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The inelastic collision (IC) between oriented atomic particles with arbitrary intrinsic angular momentum 
values is considered. The conservation of the total angular momentum and parity in the collision is used 
to derive, for the total IC cross section, a general expression that furnishes the dependence of the cross 
section on both the mutual orientation of the colliding particles and the direction of their relative 
velocity. The dependence of the cross section on the direction of the velocity stems from the noncentral 
nature of the interaction between the colliding particles. The cross section contains a finite number of 
constants (elemental cross sections), all of which can be determined in an experiment on the angular 
dependence of the cross section, and this makes it possible to obtain information about the noncentral 
character of the interaction, as well as about the interference between channels with different values of 
the resultant intrinsic angular momentum of the colliding particles. Also considered is the case of 
particles having an isotropic velocity distribution (experiments in a plasma). It is shown that in this case 
the measurement of the effective IC cross section for oriented particles can yield, for reactions involving 
triplet-singlet transitions, information about the consexvation of the total particle spin in the collision. 

PACS numbers: 34.50. - s. 34.10. + x 

There has been of late an increase in the number of 
both theoretical and experimental papers devoted to  the 
investigation of collisions between polarized parti- 
c le~. ' - '~  This i s  explained, on the one hand, by the pos- 
sibility of obtaining essentially new information about 
collisions in experiments with polarized particles and, 
on the other, by the progress made in the production 
and detection of polarized electrons and atoms. It 
should be noted that the selecting devices based on six- 
pole magnets, and used for the polarization of atoms, 
produce beams of atoms possessing not only proper po- 
larization (magnetic dipole moment), but also higher- 
order polarization moments-quadrupole moments 

cross section is measured in many experiments in 
which only the appearance (or disappearance) of a defi- 
nite particle in the inelastic process in question is reg- 
istered without analysis of the reaction products with 
respect to momentum or  orientation. 

In an experiment with oriented particles, the total 
cross section depends on the direction of motion of the 
colliding particles. Thus far, the angular dependence 
of the total cross  section has not been experimentally 
investigated. The analysis carried out in the present 
paper shows that the experimental measurement of this 
dependence can yield interesting additional information 
about the elementary collision event. 

(alignment), octupole moments, etc. The higher polar- 
ization moments a r e  also produced in the optical orien- We also consider the case of isotropic velocity dis- 

tation of atoms." The collision of particles possessing tribution of the colliding particles (experiments in a 

higher polarization moments is charactc aized not by one plasma). It i s  shown that in this case experiment can 
yield information about the conservation of total spin cross section, but by some set  of elemental cross sec- 
in inelastic collisions involving the triplet -singlet tran- tions. The cross section measured in erperiment is, in 
sition. The Penning collisions between optically ori-  general, a linear combination of these elemental cross 
ented atoms in a plasma can serve as an example of section. In order to set  up an experiment for the de- 
such collisions (see Ref. 18 for a review). termination of the complete se t  of elemental cross sec- 

tions, we must know the dependence of the measurable 
cross section on both the polarization moments of the 1. PROBABILITY OF INELASTIC PROCESS 

colliding particles and the direction of their relative INVOLVING ORIENTED PARTICLES 

motion. The problem of the collision between polarized 
particles has been repeatedly ~onsidered,~~~~~-~'~'~~'~~'~ 
but the analysis has normally been restricted to the 
case of collisions between particles with a n  intrinsic 
angular momentum J, cl (when there a r e  no polariza- 
tion moments of order higher than two), the case of 
small-angle scattering, o r  the case in which the total 
spin of the colliding partners is conserved. 

The object of the present paper is to derive a general 
expression for the cross section for inelastic collision 
between particles with arbitrary values of the angular 
momentum J, . For simplicity, we consider only the 
total cross section for the inelastic process. This 

Let us consider the inelastic process in which the col- 
lision of the particle A (with internal energy E l  and in- 
trinsic electronic angular momentum J , )  with the parti- 
cle B (energy E,,  intrinsic electronic angular momen- 
tum J,) leads to the production of a set  of some parti- 
cles (c,): 

I 

The components of the angular momenta J, and J, along 
the z axis of the laboratory system of coordinates a r e  
characterized by the quantum numbers m,  and m, . 

