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The asymptotic theory of resonance charge exchange of a diatomic molecular ion on a molecule is 
presented. The asymptotic parameters of the valence electron in the diatomic molecule are found, and 
these parameters are used to determine the potential for exchange interaction of the molecular ion with 
the related diatomic molecule. The role of rotational transitions in the molecule and molecular ion in 
resonance charge exchange is clarified. Expressions are obtained for the cross section for resonance 
charge exchange. The theoretical cross sections are compared with experiment. 
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1. In the present work we investigate the resonance 
charge exchange of a diatomic molecular ion on the re-  
lated molecule: 

The cross section for this process is expressed in 
terms of the potential for exchange interaction of the 
molecular ion and the molecule. In the case of reso- 
nance charge exchange of the Hl ion on the H, molecule 
Bates and ~ e i d '  utilized calculations of the potential 
surface of the Hi-H2 system, which a r e  possible only 
for simple systems. Gurnee and Magee2 and Flannery 
and co-workers3 based their calculations of the cross 
sections for resonance charge exchange of other mole- 
cular ions (N: , 0: , CO' , NO') on model representations 
for the interaction potential, the accuracy of which was 
not established. For the present problem it would be 
natural to use asymptotic methods of calculation based 
on the fact that the cross section for the process sig- 
nificantly exceeds the size of the molecule. In this case 
the theory contains a small parameter which permits 
the accuracy of the result to be evaluated. Asymptotic 
approaches for the present problem were developed by 
Bylkin4 but a t  that time reliable information was not 
available on the asymptotic behavior of the electron in 
the molecule. Use of the tables of molecular wave func- 
tions5 which have appeared in recent years permits one 
to find simple mechanisms for the transitions under 
consideration, to obtain numerical values of resonance 
charge-exchange cross sections, and to analyze the 
nature of charge exchange a t  low collision velocities. 
In the present work we devote special attention to the 
role of rotational transitions in resonance charge ex- 
change of molecular particles. These transitions a r e  
important in slow collisions of an ion with a molecule. 
Allowance for rotational transitions is difficult in terms 
of other approaches and therefore it has not been in- 
vestigated previously. 

2. In determination of the cross section for the pro- 
cess (1) we shall use the impact-parameter method'.4 
and shall take into account the fact that the transition 
of the electron in accordance with (1) occurs a t  rather 
large distances R between the centers of the colliding 
particles, such that the interaction between them is 
small in comparison with the characteristic electron 
energies. Here it i s  sufficient to take into account only 

unexcited electronic states of the molecule and ion. In 
summary, we expand the wave function of the entire 
system in a set  of normalized molecular functions O',", 
*g), defined a t  rather large distances R in comparison 
with the s ize  of the molecules:') 

@ (r, R, t )  = E c , ( ' )  ( t )  8:' (r, R)  exp ( - i~z : '  t )  
(i 

+ cia' ( t )  8:'' (r, R )  exp{-iH::l) t ) .  (2) 
P 

Here Y is the se t  of coordinates of the electrons (see 
Fig. I), the subscripts 1 and 2 denote the electronic 
state of the system before and after the transition of the 
valence electron, and a! and P a r e  the se ts  of vibration- 
al-rotational quantum numbers. The matrix elements 
of the total Hamiltonian of the system$' which occur in 
the arguments of the exponentials a r e  defined as follows: 

where E 2) and E f )  a r e  the values of the energy of the 
system of particles corresponding to  an infinitely sep- 
arated molecule and molecular ion, which a r e  found in 
the specified quantum states; the angle brackets denote 
integration over the electron and nuclear coordinates; 
the operator 9 characterizes the interaction of the mol- 
ecule with the ion. By definition the wave functions a'," 
and er)  describe situations in which the valence elec- 
tron is concentrated mainly near the first  o r  second 
residual molecule, experiencing a rather weak pertur- 
bation from the other molecular ion, i.e., they a r e  de- 
fined in the limit of sufficiently large values of R. 

