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The condition for the occurrence and the general properties of homogeneous collapse (dispersal) of a 
system of linear vortices are considered. Exact solutions for three, four, and five vortices are discussed in 
detail. The stability of the collapse and energy transfer in the spectrum are analyzed. The effect of 
viscosity and the relation of collapse to the loss of uniqueness of the solutions of the equations of 
hydrodynamics is considered. 

PACS numbers: 47.30. + s 

A system consisting of a finite number of linear vor- For the sake of definiteness we assume that positive 
tices of the same sign in an unbounded flow of an ideal intensity corresponds to counterclockwise fluid flow. 
fluid is  always finite.' In the process of evolution of the The vortex with the label imparts to the vortex with 
system the distances between the different vortices can the label a the velocity 
vary only within limits set by internal and external v,p-xdznL~ (1.1) 
scales determined by the initial configuration. If the 
intensities of the vortices have different signs, then the ( I  ,B denotes the distance between the vortices), having 

a direction perpendicular to the line which joins the two vortices can go off to infinity, a s  is well k n ~ w n . ~ * ~  Less 
vortices. The cartesian coordinates of the vortices 

and studied the possibilit~ that a group Of are x l U . ) ( t )  (i = l ,2) and a mm2tonian 3 

vortices coalesces into a point, i.e., undergoes col- 
lapse. which we write in the form 

The collapsephenomenon and its inverse-the creation 
of vortices-are, in our opinion, of general theoretical 
interest (for fluid dynamics, plasma dynamics, super- 
fluidity, geophysics" and other areas of physics) and 
deserve a detailed analysis. 

In unbounded space two vortices cannot collapse, 
since the distance between them is an invariant of the 
motion [Eq. (1.8)]. The problem of the interaction of 
three vortices is  considered in Ref. 1, where a detailed 
solution is given for the case of three identical vortices 
and an analogous procedure is proposed for the calcula- 
tion of the interaction of three vortices of intensities 
having arbitrary signs and magnitudes. In a recent 
paper,4 specially dedicated to the three-vortex problem, 
several cases of interaction of vortices with unequal 
intensities xu have been analyzed, and it was pointed 
out that when the harmonic mean [Eq. (3.2)] of the in- 
tensities vanishes collapse is possible under suitable 
initial conditions. 

In the present paper we consider the conditions for 
the occurrence of collapse and its general properties 
for a system consisting of an arbitrary number of vor- 
tices. The exact solutions of the problem of collapse 
of three, four, and five vortices is  discussed in more 
detail. We consider the stability of collapse, the en- 
ergy transfer through the spectrum in the collapse 
process, discuss the influence of viscosity and the con- 
nection between the collapse and the loss of uniqueness 
of the solutions of the equations of hydrodynamics. 

Here E,, is the antisymmetric tensor E,, = -&,, = 1, Ell 

= E,, =0, summation from 1 to 2 is  understood over re- 
peated indices, and the prime on the sum sign denotes 
the omission of the term with a = P .  The quantity H has 
the meaning of interaction energy of the vortices and i s  
a constant of the motion. The invariance of H with re- 
spect to translations of the origin implies the existence 
of the following constants of the motion 

If the sum of the intensities 

does not vanish, the barycenter of the vortex system 
has the coordinates 2, /K. 

Expressing H in terms of the polar coordinates (pa, cp,) 
of the vortices, one can rewrite Eq. (1.2) in the form 

The invariance of H with respect to rotations of the ref- 
erence frame leads to the constant of the motion 

For the description of the relative motion of the vor- 

9 1. INVARIANTS OF THE MOTION AND SCALING tices it is  c ~ ~ e n i e n t  to make use of the following com- 

FOR A VORTEX SYSTEM 
bination of the invariants I and 2, (Ref. 1): 

M .= ~ , ~ ~ z , , " = ~ K I - z z , ' .  (1.8) 
We consider in the unbounded (infinite) plane a sys- n.6 

tem of N point vortices with intensities (the vorticity It is easy to verify that the quantities 2, , I ,  M do not 
of the velocity around the vortices) xu (a = 1, . . . , N). change under rotations of any subsystem of vortices 
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relative to the barycenter of that subsystem. In the se- 
quel we shall use such rotations in order to vary the in- 
itial conditions and the energy leaving all the other con- 
stants of the motion unchanged. 