We shall assume that the particles A and B possess 
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the intrinsic parities n, and n,, respectively. The rel- 
ative motion of these particles (in the center-of-mass 
system) i s  characterized by the energy c and the angu- 
lar  momentum 1 ( p  is  the component of 1 along the z 
axis). The set  of original particles in the reaction (1) 
possesses a total energy of E = c + E, + E ,  , a total angu- 
l a r  momentum J (with a component M along the z axis), 
and a total parity of n = (-1)' n1n,. The angular mo- 
mentum J i s  obtained by vectorially adding the angular 
momentum 1 to the resultant angular momentum, J,, , 
of the particles A and B: 

JIa--J,+J,, J=l+J,,. (2) 

We shall characterize the se t  of products of the reaction 
(1) by the total energy, @, the resultant angular mo- 
mentum, 5, the total parity, ?T , and some set, { y ) ,  of 
other quantum numbers. 

As the basis functions for the original particles, let 
us choose the functions 

These-functions a r e  orthogonal. The wave functions, - 
I) and $, of the discrete spectrum a r e  normalized to 
unity. The wave functions, cp, of the continuous spec- 
trum a r e  normalized to the 6 function of the energy. 

Carrying out the scheme, (2), of addition of the angu- 
l a r  momenta, we construct the wave function of the or-  
iginal particles in the state with energy E, angular mo- 
mentum J, and parity n: 

The total wave function, \k, of the original particles 
can be represented in the form 

Here (as everywhere below) the sum over energy de- 
notes integration over energy. Similarly, the wave 
function, e,  of the products of the reaction can also be 
expanded in terms of the eigenfunctions of the total en- 
ergy @ and the total angular momentum j: 

The function 9 is  transformed into the function in the 
course of the collision. The connection between the co- 
efficients 6 and 2 in the expansions (3) and (4) is given 
by the transition matrix '?: 

The conservation of the total energy, the total angular 
momentum, and the parity allows us to write the ma- 
trix in the form 

Here we have allowed for the fact that, owing to the 
isotropy of space, the f matrix does not depend on M. 

The_relation (5) allows us to express the density ma- 
trix, p =%, of the reaction products in terms of the 
density matrix, 8 =iiiit , of the original particles: 

- T  r;p. (7') 

Using the relations (5)-(7), we obtain an expression for 
the probability, w ,  of realizing the reaction (1) 

.- .. 
I Y  

where 

Here the symbol 6,,,, which has appeared a s  a result 
of the allowance made in (6) for the conservation of 
parity, imposes a limitation on the  possible values of 
I and 1'. Contributions to the probability w a r e  made 
only by those values of I and I' which satisfy the equal- 
ity 

n =  ( - l ) 'n ,r i ,=nr= ( - l )L'II ,n2 .  

It follows from this equality that I and I' should be of 
the same parity. Taking this property into account, we 
shall everywhere below write 6,,t in the form 

6.,~='/,[1+(-I)""]. 

Using the addition rule for angular momenta,lS we can 
express the density matrix, 6, of the original particles 
in the formula (8) in terms of the product of the d e p i t y  
matrix, 7, of the particle A, the density matrix, 7, of 
the particle B, and the density matrix, f, of the rela- 
tive motion of these particles: 

It follows from this formula, when allowzpce isAmade 
for the fact that the density matrices f, f ,  and f= a r e  
Hermitian, that that element of the density matrix 6 
which enters into the expression, (8), for the prob- 
ability w i s  a real_ quantity. Since the probability w is 
real, the matrix A in (8) i s  also real, and, consequent- 
ly, on the basis of (9) the matrix A is symmetric with 
respect to interchange of the pairs of indices IJ,, and 
I'J:2. 

The formulas (8) and (10) completely determine the 
dependence of the probability, w, of realizing the in- 
elastic process (1) on both the internal state of the or-  
iginal particles and the state of their relative motion. 
Notice that the sum over E in the formula (8) with al- 
lowance made for (10) virtually implies integration over 
the energy, c ,  of the relative motion. 