Substituting the expansion (2) into the nonstationary 
Schriidinger equation i 8 $ / 8 t  =$tj and using the condition 
of normalization of the wave functions c9, we obtain a 
system of equations for the transition probability amp- 
litudes c'," and cf):  

FIG. 1. Collision geometry in resonance charge exchange of 
a diatomic molecular ion on the molecule. 
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X<@~"l%l@:" ) ) e x p { - i ( H ~ ~ ' - H ~ ' ) t ) ,  - (3) 
ti:')= Ccp ((OF 121cob" )-<Q:" I@!' > 

x<@."' lgl@h" >)Bx~{-~(H!~'  -fIrl) t ) ,  -- 

from which for specified initial conditions c',"(t --m) 

= 1 and cg) ( t  - -m)  = O  we find a solution for cf)(t  --+a), 
which determines the "partial" cross section for reso- 
nance charge exchange (1) from the chamel a to the 
channel j3 of the reaction, - 

o,s=2n j lc? ( t - t m )  I'pdp, 
0 

where p is the impact parameter of the collision. The 
combination of matrix elements occurring in the paren- 
theses in the equations (3) includes the potential for ex- 
change interaction of the electrons, which depends on 
the distance R and on the relative orientation of the 
axes of the molecule and the ion, which is averaged 
over the nuclear wave functions of the molecular par- 
ticles. Systematic calculation of the probability of 
transition of the valence electron, and also allowance 
for vibrational-rotational transitions in the system, 
comprise the greatest difficulties in calculation of the 
cross section for reaction (1). 

Analysis of various mechanisms for transitions be- 
tween nuclear states of the particles in reaction (1) per- 
mits one to  establish those regions of the collision en- 
ergy E where i t  is possible to find analytic solutions of 
the system (3). In particular, we consider below the 
limiting case of low energies E where it becomes im- 
portant to take into account transitions between rota- 
tional states of the charge-exchanging molecular par- 
ticles. In this way it is possible to trace the behavior 
of the resonance charge exchange cross section over 
the entire energy region of practical interest for the 
collision of the particles in reaction (1). 

3. As has already been mentioned, the asymptotic , 
theory of charge exchange utilizes the fact that the tran- 
sition of the electron from one molecular core to the 
other occurs a t  large distances between the centers of 
the colliding particles. Here, in the electron-coordi- 
nate region responsible for the main contribution to the 
potential for their exchange interaction and located fa r  
from the ionic core, the wave function of the valence 
electron can be represented in the form 

where r i s  the distance from the selected center of the 
molecular particle (below we shall assume that this 
center coincides with the electrical center of the mole- 
cule), 0 is the angle between the radius vector of the 
electron and the axis of the molecule, cp is the azimuth- 
a l  angle (see Fig. I), -y2/2 is the binding energy of the 
valence electron in the molecule, and m is the projec- 
tion of the electron angular momentum on the axis of 
the molecule. In contrast to the case of charge ex- 
change of atomic particles, we have included in the as-  
ymptotic coefficient A(@) the angular dependence of the 
electron wave function. The remaining dependence, in 
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TABLE I. Asymptotic coefficients * of homonuclear molecules 
and their ions. 

Ha 
C z  
ca- 
N2 
Oz 
02- 
Fz 

addition to  A(@), of the electron wave function on the 
coordinates was found by solution of the SchrBdinger 
equation for an electron in the Coulomb field of the 
molecular core. 

In Tables I-lII we have given the values of the asymp- 
totic coefficient A(8) for a number of molecules, which 
were found by matching the wave function in the form 
(4) with the Hartree-Fock one-electron wave functions 
of the valence electrons, which have been represented 
in analytical form in Refs. 5. The procedure for match- 
ing these wave functions was carried out for a given 
angle 0 in the region of distances to the center of the 
molecule 2a< r<4a,  where a is a dimension of the or-  
der of the  equilibrium internsclear distance in the mol- 
ecule. In the coordinate region considered, the self- 
consistent one-electron wave function in the molecule5 
i s  best approximated by the function (4). The limits of 
variation of the quantity A(8), obtained by comparison 
of wave functions in this coordinate region, have been 
included in the e r ro r  of the asymptotic method pre- 
sented. In the angular dependence A(8) we have sep- 
arated the part characterizing the electron state, and 
the remaining part i s  represented in the form of an ap- 
propriate expansion in trigonometric functions. 

