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Diamagnetism of cyclotron waves in plasma 
A. K. Nekrasov and V. I. PeMashvili 
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Zh. Eksp. Teor. Fi. 77, 605616 (1979) 

The nonlinear diamagnetic correction to the magnetic field, needed to account for the high-frequency 
pressure of a wave packet on the plasma, is obtained for potential cyclotron waves (Bernstein modes) in 
the case of arbitrary spatial dispersion, with account taken of the nonlinearity of the cyclotron resonance. 
With allowance for this correction, simplified equations are obtained for the evolution of the cyclotron 
waves. In the case of ion-cyclotron oscillations on the first harmonic, numerical methods are used to 
obtain the stationary solutions of these equations. In the one-dimensional case of the solution is a 
truncated periodic wave, while the cylindrical-symmetry case of the solution is a cyclotron soliton 
stretched along the external magnetic field. The formation of a magnetic well leads to self-localization, as 
a result of which the bh-frequency pressure of the cyclotron waves can hecome comparable with the 
plasma pressure even in the case of weak instability and when the region of existence of the instability is 
small. This leads to anomalous resistance and to an increase of the particle energy in a direction 
perpendicular to the magnetic field. Similar effects might be observed in a magnetized semiconductor 
plasma. 

PACS numbers: 52.35.M~ 

1, INTRODUCTION The first step in the study of strongly nonlinear cy- 
clotron wave is to obtain simplified equations that take 

A phenomenon intensively investigated during the last into account only the principal linear and nonlinear ef- 
decade in plasma theory is the abrupt increase in the fects. In Langmuir waves, owing to the decisive depen- 
interaction between the Fourier components of the os- dence of the Langmuir frequency on the plasma density, 
cillations when the energy density of the latter reaches the main mechanism that leads to the aforementioned 
a certain threshold-the limit of applicability of the strongly nonlinear effects is the formation of density 
weak-turbulence approximation. As indicated in Refs. wells in the localization region of the wave packet. The 
1-4 and elsewhere, in the case of Langmuir waves this frequency of the cyclotron waves depends mainly on the 
amplification leads to strongly nonlinear effects, name- external magnetic field. Therefore, a s  shown in Ref. 11 
ly to wave collapse or  to formation of a set of solutions. and a s  will be shown more accurately and in greater de- 

tail in the the present paper, the main nonlinear me- 
It is of interest to ascertain whether similar effects chanism that determines the behavior of the cyclotron 

occur for cyclotron waves, which play very frequently waves is the formation of wells of a constant magnetic 
an important role in plasma behavior. This is evi- field in the region of localization of the cyclotron waves. 
denced, in particular, by the experimental observation 
of these waves in t ~ k a m a k s ~ ~ ~  and in the auroral region The decrease of the magnetic field in the region of 
of the earth's magnetosphere: from which intense radi- localization of the wave packets, called high-frequency 
ation of electromagnetic waves was observed in the (HF) diamagnetism:' was discussed in Refs. 12-14. A 
electron cyclotron frequency band (the kilometer radia- self-focusing influence of HF diamagnetism on Alfven 
tion of the earth).8vg In addition, it was shown theore waves was observed in Ref. 15. 
tically that in an isothermal plasma, in which no ion 
sound can build up, the principal mechanism of the an- The H F  diamagnetism is caused by the diamagnetic 
omalous resistance can be the interaction of the elec- current produced in the plasma in a direction perpen- 
trons with the ions via buildup of ion-cyclotron waves?' dicular to the constant magnetic field in the region of 
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localization of the wave packet under the influence of 
the HF pressure of the latter (ponderomotive force) on 
the plasma. In an earlier"-l4 derivation of an expres- 
sion for the diamagnetic attenuation of the magnetic 
field in the packet no account was taken of the influence 
of the spatial dispersion-the nonlocality of the interac- 
tion of the electric field with the medium. This expres- 
sion is therefore not suitable for cyclotron waves, 
whose interaction with the plasma has a nonlocal char- 
acter. 