2. THE TOTAL CROSS SECTION FOR INELASTIC 
COLLISION OF ORIENTED PARTICLES 

To obtain the total cross section, a, of the reaction 
(I), we should integrate the probability w over the im- 
pact parameter: 

u = wd'p. J (11) 

In order to be able to perform the integration, we need 
to know the form of the density matrix, f ,  of the rel-  
ative motion. We shall assume (just a s  is  done in Ref. 
20) that long before the collision the wave function, 
cp(p), of the relative motion in the momentum represen- 
tation has a sharp peak in the vicinity of some value, 
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po, of the relative momentum p. Let us take into con- 
sideration the fact that the wave packet of the incoming 
particle may be shifted by a distance p from the direc- 
tion for a head-on collision. Then the wave function, 
cp,(p), of the relative motion for an arbitrary value of 
the impact parameter p can be written in the form 

We assume the existence of the normalization equality 

Let us expand cp p(p) in terms of the eigenfunctions, 
$,,,(p), of the energy E and of the angular momentum 1 
in the p representation: 

q 0 ( p )  = 5 d e x  C.I~(P)$.III(P). 
I,, 

where 

Here rn is  the reduced mass, C, = p2/2m, and 0 = (8, cp) 
is  the set of angles defining the direction of the vector 
p. The coefficients (? in the expansion (12) a r e  given 
by the relation 

Using (13) and (14), we obtain an-expression for the re-  
lative motion's density matrix, f =@+, figuring in (10): 

The d2p =pdpdy integration in the formula (11) implies 
integration over a small area, S, oriented in a direction 
perpendicular to the vector p,, (Y i s  the angle between 
the vector p and an arbitrary straight line lying in the 
plane S). In the expression, (8) [with allowance for 
(lo)], for the probability w ,  only the matrix f depends 
on p. The integration off over d2p, performed with the 
use of the "sharpness" of the function rp(p), yields: 

Here p,, is  the component of the vector p along the po 
direction. 

The possession by the function q(p) of a sharp peak 
in the vicinity of p =p, allows us to perform the inte- 
gration over & in the formula (8). As a result, after a 
number of identity transformations, we obtain for the 
cross section for the reaction (1) the expression 

(1 6) 
where ko = po /tl, &, = p: /2m, and 0, and cpo a r e  angles 
specifying the direction of the vector po . Here and 
everywhere below II .,, , , ... =[(2a + 1)(2b + 1)(2c + 1). . .]lf2. 

The obtained expression gives the dependence of the 
total cross section, u, for the reaction (1) on both the 
diagonal and off-diagonal elements of the density ma- 
tr ixofthe c~l l id ingpar t ic les ,~)  a s  well a s  on the direc- 
tion of the relative motion of the particles. The form- 
ulas (15) and (16) thus give the complete solution to the 
formulated problem. The practical use of these form- 
ulas is, however, inconvenient, since they contai? a 
huge number of individual cross sections, '"w:: Et /k: , 
characterizing the occurrence of the inelastic process 
under conditions of different combinations of the initial 
mmf-states of the colliding particles. It i s  possible to 
reduce the number of the individual cross section sig- 
nificantly by going over in the formulas (15) and (16) 
from the density matrices in the reducible mmf-rep- 
resentation to the density matrices in the irreducible 

x q  -representation. 

The transition to the xq-representation is accom- 
plished with the aid of the formula21 

The inverse relation has the form 

1 x 1  

mm' 

It follows from the properties of the 3j symbol entering 
into (17) that the quantity x can assume integral values 
from 0 to 2J. 

The quantities f; a r e  the components of an irreducible 
x-th rank tensor characterizing the particle's polari- 
zation moment of order x. They can be expressed in 
terms of the mean values of the observable quantities: 

f: can be expressed in terms of a linear combination of 
the quantities (SPASy), etc. In these formulas we use 
the cyclic components of the angular-momentum oper- 
ator, J, of the particle. 

In the literature the dipole and quadrupole moments 
(f: and f i )  a r e  customarily called "orientation" and 
"alignment."21 The orientation vector f: i s  connected 
with the polarization vector P by the simple relation: 

the vector P being defined a s  usual by the formula 
P=($)/J. 

Carrying out in the formulas (15) and (16) the transi- 
tion to the xq-representation, we obtain the following 
expression for the cross section: 

where 
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Thus, we have obtained for the total cross section 
for the inelastic process an invariant, structurally- 
simple expression. The cross section a i s  proportion- 
al to a linear combination of the scalar products, (19), 
of the Lth order spherical harmonics and the irreduc- 
ible products, (20), of the polarization moments, f ( "  1) 

and j("z), of the colliding particles. 