4. By representing the wave function of the valence 
electron in the form (4), i.e., a s  a one-centered func- 
tion with a separated angular dependence, it is possible 
to reduce the problem of determining the potential for 
exchange interaction of the electrons in the system to 
the atomic case. Here the specific features of charge 
exchange of the molecular particles appear in the angu- 
l a r  dependence of the electron wave function and the 
transitions between the nuclear states of the particles. 

In the zeroth ~ o r n - ~ ~ ~ e n h < i m e r  approximation we 
represent the wave functions of the system *:I), *f) in 
the form of the product of the electronic and nuclear 
wave functions, and we represent the total Hamiltonian 
of the system in the form of the sum 

f =B,,+B,, , 

TABLE 11. Asymptoticcoefficients * of heteronuclear molecules. 

*) A (8) = [. C:y:CrBe) (1 + c C-2 B)] sina 0 coja B 
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TABLE ITI. Asymptotic coefficients * of hydri- 
des and t .eir ions. 

*) A (B) = (a + b exp (?Re CM 8 ) )  sin 13 

where &l is the electron Hamiltonian and H, is the nu- 
clear Hamiltonian. Since the characteristic energies of 
the electrons significantly exceed the characteristic 
energies of the nuclear transitions, we can . 
With these assumptions the potential for exchange in- 
teraction of the molecular particles, which by definition 
is equal to 

A=2(<@L1' l % ' l @ f ) ) - < @ ~ )  I@?) )(&) I&I@) )) (5 

OH 
OH- 
NI1 
NH- 

CH 
CH- 

P H  
SH 
HF 

[see Eq. (3)],  is written in the form 

1.~942 
7 

4.9614 
1.923 
2.1214 
2.086 
2.708 
255i  
1.7328 

* I u  

where A,, is  the electron exchange interaction potential, 
which depends on the configuration of the nuclei, and X ,  
and Xa a r e  the nuclear wave functions of the molecular 
particles respectively before and after the transition of 
the valence electron. 

0.98,; 
0 .  
O.Wt 
0.167 
O.XR5 
0.233 
0 . W  
0 874 
1.077 

Using a genealogical scheme of constructing the elec- 
tronic wave function of the molecule from the wave 
functions of the valence electron and the wave functions 
of the electrons of the molecular ion, and also the rule 
for addition of the spins of the .molecule S and of the 
molecular ion S' to obtain the total spin J of the system, 
we can reduce the quantity Ael to the potential of the 
one-electron exchange interaction A, (Ref. 4): 

here m i s  the quantum number of the projection of the 
orbital angular momentum of the electron on the axis 
of the molecule. Since in the asymptotic theory of res- 
onance charge exchange the potential of the one-elec- 
tron exchange interaction is determined by the overlap 
of the wave functions of the electrons in a narrow re-  
gion of coordinates fa r  from both molecular cores, 
where the value of the asymptotic coefficient A(0) can 
be assumed constant, then by analogy with the case of 
transition of an electron from an atom to  an atomic ion, 
the desired quantity A, will be equal to4 

t.t%~itO 05 
0.78-tO.09 
1.83*0.09 
0.32*0.08 
1.68t0.09 
0.01+0.10 
?.20*0.06 
2.15+0.02 
1.42t0.08 

where R is the distance between the centers of the 
charge-exchanging molecular particles and &, ,(R/2) 
i s  the value of the electron wave function in the corre- 
sponding molecule a t  the center of this distance inter- 
val. With use of expression (4) the exchange potential 
A,, takes the final form 

0.21 *0.03 
O.u(*O.(M 
0.21+0.08 
O.Ch'i*O.Ofi 
0.14*0.0/1 

O.l6*O.O!l 
0.10*0.04 
0.07*0.02 
0.17*0.06 

here 0, (0,) is the angle between the axis of the molecule 

(molecular ion) and the direction joining the chosen cen- 
t e r s  of the particles. 