In the present paper we obtain by direct calculation an 
expression for the diamagnetic field W, with account 
taken of spatial dispersion and of a new effect, namely 
the nonlinearity of the cyclotron resonance for potential 
cyclotron waves (Bernstein modes). Let the wave-pack- 
et frequency be close to nw,, where n is an integer and 
w, is the cyclotron frequency of the particles of species 
j ( j = e ,  i denotes respectively electrons and ions), and 
the characteristic wave number of the packet is much 
less than the reciprocal Larmor radius p f ,  Then, as  
follows from the third part of the present paper, we 
have 

where rdj  is the Debye radius of the electrons or ions, 
B, is the external magnetic field and is directed along 
the Oz axis. If the electric potential in the packet is 
represented in the form 

q='lr[$(r, t) exp (-inobt) +c.c.l , (1.2) 

where J I  is a slow function of the time and wjo is the cy- 
clotron frequency in the external magnetic field, then 
the function x is connected with J I  by the nonlinear equa- 
tion 

where 

(the plus and minus signs are used for ions and elec- 
trons, respectively). 

In the fourth part of the paper, taking into account the 
diamagnetic field (1.1) that forms a magnetic well, we 
obtain a simplified nonlinear equation for the amplitude 
of the potential J I .  In the case of electron cyclotron 
waves this equation takes the form 

where 
(- i n -  09.1 

a. = -. 2nl o,.' + o.0" 

w,, is the electron plasma frequency. We assume that 
the dependence of J ,  on the coordinate z is much weaker 
than the dependence on the transverse (I) coordinates 
relative to the magnetic field. For the ion cyclotron 
waves we obtain 

where 

T,,, and T,, are respectively the longitudinal electron 
and transverse ion frequencies relative to the magnetic 
field. 

The derived equations have solutions in the form of 
two-dimensional solitons stretched along the magnetic 
field, a s  well a s  periodic waves (see Sec. 5 of the pres- 
ent paper, Figs. 2 and 3). 

The ability of cyclotron waves to become self-local- 
ized in the form of solitons makes it possible to attain 
a high wave energy-density under conditions of a small 
growth rate o r  a small instability region. This can 
explain the highly inhomogeneous spatial distribution of 
cyclotron oscillations observed in the auroral region.? 
The distribution discontinuity is so sharp, that an im- 
pression is gained that a shock wave is present with a 
front along B,. The relative amplitude of the density 
oscillations reaches 20-30 %. 

2. CALCULATION OF THE DIAMAGNETIC FIELD 

To calculate the diamagnetic current and hence the 
diamagnetic field it is necessary first to find the dis- 
tribution of the plasma particles in the magnetic field 
in second order in the oscillation amplitude. Solving 
the Vlasov kinetic equation by successive approxima- 
tions, we get?' 

Xzexp[- i(n-p + q- s )0+ i(q -s)atr+t.* + i(n -p )av* l  
"PQ. 

x~;y L..,.....+... ~;::....,f:~'. 

The ope ratores i are given here by 

In (2.1) and (2.2), q,, is the Fourier component of the 
oscillation potential, e j  and In are charge and mass of 
the particles of species j, f:@ is the unperturbed dis- 
tribution function J,= J , , (k l v  I / w j  ) is a Bessel function 
of order n, 9 and a, are the azimuthal angles in the 
space of the velocities and wave vectors in a plane per- 
pendicular to the external magnetic field, and n, P, q, 
and s are integers. 

With the aid of (2 .l) we obtain the nonlinear current 

To obtain the diamagnetic field, we average (2.3) over 
the HF oscillations and assume that (j"') depends little 
on the time (the angle brackets ( 0  0 )  denote averaging 
over the HF oscillations). Using next Maxwell's equa- 
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we can determine the diamagnetic field (H"'). 

We obtain now the quasistationary distribution function 
(fy). It is obvious that in this case the largest contrib- 
ution to (2.1) is made by terms for which the equality 
n - p + q = 0 is satisfied. Assuming satisfaction of the 
condition 

where v,,,, is the thermal velocity of the particles along 
the external magnetic field, we neglect in (2.1) the 
terms connected with the longitudinal electric field E,. 
As a result we get 

(f,-l>=-!L C k,'(cpt-.-cpt.*.,.)exp[i(kl + k")r - i (o'  + o N ) t ]  
2m?k,k,, [o' + o n - ( k /  + k.")v.] ( o " -  n o j -  k."v.) .'." 

k," no,  aj:" 
+J,+..,- -2isin(ar--art,) J.r**-- 

0 1  I v ,  a,, . (2.6) 

In the derivation of (2.6) we have used the following 
relations between the Bessel functions: 