The 3j symbol entering into (22) is nonzero only when 
(1 +I'+L) is an even number. Since, because of parity 
conservation, (1 + 1') i s  an even number, only the even 
values of L contribute to the cross section a.  h his 
property i s  reflected by the introduction under the sum- 
mation sign in (18) of the first cofactor in the square 
brackets.] Furthermore, it follows from the proper- 
ties of the 3j symbol entering into (20) that L can as- 
sume a limited number of integral values: 1 K, - K, I s L 
~ ( x ,  +x,). Thus, the total cross section for the inelastic 
process is characterized by a relatively small number 
of constants Q,"lX2 (elemental cross sections), all of 
which can be determined with the aid of the formulas 
(18)-(20) from experiment. 

The cross section u~lzJl,  in (21) characterizes that 
channel for the inelastic process which has a resultant 
intrinsic angular momentum of J,, (there are, however, 
several of such channels-according to the number of 
values of L). The quantities u ~ , , , ~ ~  with J,,z J:, char- 
acterize the interference of the channels with the dif- 
ferent angular momenta J,, and J;, . These quantities 
a re  not all independent, since they a re  connected by the 
relation: 

Such a relation is obtained from (22) by allowing for the 
above-noted symmetry property of the matrix a. 

The channel cross sections 0 2 2 5 1 ' 2  can be computed 
from the experimentally measured elemental cross sec- 
tions Q,"Ix2 with the aid of the formula 

which i s  obtained by inverting the relation (21) with the 
use of the orthogonality property of the 9j  symbol^.'^ 

Let us note one important property of the elemental 
cross sections QZ1"z. It follows from the relation (23) 
and the formulas (21) and (22) (with allowance for the 
fact that L is an even number) that QilR2 is nonzero 
only if x ,  and x, a r e  of the same parity. Because of 
this property [it i s  reflected by the second factor un- 
der the summation sign in (18)], products of polariza- 
tion moments of different parities do not contribute to 
the cross section a, and the number of elemental cross 
sections characterizing the process decreases. 

3. COLLISION INFORMATION OBTAINABLE FROM 
MEASUREMENTS OF THE TOTAL CROSS SECTION 
FOR INELASTIC SCAlTERlNG OF  ORIENTED 
PARTICLES 

It can be seen from the formulas (18) that for fixed 
orientations of the particles a depends on the angles, 
8, and cp,, defining the direction of the relative-veloc- 
ity vector v,. In order to find out the cause of the ap- 
pearance of this dependence, let us consider the case 
when the resultant intrinsic angular momentum J,, and 
the orbital angular momentum, 1, of the relative mo- 
tion a r e  not related and, consequently, each of these 
angular momenta is conserved in the collision. Allow- 
ance for the conservation of these angular momenta 
[beginning with the formula (611 results in the matrix 
2's becoming diagonal with respect to the pairs of in- 
dices lJ,, and independent of the resultant angular mo- 
mentum J :  

Substituting this expression for the matrix 2 into the 
formulas (21) and (22), and carrying out the summation 
over J, we find that all the elemental cross sections 
QElX2 with L z 0 a r e  equal to zero. Consequently, the 
cross section u does not depend on the direction of the 
relative velocity when the angular momenta 1 and J,, 
a r e  conserved. 

It is well known that the angular momentum, 1, of the 
relative motion i s  conserved when the interaction poten- 
tial V does not depend on the orientation of the vector, 
r, characterizing the mutual disposition of the colliding 
particles (central-force interaction). The angular mo- 
mentum J,, i s  then also conserved a s  a result of the 
conservation of the total angular momentum J. If, on 
the other hand, the potential V depends on the direction 
of the vector r, then the angular momentum 1 and, con- 
sequently, the angular momentum J,, a r e  not conserved 
(noncentral-force interaction).   he-probability for in- 
elastic scattering by a spherically nonsyrnmetric poten- 
tial naturally depends on the direction in which the par- 
ticle approaches the potential. As a result, there 
arises a dependence of the total cross section on the 
direction of the relative velocity, as reflected in the 
formula (18). 