5. To find the cross section for the process (1) under 
discussion, i t  is necessary to solve the system of equa- 
tions (3), which with the simplifications made above 
takes the form 

. . (0- 1 
LC- - - ~ c : ~ ) ( ~ J ' )  /Ae,  ( R ,  0,, 0,) lX;)) exp{i(E;" -E: ' ) t ) ,  

6 

1 
(7) 

ifp(')= -z c O L ( ' ) ( ~ ~ ' I A ~ ~  ( R ,  0,. 0,) iX;') ) exp{ - i (E~ ' '  -E: ) ) ) t ) ,  
2 - 

where in writing out the arguments of the exponentials 
we have taken into account that the modulus of the dif- 
ference of the matrix elements has the property 

To shorten the notation we have introduced the following 
designat ions: 

Using the assumption that the translational motion of 
the molecular particles is not related to their rotational 
motion, and also the fact that the potential Acl does not 
depend on the vibrational states of the molecule and the 
ion, we have 

where j and v a r e  the quantum numbers of the rotational 
and vibrational states of the molecular particles, the 
subscripts 1 and 2 denote the molccule and the ion, the 
primes indicate the states of the particles after the 
transition of the valence electron, and finally SvIvi is 
the overlap integral of the vibrational wave functions of 
the molecule and the molecular ion. We shall not seek 
further a solution of the system of equations (7) in the 
entire region of particle-collision energies E ,  but shall 
present only simple analytic solutions in a se r i es  of 
limiting regions where i t  is easy to establish from 
physical considerations the limiting nature of the be- 
havior of the solutions. It turns out in actuality that 
such "piecewise" solutions can cover the entire region 
of practical interest of the collision energies of charge- 
exchanging particles. 

We consider first  the region of rather fast collisions, 
where during the characteristic time of interaction of 
the particles the axis of the molecule cannot rotate ap- 
preciably. This corresponds to the condition e<< v/a,  
where e is the angular velocity of the molecule and 
a - (R,  /y)"2 is the dimension of the region of the elec- 
tron transition (the charge-exchange cross  sedion is 
o aR:, and y =-d  lnh,  /dR). Since 0 - r i ' ( ~ , / p ) ~ ~  (7, is 
the distance between the nuclei in the molecule, p is 
the reduced mass of the molecule, and E ,  i s  the char- 
acteristic rotational energy), the inequality given above 
takes the form 

here E -pv2 is the energy of collision of the particles in 
the C -system. The system (7) is then written in the 
following form:') 
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where o,, is  the characteristic difference of energies of 
vibrational levels of the molecular particles. 

Let us consider two opposite limiting cases with re- 
sped  to vibrational transitions. In the first of these 
cases, all possible vibrational transitioneare allowed 
and the exponentials in the system (9) can be replaced 
by unity. This condition is  satisfied for a collision vel- 
ocity 

v>o d a-o ~i (R,ly) ". (10) 

Now introducing new coefficients 

*so, .;D; 

and using the sum rules for the overlap integrals 

we reduce the system (9) to the form 

The cross section obtained eventually for resonance 
charge exchange will correspond to fixed directions of 
the axes of the molecule and the ion relative to the line 
joining their centers, and by analogy with the case of 
charge exchange of atomic particles it is conveniently 
represented in the form4 

nR' 
( $ ) I h  A ,(Roy 0,. 0.) = 0.280. G(0,, 02) = - 9  

2 
( l la )  

In the case when the reverse inequality with respect 
to (10) is satisfied, it is  necessary to take into account 
in the system (9) only resonance terms, for which the 
argument of the exponential vanishes. This corresponds 
to formation of the ion and molecule in the same vibra- 
tional states a s  before the transition, i.e., v', = v, and 

=vl . The system (9) reduces in this case to two 
equations, and the charge-exchange cross section turns 
out to be 

do' 
.(el, &I=-. (T)' IS1..12 Ael(R., BIT  e l )=  0.28~.  ( l lb)  

2 

The cross sections for resonance charge exchange 
given above must be averaged over the angles 8, and 8,. 
Using the smallness of the parameter of the asymptotic 
theory l/R,y<<l, where l/y is the characteristic di- 
mension of the molecular orbital of the valence elec- 
tron, the appropriate average can be carried out a s  
follows. 