We multiply the second of the equations (1.6) by p, 
and sum over a: 

Here and in Eq. (1.10) X is  an arbitrary constant and 
0, cp) denotes the collection of arguments ( p a ,  cp,). 
Making use of Eq. (1.3), we obtain2 

The quantity V, which is important for the sequel, is 
naturally called the virial of the vortex system. If the 
system rotates rigidly around its barycenter and I # 0, 
with the coordinates pa counted from the barycenter in 
Eq. (1.59, we obtain for the angular velocity of rotation 
in (1.9) the expression o =VI". 

The equations (1.2) a re  invariant with respect to the 
scale transformation of coordinates and time: 

z+kl ,  t+k%', 

a s  is directly obvious from (1.1). 

52. HOMOGENEOUS COLLAPSE: GENERAL 
CONDITIONS AND PROPERTIES 

We shall define as uniform collapse (dispersal) of 
vortices that motion for which all the distances between 
the vortices have the same time dependence: 

Substituting (2.1) into (1.3), taking account of energy 
conservation and Eq. (1.9), we obtain 

v-0. (2.2) 

In order that the virial (1.9) vanish it is, first of all, 
necessary that there be at least three vortices present 
with intensities of different signs. Further, squaring 
Eq. (1.5) and taking (2.2) into account we obtain 

Thus, collapsing, the vortices cannot disappear com- 
pletely (annihilate) and the intensity of the resulting 
vortex has an absolute value larger than that of any of 
the vortices which have collapsed into it. 

The conservation of the constant of motion (1.8) yields 
the second condition for collapse: 

M=O, (2.4) 

which, in distinction from (2.2) depends on the dis- 
tances between the vortices. 

We now place the coordinate origin in the barycenter 
of the vortices, which is possible on account of (2.3). 
The polar coordinates of the vortices have now the fol- 
lowing expressions in terms of the inter-vortex dis- 
tances: 

Eqs. (2.4) and (2.8) imply 

z=o ,  (2.6) 
and from (2.1), (2.5), and (2.6) it follows that 

~ n ( t )  = h ( t ) ~ = ( o ) ,  %(t)--cpo(t) =cpm(O)--cpo(O). (2.7) 
The motion of the vortices in homogeneous collapse 

is characterized by the scale factor ~ ( t )  and the angular 
velocity w(t ). In order that the equations (1.6) should 
have a solution of the form (2.7) it is  necessary and 
sufficient that the initial configuration satisfy the con- 
ditions 

[the left-hand sides of Eqs. (2.8) must not depend on the 
number of the vortex). Then Eq. (1.6) implies 

hl ( t )  -4-tlt., o ( t )  =oolha(t ) .  (2.9) 
Here t * is the collapse time [the case t ,  <O corresponds 
to dispersal (anticollapse) of the vortices], w, is the in- 
itial angular velocity. The solutions (2.9) correspond to 
the scale invariance (1.10). The collapse parameters 
t , and w, will be determined below for some concrete 
systems. 

The solution (2.9) can be continued beyond the point of 
collapse; when this is done the vortices jump through 
the barycenter. The vortex configuration is reflected 
in the barycenter, the quantity t , changes its sign in 
(2.8), keeping its magnitude intact, and the collapse is 
replaced by a dispersal of the vortices. 

It is interesting to estimate at least qualitatively the 
influence of viscosity on this picture. The cgmpeting 
processes a r e  viscous diffusion and the interaction of 
vortices. During viscous diffusion the square of the 
characteristic size of the vortex is of the order ut, 
where u is  the kinematic viscosity. In the case of dis- 
persal of the vortices (t, <O) we obtain from Eqs. (2.8) 
and (2.9) for t > It , I  the square of the characteristic 
distance -1; ti t ,I " - xt , where I ,  is the initial distance 
and x is  the characteristic intensity (vorticity) of the 
vortices. The relative role of these two processes is 
determined by a kind of Reynolds number Re =xu-'. For 
Re>>l the viscosity smoothes out the picture only 
slightly, whereas for Re << 1 the vortices link and dif- 
fuse a s  a single vortex of combined intensity. 

