ignoring the x co- 
ordinate. The dependence of y, + , on y, will then be 
nonunique. However, because of the "foliation" of the 
two-dimensional mapping, the points in the (y ,+ , , y ,) 
plane bunch around narrow strips (Fig. 9a). If we 
"roughen" this nonuniqueness by identifying the points 
across a strip, then we obtain a Lamerey diagram for 
the one-dimensional point transformation ( ~ i g .  9b). 

The point of intersection of the one-dimensional map 
with the bisectrix y,+ , = y, corresponds to a limit cycle. 
Since the slope of the map at this point is greater than 
unity, this cycle i s  unstable. As the parameter y/v is 
decreased, the slope of the map decreases until a sta- 
ble limit cycle appears. Thus, there occurs a "cycle- 
strange attractor" bifurcation, i.e., a transition from 
simple modulation to a turbulent regime. 

One important distinctive feature of the obtained one- 
dimensional map shoud be noted. It has a smooth 
"hump," s o  that the existence of stable limit cycles is 
possible, these beingthe cycles that rest  on this "hump"24 
(see Fig. 9b). These cycles have a complex shape and 
a long period, s o  that, because of the limited accuracy 
of the numerical solution, i t  is extremely difficult to 
detect them. Thus, the question whether the attractor 
found here is strange in the strict  sense, o r  there a r e  
within it stable limit cycles with a small attraction re- 
gion remains a t  present an open question. 
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determining the dynamics of the solutions to Eq. (14). 

- 

FIG. 9. The one-dimensional point map y, +' = f (y, ) : a) ob- 
tained by a numerical calculation, b) "roughly approximated 
variant" (v =l.l; y=O/87). 

4. CONCLUSION 

Let us give estimates illustrating the applicability of 
the basic parabolic equation and the ensuing results to 
waves in a plasma and, in particular, to Langmuir ion 
waves. A nonlinear-limitation mechanism for Lang- 
muir ion waves excited near the instability threshold in 
a current-carrying nonisothermal plasma as a result of 
stimulated (nonresonant) generation of damped harmon- 
ics is discussed in Ref. 25. It is well-known, however, 
that waves of this type a r e  characterized by self-mod- 
ulation, and therefore the nonlinear phase of their de- 
velopment should be described by a parabolic equation 
(for the amplitude of the oscillations of the ion velocity): 

Here y is the linear increment, o,, is the ion Lang- 
muir frequency, k, is the threshold wave number, v,, 
=(T, /M)~ '  is  the ion thermal velocity, and v, is the ion 
collision rate. The dispersion term has been written 
on the basis of the wave-dispersion law: w2 = w i ,  
+ 3kZ4, , while the coefficient 

which determines the spectral width of the increment, 
has been found directly from the expression (see Ref. 
23) 

As a result, we find the dimensionless coefficients: 

Let us note that both terms in the expression for the 
total increment-the proper increment, due to the Cer- 
enkov effect on electrons, and the decrement, which is 
connected with the ion collisions-are of the same or-  
der of magnitude [otherwise the system will be far  from 
the instability threshold, and the parabolic approxima- 
tion for y (k) cannot be used] . Then the coefficient p - (T,/T,)(~ /M )*'2 lo-', and can be sufficiently high. 
Consequently, in a highly nonisothermal plasma, it is 
precisely the modulation mechanism of limitation (de- 
cay into damped satellites) that is dominant for the cur- 
rent instability near the threshold: it limits the ampli- 
tude of the ion Langmuir waves at  lower levels than 
does the mechanism proposed in Ref. 25. Furthermore, 
since r<< 1, it can be expected that a nonstationary, 
possibly, stochastic regime of stabilization will be es- 
tablished. 

The authors a r e  grateful to A. S. Pikovskir for fruitful 
discussions. 
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Concentrational ferro-antiferromagnetic transitions in systems 
based on Fe - 
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The method of small-angle magnetic scattering of neutrons is used to study the magnetic states that 
occur during concentrational ferro-antiferromagnetic transitions. Subcritical neutron scattering, caused by 
the fluctuations of spin density that accompany the concentrational transitions, is observed. The 
concentration dependences of the magnetic transition temperatures and of the scattering cross sections 
are found, and the critical concentrations of the transitions are also determined. A cluster model of the 
transition is proposed; it enables one to calculate the concentration and the mean total value of the 
fluctuations of the spin density. It is shown that the production of an antiferromagnetic state in a 
ferromagnetic matrix is due to the y-Fe atoms. 

PACS numbers: 75.25. + z, 75.30.Kz, 75.50.Bb 

INTRODUCTION 

The deviation of the values of the mean magnetic mo- 
ment ji, in systems based on Fe, from the Slater-Paul- 
ing concentration dependence is interpreted by many 
investigators1-3 as a decrease of caused by formation 
of an  antiferromagnetic state in a ferromagnetic ma- 
trix. This implies the existence of a concentrational 
ferro-antiferromagnetic transition at some critical con- 
centration c, , where the Curie temperature T, = 0 K. A 
complete concentrational fer ro  -antiferromagnetic tran- 
sition, with replacement of long-range ferromagnetic 
order by long-range antiferromagnetic, is observed in 
the system Fe,,(Ni,,Mn,),,.' Here the magnetic state 
near c, i s  found to be two-phase: antiferromagnetic 
clusters in a ferromagnetic matrix for cNi>co (Ref. 4) 
and ferromagnetic clusters in an antiferromagnetic ma- 
trix for cNf<co .= But the reasons for  production of an 
antiferromagnetic state and the mechanism of the 
change of magnetic order still remain unclear. Fur- 
thermore, near c, and on the periphery of the clusters, 
where a change of sign of the exchange interaction oc- 
curs, the conditions a r i se  for formation of a "spin 
glass," which has recently been the object of intensive 
study.' 

In the system Fe-Ni, investigation of the magnetic 
properties near the postulated values c, i s  made diffi- 
cult by the martensitic transformation, which occurs 
below 77 K when cNi<34%. Nevertheless, the method 
of small-angle critical scattering of neutrons enables 
one to study the magnetic structure of the y phase, 
which remains after  the martensitic transformation. 
In the present paper, this method is used to investigate 
the magnetic states of the systems Fe-Ni and 
~e~,(Ni,-,Me,),, (Me=Mn, Cr ,  V) and to determine the 
parameters of the concentrational transitions and the 
mechanism and causes of the formation of an antiferro- 
magnetic state. 

Earl ier ,7w8 diagrams of the magnetic states were con- 
structed for the trinary systems Fe-Ni-Mn and Fe-Ni- 
C r  over the whole range of concentrations of the y 
phase. In these papers, the concentration dependence 
of the small-angle neutron scattering was studied, but 
its temperature dependence was not studied, and there- 
fore the origin of the subcritical scattering4 during 
formation of the new magnetic phase and the basic phys- 
ical parameters of the concentrational transitions re- 
mained unclarified. 
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