We shall utilize the fact that the strongest dependence 
of the charge-exchange cross section is  produced by a 
change of the distance between the molecular particles. 
This occurs a s  a result of the exponentially rapid de- 
pendence on the distance R of the electron exchange in- 
teraction potential: 

We shall convert the dependence A.1 (R, , el ,  8,) to the 

form 

so that the strongest dependence on the distance is con- 
tained in the exponential, while j(R,, e,, e,) is  a slowly 
varying function. Then we have identically 

and since R, y >> 1, we have 

We shall choose the characteristic values of the an- 
gles 8,, 8, in such a way that the following integrals 
vanish: 

I d oos 0 d cos 0, nR,'(Bl, &) 
~ ( 0 , .  0,) = ja (e1 ,  el)-- = 

-1 
2 2 2 

As can be seen, the angles 8, and 8, which determine 
the resonance charge exchange cross section a re  found 
from the equation 

The resonance charge exchange cross section cal- 
culated in this way for 8, and 8, automatically coincides 
with the cross section averaged over angle with ac- 
curacy to the first two terms of the expansion of the 
desired quantity in the small parameter of the asymp- 
totic theory l/Ro y << 1. We note also that the limiting 
case (8) selected above corresponded to highly different 
energies of the translational and rotational motion of 
the molecular particles. 

6. Let us turn now to the nature of the distribution of 
the molecular particles over the rotational levels. We 
shall show that the criterion (8) corresponds to appear- 
ance of nonadiabatic transitions between rotational 
states. We shall assume that the rotational angular 
momenta of the molecule and the ion are rather large 
(j>>l) and the selection rules for the transitions have 
the form Aj - 1. This is  valid for a smooth dependence 
of the function f (el, 0,) in the formula for Aa(R, e l ,  8,) 
and occurs in a real situation. The change of rotational 
energy in a transition i s  A&,, -BjAj -Bj, where B is  the 
rotational constant of the molecule and A j  - 1. Since 
cro -Bj ,, then Ae, -(BE )'I2. Using the Massey-criter- 
ion for rotational transitions: Ae,a/v<< 1 and substi- 
tuting in it the expressions for A&,, , a - (R, /y)'/2, and 
B - l /~r ; ,  we obtain eventually the inequality (8). 

Thus, when the criterion (8) is satisfied, nonadiabatic 
transitions a r e  possible to all rotational states of the 
molecular particles. In addition, the collision time 
turns out to be so small that in this case interference 
effects due to the phase shift of the rotational wave 
functions are unable to develop. This f a d  has been 
taken into account in the equations (9) by specifying di- 
rection of the axis of the molecule and the ion in the 
collision process. 
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Let us consider next the nature of rotational transi- 
tions when the inequality (8) and the condition for which 
the reverse inequality with respect to (10) exists a r e  
satisfied. For this purpose we shall analyze the system 
(7). Under the conditions mentioned, exchange of vi- 
brational states occurs, and all remaining vibrational 
transitions can be discarded. Using the representation 
of the function Aa(R, 8, , B,), we obtain from Eq. (7) 

(11 1 1x1 4,j, =IIS~..IPo(R) (jJzlfljt%')~j..j,,, 
I,'&' 

here we have omitted the indices of the vibrational 
states in the probability amplitudes. 

We specify the following initial conditions: 

cz' (t=-00) =ajd,, c:2 (t=--) =O. 

We shall assume that before the collision, rotational 
states with different j values a re  populated. Since in 
view of the selection rules we have A j  - 1, the distribu- 
tion of particles in rotational states does not change 
greatly in the collision process. Making the substitu- 
tion ~jij;) =ajlj2c1, ,, we can therefore assume that the 
distribution function over the rotational states arl,, does 
not depend on the time, and the quantities c,, , do not 
depend on the rotational states of the molecule and ion. 
Taking into account this and the normalization rule 
C jlj,lajlj21 = 1, we transform the system of equations 
written out above to the form 

If we choose a s  initial rotational states of the molecule 
and ion allj2( j, j, 1 states corresponding to a definite 
direction of the axes of the molecule and ion, the solu- 
tion of the system (12) will lead us to Eq. ( l lb)  for the 
resonance charge exchange cross section. The proced- 
ure of averaging over the initial rotational distribution 
of the ion and molecule corresponds to averaging over 
the directions of the axes of the molecule and ion in Eq. 
(llb) and leads to the resonance charge exchange cross 
section F(B, 3, ,8,) given by us previously. When the 
condition (10) is satisfied it is  necessary to average the 
dependence of the charge-exchange cross section in Eq. 
( l la)  over the angles 0, and 8,. 