In the case of collapse (t ,>O) the presence of even a 
small viscosity becomes quite essential. Diffusion 
smearing leads to a change in the form of the distribu- 
tion of vorticity a s  the vortices get closer to eachother. 
The problems of instability and stochastization of the 
vortex field which results could serve a s  the object of 
a separate investigation. 

The parameter xu-' was introduced earlier by one of 
the authors5 for the description of the evolution of mat- 
te r  lines in the diffusion of a vortex. Asymptotically 
the matter lines take on the form of logarithmic spirals. 
From Eqs. (2.9) and (2.7) we obtain the logarithmic 
spirals for the trajectories of the vortices: 
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$3. THE COLLAPSE OF THREE VORTICES 

It is convenient to describe the dynamics of a system 
of vortices in terms of the relative motion.' The dif- 
ferential equation, for instance for 1 E, taking into ac- 
count the influence of the third vortex, has the formlv4 

Here y is the orientation of the trio of vortices, equal 
to 1 if the vortices a re  numbered counterclockwise and 
to -1 in the opposite case; S is  the area of the triangle 
spanned by the vortices. The collapse conditions (2.2) 
and (2.4) for the case of three vortices take on the sim- 
ple form4 

I / x l + ~ / x 2 + ~ / x s = ~ ,  (3.2) 
1,IZIx1+l,,"xz+l,IZIx,=O. (3.3) 

From these conditions and the constancy of the ener- 
gy (1.3) it is clear that the sides of the triangle can vary 
with time only proportionally to one another, according 
to (2.1). Taking into account (2.9), the right-hand side 
of (3.1) at t=O yields the reciprocal collapse time. We 
also have sign t * = sign [jx3(l i3 - 1 :,)I. Thus, knowing 
the intensities of the vortices and the orientation y it is 
easy to determine whether the vortices will collapse or  
disperse, depending on the relations between the inter- 
vortex distances. We rewrite the expression for t, in 
invariant form (independent of the numbering of the vor- 
tices): 

Here the sumbol of summation C, denotes that the tri-  
angle is  traversed counterclockwise and So is the initial 
area of the triangle. 

Taking into account (2.5), (3.2), and (3.3), equations 
(2.8) and (1.3) yield the invariant expression for the 
angular velocity 

Taking into account Eq. (3.2), we note that o, cannot 
vanish, and that the sign is  determined by the sign of 
the overall intensity, (1.5). Assume for definiteness 
that x, and x, have the same sign, and x, has the op- 
posite sign. We use the notation: q =x, /(xl +x,), O<q< 1. 
It is convenient to select b, = 1 i, , b, = 1 :, , b, = 12, a s  
phase variables. 

The energy surface is conical on account of the con- 
dition (3.2) and is given by the formula 

The condition (3.3) yields a plane through the coordi- 
nate origin: 

Generically the surfaces (3.6) and (3.7) intersect 
along two straight lines passing through the origin; one 
of these corresponds to the case of collapse and the 
other corresponds to dispersal of the vortices. An ex- 
clusion is the case of an equilateral triangle for which 
the condition (3.3) follows from (3.2) and t , = m. In this 

case the energy takes on its maximal value H =0, and 
the surfaces (3.6) and (3.7) a r e  tangent along the line 
b, = b, = b, which is  spanned by such stationary config- 
urations. It is necessary to take into account the re- 
strictions imposed on the phase variables by the tri-  
angle inequalities defining a closed region bounded by 
a circular cone1* 

b,Z+b,z+b,Z=2 (b,bz+b,bs+b,bl) .  (3.8) 

The axis of the cone is the bisector of the trihedral 
angle b ,  = b, = b, , through which the plane (3.7) always 
passes. The part of this plane situated within the re- 
striction cone is the angle A which i s  the phase space 
of the relative motion of the system of three vortices, 
satisfying the conditions (3.2) and (3.3). The intersec- 
tion of A with the conical surface of constant energy 
(3.6) yields the phase trajectory. 