Thus, the experimental measurement of the angular 
dependence of the total cross section for inelastic col- 
lision between oriented particles can yield information 
about the nonconservation of the intrinsic angular mo- 
mentum in the collision and, consequently, about the 
noncentral character of the interaction. A quantitative 
measure of the noncentrality of the interaction is the 
relative magnitude of the elemental cross sections Q:l*z 

with values of L + 0. 
As can be seen from (18)-(22), in the general case 

of nonconservation of the angular momenta 1 and J,,, 
the interference of states both with different 1 values 
and with different J,, values makes a contribution to 
the total cross section. In the case when the angular 
momenta 1 and J,, a re  conserved [see (%)I,  such in- 
terference makes no contribution to the total cross sec- 
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tion. Quantitative information about the effect of the 
interference of channels with different values of J,, is  
provided by the cross sections a:,, 4, with J,,# J;, . 

Such information cannot be obtained in an experiment 
with unoriented particles. The cross section in this 
case does not depend on the direction of the velocity, 
and does not contain a contribution from the interfer- 
ence: 

Let us now consider specific examples of collisions 
between oriented particles. 

1. Collision between particles with angular momenta 
J - J -1 , - , - , . In this case the cross section a is, in ac- 
cordance with (18)-(20), determined by a set of three 
elemental cross sections, Qr ,  QF, and Q r ,  and i s  
given by the expression 

The relation between the elemental cross sections and 
the channel cross sections is given by the formulas 

The case of the "i-$" inelastic scattering has been 
repeatedly considered before in connection with the 
problem of the collision of an electron with a hydrogen 
atom o r  an alkali-metal a t ~ m . ~ * ~ * ' ~  (Let us note that 
the first experiment of this type, i.e., the ionization of 
polarized hydrogen atoms by polarized electrons, was 
performed recently.14) In Ref. 2 an expression equiv- 
alent to the first two terms of (26) is obtained for the 
cross section under the assumption that the total spin 
i s  conserved. In Refs. 9 and 16 the spin-orbit inter- 
action in the continuum, which leads to the nonconser- 
vation of the total spin, is  taken into consideration. 
The expression obtained in these papers for the cross 
section reduces to the expression (36) for the particu- 
lar case when the relative velocity is  directed along the 
z axis (such a geometry was adopted in Refs. 9 and 16). 
In contrast to the formulas obtained in the cited papers, 
the expression (26) furnishes the angular dependence of 
the cross section. Let us give this dependence for the 
case when the electron beam is  polarized along the di- 
rection of the velocity v, , while the atoms are  polar- 
ized along the z axis, which forms an angle 8, with the 
direction of the velocity: 

a (0,) =Q,00-3-"91Pz cos 0. 
x [Q."-5%-"4." (3 cos 28,-1) 1. (27) 

From this formula we can compute all the three ele- 
mental cross sections after measuring the cross sec- 
tion a for three values of the angle O,,  if the polari- 
zations, P, and P, , of the colliding particles are  known. 

2. Collision between particles with intrinsic angular 
momenta J, = 3, J,= 1. In this case, besides the orien- 

tations (7") and ?'I)), 'the alignment (7")) of the parti- 
cle B also makes a contribution to the cross section: 

This expression differs from the corresponding formu- 
las of Refs. 8 and 13 by the presence of third and fourth 
terms. (It is assumed in Refs. 8 and 13 that the result- 
ant intrinsic angular momentum is  conserved.) 

The four cross sections, Q;'"', entering into (28) a r e  
related to the channel cross sections through the form- 
ulas 

It is interesting that in the case of "$ -1" scattering 
under consideration (in contrast to the "4-$" case), a 
contribution to the total cross section is made not only 
by the channels with a definite value of the intrinsic 
angular momentum J,, (2 or  i), but also by the inter- 
ference channel characterized by the interference be- 
tween the states with J,, = $ and J:, = $ [to this channel 
corresponds the cross section a;,, y, in (29)]. 

Another interesting distinctive feature (a general fea- 
ture for atoms with J221) is the fact that, a s  can be 
seen from (28), the total cross section depends on the 
polarization state (the alignment 7")) of the particle 3 
(atom) even in the case when the particle A (electron) 
is  not polarized (7") = 0).2' 

The effect which the state of alignment of the atom 
has on the efficiency of its excitation by unpolarized 
electrons has thus far not been experimentally observed. 
But the necessity for the existence of such an effect 
follows, on the basis of the principle of detailed bal- 
ance, from that well-known fact that an atom becomes 
aligned when excited by electron impact.22 The experi- 
mental observation of this effect is  of indubitable in- 
terest, since it will allow the determination of the ele- 
mental cross section Qy in the relatively simple ex- 
periment with unpolarized electrons. 