7. Let us now consider the case in which the reverse 
inequality to (8) is satisfied, i.e., we have (It,>> re and 
rr,-l) 

Here transitions with change of rotational states of the 
molecule and ion a re  adiabatically improbable. Taking 
this into account in the system (7) and making the same 
transformations a s  in obtaining (l2), we reduce the 
system to the following form: 

FIG. 2. Cross sections for resonance charge exchange of a 
molecular ion H; on a molecule Hz. The solid curves are ac- 
cording to the asymptotic theory: 1-Eq. (lla), 2-Eq. (llb), 
3-Eq. (llc). The experimental curves are as follows: 4- 
Ref. 6, 5-Ref. 7, 6-Ref. 1, 7-Ref. 8, 8-Ref. 9; the ex- 
perimental points are as follows: 0-Ref. 10, *-Ref. 11, 
n -Ref. 12. The arrows indicate the limiting energy values 
corresponding to satisfaction of the equalities (8)-the left 
arrow-and (10)-the right arrow. 

It can be seen that the function f (el, 8,) averaged over 
the initial rotational states of the molecule and molecu- 
lar  ion enters into the expression for the exchange in- 
teraction potential z. However, the value of this func- 
tion is practically independent of the initial state. Des- 
ignating this averaged value by f ,  we obtain for the res- 
onance charge exchange cross section 

Representation of the charge exchange cross section 
in the form (llc),  in view of the condition (13), has no 
obvious physical meaning: During the collision the 
molecule and ion a re  penetrated many times and the 
electron transition corresponds to an exchange inter- 
action potential averaged over the rotational states of 
the molecular particles. 

We can present also a somewhat different criterion 

FIG. 3. Cross sections for resonance charge exchange of a 
molecular ion N; on a molecule N2. The theoretical curves 
are as follows: 1-Eq. ( l la) ,  2-Eq. (llb), 3-Eq. (Ilc). The 
experimental curves are as follows 4-Ref. 13, .5-Ref. 14, 
6-Ref. 15, 7-Ref. 16, 8-Ref. 17, 9-Ref. 18, 10-Ref. 19; 
the experimental points are as follows: 0-Ref. 7, A-Ref. 6. 
The arrows are the same as in Fig. 2. 
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FIG. 4. Cross sections for resonance charge exchange of a 
molecular ion 0; on a molecule 02. The asymptotic theory: 
curve 1-Eq. (lla), curve 2-Eq. (llb), curve 3-Eq. (llc). 
Experiment: curve 4-Ref. 3, curve 5-Ref. 13, curve 6- 
Ref. 20, curve 7-Ref. 21, curve 8-Ref. 18, curve 9- 
Ref. 22, curve 10-Ref. 23, curve 11-Ref. 13, curve 12- 
Ref. 19; points: 0-Ref. 17, 0-Ref. 24, V-Ref. 12. The 
arrows are the same as in Fig. 2. 

for applicability of the formula for the charge-exchange 
cross section (llc). Let us take into account the change 
of rotational energy due to the fact that after charge ex- 
change the angular momentum of the ion is replaced by 
the angular momentum of the molecule and vice versa. 
The corresponding change of rotational energy i s  A&,, 
- j 2 A ~  - &,Are/r8, where Are i s  the difference in the 
equilibrium distances between the nuclei of the mole- 
cule and the ion. We consider this transition allowed, 
so that the Massey parameter for it i s  small: 

In certain cases the factor in parentheses will be 
small, and in this way conditions (13) and (13a) turn out 
to be satisfied simultaneously. We note also that in ad- 
dition to the conditions (13) and (13a) it is necessary 
that the electrostatic interaction of the ion with the 
molecule not lead to a change of the characteristic con- 
ditions of the rotational transitions. Under these con- 

FIG. 6. Cross sections for resonance charge exchange of a 
molecular ion NO+ on a molecule NO. Asymptotic theory: 
1-Eq. (lla), 2-Eq. (llb), 3-Eq. (llc). Experiment: 4- 
Ref. 3, 5-Ref. 26, 6-Ref. 18, 0-Ref. 12. The arrows are 
the same as in Fig. 2. 

ditions both the rotational angular momenta of the par- 
ticles and their projections on a specified direction do 
not change greatly. However, these parameters de- 
termine the interaction of the ion with the quadruple 
moment of the molecule. Since the transition of the 
electron is accompanied by a change of the type of par- 
ticle, in this case the quadrupole interaction also 
changes. For validity of the expressions written above 
it is necessary that the change of the quadrupole inter- 
action not lead to adiabatic forbiddenness of the transi- 
tion. 