Summing further in (2.6) over q with the aid of the for- 
mula 

JqtJq+,r. expIiq(at - a t - )  I =  Jnv-t expiin(- a t s - t  + a t , ) ]  
q 

and symmetrizing, we get 

To find the electric current, as  seen from (2.3), it 
suffices to retain in (2.7) the term with s = 1, after 
which we can determine with the aid of (2.3) the com- 
plex current (jF'- ij :a)). Substituting the latter in Max- 
well's equation (2.4), we obtain the nonlinear quasi- 
stationary magnetic field excited by the HF oscillations: 

k,'k," 
X(kf + k").~."' + i- s:' sin(at .  - a-tp* 

no>' 
(no,)' 

1 1  

X exp[in(at .  - a - t , - )  1, 
(0' - no,)  (on + noj)  (2.8) 

where w,, is the Langmuir frequency. The quantities 
S'!), p = 1,2 are given by 

The calculation of SAP' is given in Appendix 1. Because 
of the averaging over the HF oscillations, the summa- 
tion over w' and w" in (2.8) is carried out over the re- 
gion I wr+ w" I << w', ww. 

Expression (2.8) obtained by us for the change of the 
magnetic field in the wave packet is general, since no 
restrictions whatever were imposed on the transverse 
wavelength of the oscillations. It is this expression that 
we must use to obtain the nonlinear correction to the 
cyclotron frequency when investigating nonlinear cyclo- 
tron waves. 

3. SOME PARTICULAR EXPRESSIONS FOR THE 
DIAMAGNETIC FIELD 

In this section we consider Eq. (2.8) in some limiting 
cases. Let the characteristic wavelength of the oscil- 
lations be large enough: k l  D,<< 1. Taking into account 
only the first term of the expansion of the Bessel func- 
tion at small arguments, we obtain 

where 

and the distribution function fy' is assumed Maxwellian. 
Equation (3 .I) determines the diamagnetic field produ- 
ced by the particles of species j when the oscillation 
frequency is close to the n-th harmonic of the cyclotron 
frequency. 

It is convenient to introduce in (3.1) the function f,, 
defined by 

o-no ,  - 
~t,=2i"p,"k,"cpr, exp ( inat)  

nu,a 

Changing over in (3.1) and (3.2) to the coordinate-time 
representation and taking (1 2) into account, we arrive 
a t  Eqs. (1.1) and (1.3)(6H (H:;), x =Xe-k). It is easily 
seen that the nonlinear correction h in (1.3) is the re- 
sult of allowance for.the diamagnetic decrease of the 
cyclotron frequency in the resonant denominators in 
(3 .I). 

We consider now formula (2.8) for short-wave cyclo- 
tron oscillations with k l o , >  1. In this case we must 
first integrate in (2.9) over the velocities and only then 
can we use the asymptotic Bessel functions. Assume 
that the Fourier component cp,, of the potential depends 
only on the modulus of the wave vector and does not de- 
pend on the angle 0,. This assumption is equivalent to 
the expansion 

" d k  k 
cp(.l) =2n j ~ v u ~ o ( k L r l ) ,  

i.e ., the potential should have cylindrical symmetry in 

307 Sov. Phys. JETP 50(2), Aug. 1979 A. K. Nekrasov and V. I. Petviashvili 307 



the direction transverse to the external magnetic field, 
o r  must have an explicit dependence on the azimuthal 
angle. Changing over in (2.8) to integration over the 
wave vectors and using the result (A.27), we get 

Here, just a s  in (3.1), n>O. It must be noted that this 
equation is valid in the case when the nonlinearity in the 
resonant denominator can be neglected. 

We have thus considered two limiting cases at klp,<<l 
and kip,> l-of formula (2.8) obtained when the condi- 
tion (2.5) is satisfied. However, if  the electrons have 
a Boltzmann distribution in the field of the HF oscilla- 
tions, w < k,vT,, (for example, in the case of ion-cyclo- 
tron waves), then Eq. (2.8) does not hold for them. 
Considering Eqs. (2.1)-(2.4)' for hot electrons, we ob- 
tain at kLpe<< 1: 

The contribution of the electrons to the diamagnetic 
field may turn out to be substantial for ion-cyclotron 
oscillations at k pi > 1: 

4. EQUATION OF CYCLOTRON WAVES 

We now obtain an equation that describes cyclotron 
waves of finite amplitude. The dielectric constant for 
the potential cyclotron oscillations takes, when condi- 
tion (2.5) is  satisfied, the form 

(4.1) 

where gj= w j j / 4 ,  z,2k126. The term (T ,/TI,,) 
need be taken into account only for ion-cyclotron oscil- 
lations, and for electrons we assume in this case that 
the conditions w < k,vT,,, and k l  p,<< 1 are satisfied. 