We can determine all the four elemental cross sec- 
tions QLlx2 in an experiment with polarized electrons 
and oriented atoms from the angular dependence of the 
cross section a .  Let us give the angular dependence of 
the cross section for the case of "i-1" scattering: 

3 
3 m z  0, - $cos 0, sin' 0,-1 

In deriving this expression from (28), we assumed that 
the geometry of the experiment was the same a s  in the 
preceding case. Here, for the alignment of the atom 
(the atom is aligned along the z axis), we have intro- 
duced the notation D, = f i. 

In the above examples of collisions of particles with 
low intrinsic angular momentum values ($ or  I), the 
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complete set of elemental cross sections can be de- 
termined from the dependence of the cross section a on 
the angle 8,. Analysis of the expression (18) shows that 
in the case of collisions of particles with high intrinsic 
angular momentum values (starting from J, or  J, 2 i) 
the determination of the complete set of the cross sec- 
tions Ql' "2 by varying only the direction of the velocity 
vector is impossible. In this case the independent vari- 
ation of the directions of orientation of the colliding 
particles is also necessary. 

4. EFFECTIVE CROSS SECTION FOR INELASTIC 
COLLISIONS OF PARTICLES POSSESSING AN 
ISOTROPIC VELOCITY DISTRIBUTION 

The above-considered total cross section for inelastic 
collisions is  measured in experiments with crossing 
beams, or  during the bombardment of a gaseous target 
by an electron beam. In the case when the velocity dis- 
tribution of the particles is isotropic (experiments in a 
plasma), we measure only the reaction rate of the in- 
elastic process, 

or the effective cross section, 5, given by the formula 

a=K/&. (32) 

Here F(v,) is the relative-velocity distribution and $ 
is the mean relative velocity. 

Substituting the formulas (18)-(20) into (31) and (32), 
and performing the integration over the angles 8, and 
p,, we obtain the following expression for the effective 
total cross section 5: 

(-i)% -Qo.- &(-i)J.+'*+'.{ I" " I' 
II. z II.... x Jt Is 

) a  (34) 
J,, 

It can be seen from the formula (33) that the effective 
cross section for the inelastic process is equal to a lin- 
ear combination of the scalar products of like polariza- 
tion moments of the colliding particles. An expression 
of the type (33) was obtained earlier by the present 
author" in an investigation of the ionization collisions 
of atoms with zero orbital angular momentum. In Ref. 
11 it is assumed that the total spin of the colliding 
partners is  conserved. The formula (33) was derived 
without such an assumption, and yields an expression 
for the cross section also in the case when the result- 
ant intrinsic angular momentum, J,, , of the particles 
is not conserved in the collision. 

It follows from the relations (33)-(35) that, ;n an ex- 
periment with oriented particles isotropically distri- 
buted over velocity, we can determine only the energy- 
averaged elemental cross sections of zeroth order 
(L =O) ,  or the averaged channel cross sections with 
L =O. The relative magnitude of these cross sections 
characterizes the dependence of the interaction poten- 
tial, V, of the colliding particles on their resultant in- 

trinsic electron angular momentum J,, . If V does not 
depend on J,, (the moments Jl and J, do not interact), 
then all the channel cross sections, J12, a re  equal 
in magnitude, and, consequently, on the basis of (34), 
all the cross sections Go"" with x > 0 are equal to zero. 
In this case the cross section 5 does not depend on the 
mutual orientation of the colliding particles. 

The elemental cross sections with LP 0, which char- 
acterize the noncentrality of the interaction, make no 
contribution to the effective cross section 5 [cf. (18) 
and (33)]. Some information about the noncentral char- 
acter of the interaction and about the nonconservation 
of the angular momentum J,, is contained in the relative 
magnitude of the cross sections 8,"" measured in an 
"isotropic " experiment. But without concrete calcula- 
tions, it i s  impossible to establish on the basis of the 
magnitudes of the measured cross sections g,'" (or 

F!,, whether or  not the angular momentum J,, is 
totally conserved in the general case. An exception is  
the inelastic processes involving the triplet-singlet 
transition, in which processes the conservation of the 
total spin S,, leads to the prohibition of the channel with 
the maximum value of S,, . In such processes the van- 
ishing of the corresponding channel cross section un- 
ambiguously indicates the total conservation of the spin 
S,, in the collision. 