8. The equations (11) obtained above for the charge- 
exchange cross sections a r e  valid in the range of par- 
ticle-collision energies E satisfying the inequalities (8) 
and (lo), (8) and the inequality inverse to  (lo), also 
(13) and (13a). At still lower collision velocities, tran- 
sitions between rotational states of the particles be- 
come adiabatically improbable and the cross section 
should drop sharply with decrease of v. However, the 
polarization capture of the molecule by the ion can have 
an effect here, since the cross section for this process 
increases with decrease of the velocity. 

It should be noted that the transition from one formu- 
la of the cross section to the other actually involves a 
small change in the value of the charge exchange cross 
section. For this purpose let us compare the depen- 
dence ( l la)  averaged over the angles 9, and 0, and the 
expression (llc).  For the relative difference of these 
cross sections we obtain 

o. n a t  t to IOU tono 
. -- E, eV 

FIG. 5. Cross sections for resonance charge exchange of a 
molecular ion CO' on a molecule CO. Asymptotic theory: 
curve 1-Eq. (lla), curve 2-Eq. (llb), curve 3-Eq. (llc). 
Experiment: 0-Ref. 25, -Ref. 3, 0-Ref. 12, 4 - 
Ref. 15, dashed curve-Ref. 13. The arrows are the same as 
in Fig. 2. 

where we have used an expression for f (9, ,9,) in terms 
of the asymptotic coefficients of the electrons A(0). 
Since R,y>>l, this difference is small. Thus, in the 
case of resonance charge exchange for a collision en- 
ergy E =0.1 eV corresponding to equality of the left and 
right sides in Eq. (8), we obtain from (15) the following 
values: -0.2% (H:-H,), -5% (Ni-N,), -10% (0;-0,), 
and -4% ((20'-CO) . 

Taking into account the fact that the discrepancy be- 
tween the cross-section values coincides in order of 
magnitude with the error  in the calculations of the 
cross sections themselves (as the result of the accur- 
acy of the parameters utilized), we can consider as  
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valid in the transition region of velocities the cross- 
section formulas from regions of determination lying 
both below and above the tlltnsition value of velocity. 
The discrepancies which arise can be assigned to in- 
accuracy of the concepts of the asymptotic theory of 
resonance charge exchange of molecular ions. 

In Figs. 2-6 we have shown the values calculated in 
this way for the cross section for resonance charge ex- 
change of the ions Hi, N :, 0: , cO' , and NOf in the 
range of collision energy 0.01-lo3 eV. The arrows on 
the curves indicate points which correspond to transi- 
tion values of the collision energy. The experimental 
cross-section curves have also been plotted in the fig- 
ures. At collision energies of the order of thermal, the 
resonance charge exchange cross section has a maxi- 
mum and then drops rapidly with decrease of the col- 
lision velocity. This drop in the cross section is due 
to adiabatic forbiddenness of rotational transitions. 
Since this region of variation of the cross section is  
determined by the distribution of the molecules and mol- 
ecular ions over the rotational levels, which can differ 
substantially, depending on the source ~f molecular ions 
used, we shall not discuss this branch of the cross sec- 
tion. The accuracy of the calculated cross sections, 
which is  determined by the error  of the molecular par- 
ameters used and is related to the assumption regard- 
ing the nature of the rotational transitions, is estimated 
as  10-20% for the pairs of particles considered in the 
region of low collision energies. We note that the ap- 
proach discussed can be extended also to the case of 
nonresonance charge exchange with participation of 
molecules. 
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') The solution of the system of equations ( 9 )  in the case of a 
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ance of a relative maximum in the resonance charge ex- 
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