All possible configurations of three vortices satisfy- 
ing the collapse conditions, apart from a scale trans- 
formation and the orientation of the triangle, can be ob- 
tained from one of the configurations by rotation of two 
vortices relative to their barycenter. Indeed, e.g., in 
order to obtain all collapsing (dispersing) configurations 
one has to rotate the side 1 ,, of the equilateral triangle 
in a direction having the same (opposite) sign as the 
orientation y of the triangle until the vortices a re  col- 
linear. This t ransfor mat ion in phase space corresponds 
to a continuous path which intersects the angle A from 
one of its bounding edges to the other. The surface of 
the restriction cone (3.8) contains two points which by 
(3.1) correspond to stationary configurations: The vor- 
tices a re  situated on a straight line. The corresponding 
energies a re  

We note that Hl(q) = H2(1 - q) and that the cases q and 
1 - q differ only by the orientation of the triangle, thus 
it suffices to restrict one's attention to the interval 
0 < q c  i. The graphs of the functions h,,  ,(q) for y = 1 
a re  given in Fig. 1. With the exception of the value 
q = $ the values of H, and Hz are  different, therefore 
for y = 1, q< and H,< H<H, we only have collapse, 
and for q> $ and Hz< H<H, we only have dispersal (anti- 
collapse). In collapse the admissible values of the en- 
ergy are  the following: 

OaHarn in  {H, ,  H z } ,  04q<1. 

It is interesting to see how the distribution of kinetic 
energy of the fluid varies over the spectrum of motions 
with different wave numbers during collapse. In Ref. 1 
the spectral energy density has been expressed in terms 
of the intervortex distances and it was shown that the 
average wave number varies proportionally to the quan- 
tity 

As a is  increased energy is transferred,to the small- 
scale region, and vice versa. Differentiating (3.10) 
with respect to time, and taking (2.1) and (2.9) into ac- 
count, we obtain 
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FIG. 1. Critical values of the energy, corresponding to sta- 
tionary vortex configurations. 

do(t) a ( t )  o ( 0 ) t .  ----- 
at 2(t.-t) 2(t.-t)' ' 

(3.11) 
- 

Making use of the conditions (3.2) and (3.3) one can show 
that u<O. We see from Eq. 13.11) that for collapse 
(t ,<O) energy is systematically transferred into the 
region of larger scales, and for vortex dispersal, into 
the region of smaller scales. 

We now consider the influence exerted on collapse by 
small perturbations of the initial values of the variables 
b, , b,, b, , to which correspond small variations of the 
integrals H and M. Let M = xl x , ~ ,  1 E 1 << b,(O), and let 
H vary over an interval somewhat larger than the one 
admissible for collapse. In distinction from the un- 
perturbed case the integral M =const defines a plane 

b,=qb,+(1-q) b2+e, (3.12) 
parallel to the plane (3.7), therefore intersecting the 
restriction cone along a hyperbola which bounds the ad- 
missible region for the phase variables (b, , b, , b,), and 
given in the projection on the b,=O plane by the polar- 
coordinate expression 

Here += b: +bE , rp =ardanp,p = b, /bl . The intersection 
of the plane (3.12) with the conical energy surface (3.6) 
is  given in the same projection by the expression: 

r=sl[Cpl*- (1-q)p-q]  cos cp. (3.14) 
The mutual position of the curves (3.13) and (3.14) 

determines the character of the behavior of the phase 
trajectories, which depends on the sign of the perturba- 
tion E. In the unperturbed case, E =0, the expression 
(3.14) yields two rays, b, = p,, , b, , which are  asymp- 
totes to the curves (3.14) with the same value of C. If 
E>O the curve (3.14) is  completely situated inside the 
angle formed by the rays b, = p,, , b, , and outside this 
angle if E<O. Depending on the energy, a part of the 
curve (3.14) may not end up in the region admitted by 
the restrictions. The points of intersection of the tra- 
jectory with the restriction cone corresponding to the 
vortices reaching a straight line for V = 0 and M f 0 can 
be stationary only in the case when the position of the 
vortex x, divides the segment 1, in the ratio xl /x, ; 
then the mutual influence of the two vortices cancels 
and they remain at rest. In this case (cf. Fig. 1) 
M =4% bS and 

FIG. 2 .  Typical form of perturbed trajectories in the cases: a) 
M > O ,  1 - O > H  >Hz ,  2 - X 2 > H 2 H t ,  3 - H t > H > m ;  b) M < O ,  
1 - H > O ,  2 - 0  > H > H 2 ,  3 - H 2  3 H > H 1 .  