The solution of the dispersion equation ~ ( k ;  w )  = 0 
takes the form 

o=no , ( l+Rj ) ,  R j< l ,  

With the aid of expression (4.2) and of representation 
(1.2) we easily obtain an equation for the amplitude 0: 

In the general case we have h=h,+hi. The operator 
R ,  is defined a s  follows: 

Concrete expressions for this operator at kip,<< 1 are 
given in the Introduction [see (1.4) and (1.5)]. 

5. STATIONARY SOLUTIONS 

The derived equations (1.1), (1.3) and (1.4) o r  (1.5) 
have stationary solutions-either one-dimensional o r  
with radial dependence in a cylindrical frame. We con- 
sider the case of ion-cyclotron waves on the first har- 
monic (n = I), since it is the simplest and most impor- 
tant. We seek the solution of Eqs. (1 .I), (1.3), and (1.5) 
in the form 

where 

Substituting (5.1) in this system, we get 

div (I-A)E-div  FE, 

F (1-F)'=D2- IEX+iE,I2, 

here E =Vf. 

According to (5.1), the function F determines the spa- 
tial dependence of the depth of the magnetic well. It 
follows from (5.3) that in the stationary case the depen- 
dence of the well depth on the electric-field amplitude 
D is not single-valued. Under real conditions a relation 
with dF/dD>O, marked in Fig. 1 by the solid line, is 
realized. The section aar c a ~ o t  be realized, inasmuch 
a s  the well depth on it decreases with increasing D. On 
the section ab ,  in the vicinity of the exact cyclotron re- 
sonance (F = I),  the depth of the magnetic well can 
change jumpwise. Thus, the point b is a branch point. 

If all the quantities in (5.2) depend only on the coor- 
dinate [([ = x x )  then E is  directed along [. In this case 
the solution of the system (5.2) and (5.3) is shown in 
Fig. 2. At 6 < 10 we have a periodic solution in which 
the plot a'bc on Fig. 1 is realized. At ( =  10.7 the depth 
of the well at the point b breaks away to the point a and 
subsequently tends to zero with increasing 6. 

In the case when f in (5.1) depends only on the radius 
p(pxr,) in the cylindrical frame, E is directed along 
the radius. Then (5.2) and (5.3) have the solution shown 
in Fig. 3. 

It is seen from the figures that on the boundaries of 
the localized stationary solutions we must have a dis- 
continuity of the magnetic field a s  well as  of the HF 
pressure (owing to the resonant dependence of the latter 
on the magnetic field), while the electric field remains 
continuous. What is realized is a tangential discontin- 
uity, analogous to the known solution for MHD equa- 
tions,'' with the magnitude of the magnetic-field dis- 
continuity given by (5.3) and by Fig. 1. The total pres- 
sure remains continuous because of the discontinuity of 

FIG. 1. Dependence of 
the depth of the magnetic 
well on the electric-field 

\ amplitude in the station- 
0. '5 

a ' ary case (in dimension- 
less units). 

P 0.5 f 
0 
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FIG. 2 .  One-dimensional stationary solution of the equations 
of ion-cyclotron waves at the first harmonic. It is seen that 
the cyclotron waves can lead to formation of a periodic struc- 
ture of the constant magnetic field in the form of domains 
(curve F, in dimensionless units). 

the HF pressure. 

The obtained stationary solution can be improved by 
taking into account the weak dependence on the coordin- 
ate z and the presence of a small increment in the next 
order of perturbation theory, a s  was done, e .g., in Ref. 
3 for a Langmuir soliton, 

6. CONCLUSION 

Cyclotron waves can build up in plasma for a number 
of reasons. For example, by particle beams along the 
magnetic field, a s  well as  in the presence of fast par- 
ticles transverse to the magnetic field with a loss cone 
on the distribution function?' 

Let us discuss briefly the possible kinetic effects pro- 
duced in a plasma by the appearance of cyclotron soli- 
tons, in the case when the plasma pressure is lower 
than the pressure of the constant magnetic field. Since 
the HF pressure in the soliton i s  confined by the mag- 
netic pressure, the HF pressure can approach the val- 
ue of the plasma pressure o r  may even exceed it  be- 
cause of the large length of the soliton along the mag- 
netic field, a s  well a s  because of the longitudinal in- 
homogeneity of this field. 