A known example of such a process is  the Penning 
ionization occurring in collisions between the metas- 
table 2's' atoms of heliumu: 

In this reaction the total spin of the original particles 
can assume three values: 0, 1, and 2, whereas the 
total spin of the reaction products can assume only two 
values: 0 and 1. Thus, in the case when the total spin 
is  conserved, the quintet channel of the reaction (36) 
turns out to be forbidden, and the corresponding chan- 
nel cross section 8:, should be equal to zero. A non- 
zero 'o:, indicates nonconservation of the total spin. 

From (33) we obtain for the effective cross section 5 
for the reaction (36) the following expression: 

where 

Let us note that the spin dependence of the reaction 
(36) is  observed in an experiment on the variation of 
the electron density in a plasma at the time of the mag- 
netic resonance of optically oriented metastable ortho- 
he l iu~n .~* '* '~  In principle, all the elemental cross sec- 
tions characterizing the reaction (36) can be determined 
in such experiments. The cross section gr is  mea- 
sured in the absence of orientation. In the presence of 
pumping by unpolarized light, which produces only 
alignment, we can measure a certain linear combin- 
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ation of the cross sections g: and gr. In the pres- 
ence of pumping by circularly polarized light, we mea- 
sure a linear combination d the three cross sections: 
@, gtl, and gi2. Further, we can compute with the 
aid of (37) all the elemental cross sections from the 
data of these three experiments and, with the aid of the 
formulas (38), all the channel cross sections, including 
the cross section 6:,, whose relative magnitude furn- 
ishes information about the extent to which the total spin 
is conserved in the reaction (36). 

It should be noted that the effect of the noncentrality 
of the interaction in collisions between metastable at- 
oms of orthohelium is, apparently, not great. Thus, 
the experimental data presented in Ref. 5 (with allow- 
ance for the refinements reported in Ref. 11) indicate 
a-not-less-than-90% conservation of the total spin in 
the reaction (36). But the observation of even small 
deviations from spherical symmetry for the interaction 
potential of atoms with zero orbital angular momentum 
is of fundamental significance for the theory of collis- 
ions. Therefore, the determination from experiment of 
the complete set of the cross sections characterizing 
the reaction (36) is of indubitable interest. - 

As another example of a reaction with a forbidden 
channel, we can cite the Penning collisions of metas- 
table atoms of orthohelium with atoms in the 'S,, state 
(the alkali metals or hydrogen). The spin dependence 
of such collisions has been observed by Dmitriev et 
a1.'2.2s In this case the conservation of the total spin 
leads to the prohibition of the quartet channel. Here, 
a s  in the preceding case, the experimental determin- 
ation of the complete set of elemental cross sections is 
possible. For this purpose, it is sufficient to perform 
two experiments: with polarized and with unpolarized 
atoms. The computation of the cross section for the 
quartet channel from the data of these experiments will 
allow us to determine the extent to which the total spin 
is conserved in such collisions. 

There are other inelastic processes involving the 
triplet-singlet transition (for example, the de-excitation 
of metastable orthohelium atoms by electron impact) 
for which we can obtain from experiment with the aid of 
the formulas (33) and (34) information about the con- 
servation of the total spin in the collision. . 

Thus, we have obtained in the present paper general 
relations giving the dependence of the inelastic-collision 
Cross section on the orientation and direction of motion 
of the colliding particles. It follows from these rela- 
tions that an experiment on the determination of the 
total cross section can yield information about very fine 
details of the elementary collision event, details such 
as the interference of the states with different values of 
the resultant intrinsic angular momentum, J,, of the 
colliding particles, the conservation of the angular mo- 
mentum J,, in the collision, the noncentrality of the in- 
teraction of the particles. The cited examples illustrate 
the possibility of obtaining such information both in ex- 

periments with particle beams and in experiments with 
a plasma. 

The author thanks D. A. Varshalovich and N. A. Cher- 
epkov for a useful discussion of the work. 

I)1n the present paper the spin of the nucleus is not taken into 
consideration. since its influence in inelastic collisions can, 
a s  a rule, be neglected. Therefore, the formula (15) con- 
tains the purely electronic density matrices of the particles 
A and B. They can be obtained from the total density ma- 
t r ices  by averaging them over the nuclear-spin states." 
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