One can show that H,<H,, and therefore for sufficient- 
ly small perturbations the phase point reaches the re- 
atrietion cone when the orientation changes and the mo- 
tion is reversed. 

Depending on the sign of M and the magnitude of H we 
have six types of trajectory (Fig. 2). For M >O and H, 
9 H<0 the phase point, moving in from infinity, ap- 
proaches the coordinate origin to within certain limits 
determined by the magnitude of E, and then goes off to 
infinity. If H19H<H, (for M <O, H19H 90) then the go- 
ing off to infinity is accompanied by the vortices going 
onto a straight line and a change in the orientation. For 
H,< H< H, (and M <O, H>O) the motion occurs within 
finite limits. In the case H = H, the phase point i s  as- 
ymptotically attracted to the indicated stationary con- 
figuration. 

Thus, in spite of the instability of the collapse, the 
tendency of vortices to get closer to each other to small 
distances determined by the magnitudes of the perturba- 
tions is preserved for a large class of perturbations. 

94. COLLAPSE O f  FOUR AND FIVE VORTICES 

Besides the three-vortex system, other integrable 
systems are  those composed of four vortices with pair- 
wise equal intensities x, and x, situated at the vertices 
of a parallelogram, and a system of five vortices, if the 
fifth vortex of intensity x,  is located at the intersection 
of the diagonals of that parallelogram.' The necessary 
conditions (2.2) and (2.4) of homogeneous collapse take 
in these cases the form 

Here d, a re  the diagonals of the parallelogram joining 
the symmetric vortices of intensities x, (a = 1,2). In 
the case of four votrices one must set a, = O  in Eq. (4.1). 
It follows from (4.2) that in the case of collapse the in- 
tensities x ,  and x, must be of opposite sign, and (4.1) 
1%' I # I%, I if one takes into account. This implies, in 
particular, that vortices situated at the vertices of a 
rectangle cannot collapse. Setting x, = 0 in (4.1) we ob- 
tain for four vortices [taking (4.2) into account] -x, /x, 
= 2 * a= df /d:. The two values differ by the order of 
numbering of the vortices. 

Making use of the differential equations which de- 
scribe the dynamics of the vortices in the form (1.6), 
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we obtain the parameters determining the collapse: 
2na,'al' 

t '=-  x,xzd,d2 sin 29 ' (4.3) 
- 

Here a, and a, a r e  the sides, and JI  is the angle between 
the diagonals of the parallelogram, measured from the 
first vortex to  the second in the positive sense (OQ J ,  
<2n). The expression for the collapse time is the same 
for the case of four and five vortices. Collapse occurs 
i fO<+<r /2and r<J ,<3n /2 .  ForJ,=O, nwehavea  
stationary configuration-all the vortices lie on a 
straight line and JI =n/2 o r  J ,  = 3r/2 corresponds to uni- 
form rotation of a rhombus. For other values of J ,  the 
vortices disperse. As in the case of three vortices all  
possible parallelograms satisfying the collapse con- 
ditions can be obtained by means of the transformations 
described above, rotating a pair of symmetric vortices. 
The expression (4.4) for the angular velocity w, is valid 
both for four and for five vortices. One can show that 

sign %=sign (x,+xt). 

In distinction from the case of three vortices, for four 
and five vortices the quantity a ( t ) ,  (3.10), which char- 
acterizes the direction of energy transfer, does not 
preserve its sign. Figure 3 illustrates the region where 
the function a has constant sign. The shaded region 
corresponds to a<O, i.e., to energy transfer into the 
region of large scales (of length). 

In the case of four vertices a numerical integration on 
an electronic computer has shown that if one selects in- 
itial conditions close to the conditions of collapse (4.3), 
then the general tendency of vortices to approach each 
other i s  preserved. If the condition (4.2) holds, then 
the ratio of the distances between vortices I a8(t)/l or8(0) 
got down to lom3 with an accuracy of eight decimal 
places. 