The large amplitude of the oscillations of the electric 
field in the soliton can lead to heating and anomalous 
resistance of the plasma. The point is that the solitons 
form along the magnetic field trains of traveling waves 
o r  else standing waves. The potential energy of the 
electrons in such a wave can exceed the kinetic energy, 
so that in some regimes almost all the electrons turn 
out to be trapped in the electronic o r  ionic cyclotron 
solitons. This can inhibit the growth of the longitudinal 
current. The electric field energy then goes over, via 
the cyclotron resonance in the wave, into transverse 
kinetic energy of the trapped electrons and ions. It is 

FIG. 3. Solution of the 
equation of the ion-cyclo- 
tron equations in the form 
of an axlsymmetric soli- 
ton elongated along the 
magnetic field (in dimen- 
sionless units). 

possible that this mechanism can expkin the appearance 
of particles having large transverse energy, which were 
registered in tokamaks under runaway-electron condi- 
tions, a s  well as the strong drop of the electric poten- 
tial along the earth's magnetic field in the auroral re- 
gion, which was observed in  satellite^.^ 

We note in conclusion that the considered effects, 
which lead to the appearance of cyclotron solitons, can 
occur in the plasma of semicondictors, where cyclo- 
tron waves can propagate. 

APPENDIX 1 

We integrate with respect to the velocities in the 
expression 

where the distribution function ff" is assumed Maxwel- 
lian. We apply to (Al. l )  the transformation formula 18 

a'+ 2-2a$oos g )  ') j J - ( (  P sin'* g drl, 
(a2+fP-2ab cos I))*" 

where r(v) is the gamma function. We express the n-th 
order Bessel function in the obtained expression in 
terms of a first-order Bessel function in accord with 
the formula 

a I n-i J,,(X) = (-I)"-lxn-l -- a x  Ji(x)3  (A1.3 ) 

after which we apply ( ~ 1 . 2 )  again. As  a result we get 

He re 

q2=k,'Z+k,"2-2kL'kl" cos 9 ,  
QP= (k'+k")L2+qZ-2(k'+k")Lq cos 91. 

We integrate in (A1.4) with respect to the velocities 
with the aid of the formulaL8 

$"r ( v t  p/2) exp (-$'/4a) P 
2.+1~v+u/2r (v+ I )  

(A1.5) 

where ,F, is a confluent hypergeometric function., Then 
the expressions for SA*) take the form 

XJ dlp sin'" I)j dlp, sina lp, exp (-h,Q2p,'), 
0 0 

I d s."'=4- I+- -  ( 2 d l ,  

where Xl=l. 

We integrate next in ( ~ 1 . 6 )  with respect to the angle 
A,  using the formuId8 
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where I,(@) is a modified Bessel function. We integrate 
in the obtained expression with respect to q. We inte- 
grate next with respect to the angle J I .  As a result we 
get 

In (A1.8) we have introduced formally the operator 
(8/8~,Y.'~, in order to be able to express the series in 
the form J,; X, = 1. 

APPENDIX 2 

We introduce the quantity Lsee(2.8)') 

Substituting here the expressions for S r '  and SP' ob- 
tained in Appendix 1, we can represent D, in the form 

XI. (U,h2k,'k/pjl) e~p[--hrh,(k,'~+k~"~) PI' 

-adr (k'+k")L2p,']exp[in(ak~-a-t~,) +i(k'+k1')r1, (A2 2) 
where X, = 1. 

We obtain the value of (D,) averaged over the angles 
a, and a,: 

To this end we expand in (A2.2) the exponentials exp 
[ -X,X32k 1 'k 1 6 cos (a, - a ,.)I and exp [i(k'+ kW)r] in 
Bessel-function series 

and substitute the obtained expression in (A2.3). Inte- 
grating with respect to the angles a,. and a,. , we get 

We obtain now the limiting values of (A2.5). With the 
condition k 1 p ,<< 1 satisfied, we retain in (~2 .5)  the 
term with p =O. Taking into account the first term of 

the series expansion of the modified Bessel function I, 
and differentiating with respect to X, ,  i = 1,2,3, we ob- 
tain 

With the condition k l p j  > 1 satisfied, we use the as- 
ymptotic expressions for modified Bessel functions at 
large arguments. Applying the differentiation operation 
with respect to A,  to the resultant exponential exp 
[-x,(x,+ X,)(k:- kf)'p21] we get 

. - 

(D l )=  
1 

Jo ( l  kL'-k,"lr,)I,[2(k,'-kI")zp,'] 
8nk,'kLNp,' 

~exp[-2(k,'-k/) ] . (A2.7) 
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