The necessary collapse conditions (2.2) and (2.4) are, 
of course, not equivalent to the sufficient ones (2.8). 
Even for four vortices computer calculations have 
shown that different configurations obtained from col- 
lapsing parallelograms by rotation of two unequal vor- 
tices relative to their barycenter do not collapse. It 
will be of interest to search for other collapsing con- 
figurations of vortices. 

$5. LOSS OF UNIQUENESS OF SOLUTIONS OF 
EULER'S EQUATIONS 

The phenomenon of vortex collapse discussed above i s  
related to a widely discussed problem: the unique sol- 
vability of the equations of hydrodynamics. For the 
case of two-dimensional flows of an ideal fluid, a proof 
of the theorem of uniqueness of solutions in the large 
(over a large time interval) was given in Ref. 6. How- 
ever, the conditions of this theorem impose definite re- 
strictions on the smoothness of the initial fields and do 
not encompass the case of delta-function-like singulari- 
ties of the vortexfield (the presenceof discretevortices. 

The phenomenon of vortex collapse indicates that 
there is loss of uniqueness. Indeed, in view of the 
time-reversal invariance of the equations of motion 

FIG. 3. Energy transfer over the spectrum. 

of an ideal fluid, in addition to collapse, the creation 
of vortices, i.e., the decay of one vortex into a group 
of three of more vortices, must also bepossible. From 
a mathematical point of view this is none other than the 
fundamental fact that the uniqueness of solutions of 
Euler's equations i s  lost in a function space that ad- 
mits of delta-like singularities of the vortex field. 

It follows from a previous paper of the authors,' that 
a system of four o r  more vortices of the same sign i s  
not completely integrable: Quasiperiodicity is absent 
in certain intervals of the values of the invariants of 
the motion.') We now see that, in the presence of three 
o r  more vortices of different signs, collapse i s  possible 
in the general case and the uniqueness of solutions of 
Euler's equations i s  lost. These f a d s  should stimulate 
new directions of investigation of fluid and plasma dyn- 
amics. 

Added in proof (June 22, 1979). The contents of the 
first half of Sec. 3 of the present paper overlaps the 
recently published paper by Hassan Aref, Phys. Fluids 
23, 393 (1979). 

' ) ~ o l l a ~ s e  may turn out to be the mechanism responsible for 
the formation of some large atmospheric vortices. 

2 ) ~ e  indicate here some critical values for the configuration 
temperature g introduced in Ref. 1 for the case of four iden- 
tical vortices. The minimal value 6 = 2" x3== 1.40 corre- 
sponds to a stable rotation of the square formed by the ver- 
tices. The unstable rotation of an equilateral triangle formed 
by three vortices around the fourth located at  its centerT cor- 
responds to el = 26 ~3~ - 2.37.  Absence of quasiperiodicity 
has been observed in the interval 8, << 0 < e2, where e2 = 463 , 
corresponding to four vortices becoming alfgned on one 
straight line. Outside this range some transitions between 
convex and noncanvex configurations are forbidden.' For 8 
> direct transitions between two different convex configur- 
ations of between nonconvex configurations may occur, a fact 
which was not noted in Ref. 7. 
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Phys. JETP 41, 937 (1975)l. 

2 ~ .  Lamb, Hydrodynamics, 6th Ed. Dover, N. Y., 1932) 
[Russian Transl. Gostekhizdat (1947)l. 

3 ~ .  K. Batchelor, Introduction to Fluid dynamics, Cambridge 
U. P . ,  1967 hussian Transl. ,  Mir, 19731. 

4 ~ a s s a n  Aref, Preprint, Cornell University, 1978. 
5 ~ .  A. Novikov, Izv. Akad. Nauk SSSR, Ser. Fiz. Atmiokeana 

7, 1087 (1971). 
'v. I. Yudovich, Zh. Vychisl. Matem. i Matem. Fiz. 3, 1032 

(1963). 
'E. A. Novikov and Yu. B. Sedov, Zh. Eksp. Teor. Fiz. 75, 

868 (1978) kov. Phys. JETP 48, 440 (1978)l. 

Translated by M. E. Mayer 
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