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An expression is found for the polarization operator in the Funy representation in e '-order perturbation 
theory for the combiiation of a constant uniform field and a plane-wave field of a general form. The 
obtained result is used to investigate photon dispersion in a constant magnetic field on which is 
superposed a circularly polarized wave propagating along its direction. 

PACS numbers: 41.10.H~ 

INTRODUCTION 

The most general combination, for which an exact 
solution to the Dirac equation can be obtained, of elec- 
tromagnetic fields satisfying the Maxwell equations 
without a current is the super-position of a constant 
uniform field and a specially oriented arbitrary plane- 
wave field. Specifically, the wave vector, k*, of the 
plane-wave field should be the eigenvector of the tensor 
of the constant uniform field: 

F,"k,=k%. (1 
It follows from the condition (1) that there exists a ref- 
erence system in which the spatial part, k, of the wave 
vector is parallel to the intensities, E and H, of the 
constant fields. 

The object of the present paper is to investigate the 
interaction of photons with a strong classical field of 
the above-indicated configuration. To do this, we com- 
pute the polarization operator (PO) in the Furry repre- 
sentation in lowest-order perturbation theory in terms 
of the quantized field. In the computations we use the 
Green function in the proper-time representation. An 
expression for the latter is derived in Ref. 1, but for 
our purposes it turns out to be more convenient to 
write the Green function in a special reference system 
(see 81). 

In such a basis, an arbitrary vector has the form 
p"=n"p++n+pp-+a,"p,, 

where 
P-= (tap), P + = ( ~ + P ) ,  PI=-  (sip). 

Let the wave vector of the plane-wave field k u  =wnu. 
Then the tensor of the electromagnetic field satisfying 
the condition (1) can be written in the form 

dqr (2 )  P=E[n~n+v-n+pnv]+H[aapa'a,'-ai'Lazv]+o - [nva,v-a,pnln']. (3) az 
Here 

are the field invariants, which, in the case under con- 
sideration, coincide with the invariants of the constant 
component, and the p(z) a re  arbitrary functions of the 
argument z = (kx). 

In the computations we use the potential 

We consider the PO in greater detail for the case in Let U S  note that the Use of a potential differing from (6) 
which a circularly -polarized wave is superposed on, leads to a change in the phase factor in the expression 
and propagates along the direction of, a constant mag- for the Green function- 
netic field; the obtained result is used to investigate In the basis (2), the Green function that is the solution 
photon dispersion. to the equation 

For greater compactness, the formulas a r e  written ( i $ + e ~ - ~ ) G ( z ,  y 1 A )  =-6 ( 2 - y ) ,  
without the sign of summation over the indices i ,  j =1, 
2. Under &,, is meant the antisymmetric tensor reduces to the form 

In the paper we use-the relativistic system of units: 

A=c-I, a - e Z / C .  e W E  
D =  

sin eHs sh eEs ' (9) 

1. THE GREEN FUNCTION W=='l,eE (z+y--2-y , )  +'/,eH (x ,y , -zzy , )  -mas 
--*lneE cth eEs ( z - - y - )  (2 , -y+)  +'/,eH ctg e H s ( ( ~ ~ - y , ) ~ + ( z ~ - y , ) ~ )  

Let us introduce the fixed system of vectors in Min- - ( z i - ~ i ) K r - M ,  
s = a ( s )  -L,(&,--d,i), 

(10) 
kowski space: 

&(s )  ={ch e~s - ' l z (^nf i+ -n+ i )  sh eEs) {cos eHs-1/a(818,-ci,da) sin eHs} ,  
= n ,  n+u-'/2(i ,  -4, a?= (0, a,), 

nn=l, a,aj=6, na,=O, (2) L, = sh eEs 
(11) 

{QI w s  eHs-e,j(&-Q,+)sin eHs},  
nz=n+'-(nu,) = (n+at) =O. (nn+)  =1, (a,a,) = - b j .  eE ( z - - y - )  
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eE 
w s  eHs- (zl-yi)P,,-Ry 

sh eEs 

~ E S + A ~ , ) ~ ~ .  (1 2) 

eH sheEs 
Pi,-- (n+a,) K,e"' cos eHs + - 

eE (2--#-)sin eHs 

X[Q, mz eHs+ (Ki-Qi+)sin%Hs-eU(K,-Qj+-Qj)sin eHscos eHs], (1 3) 

R~-- (n+a,) MeK' cos eHs - 2 ah eEs 
e~(i--y-)- 

X I 0 4  (K1-Q~+-Qi)cw eHs+e~Qd (Kj-Qj+)sin eHs1, (14) 
AI~S-COS eHs1 (Ki-Qt+) ch eEs+Q, ah eEr] 
+eU sin eHs[ (K,-QJ+) sh eEs+Q, ch eEsl, (1 5) 

- 1 eE - 
Z - - ( - -  n,  sin ctlr 

sh eEs 
1 cE 

+ ( - I = + - ~ + ~ - ~ ~ ~ H ~ - ~ ~ ~ - ~ ~ ) P , ~ - R ~ &  2 S ~ ~ E S  

1 eH 
+e,j (T(zt-yi'-sh sln eHs &+diS (1 6) 

1 eH sheEs 
Ptr = - --- ((Kt-Qi+-Q,)sin eHs cos eHs 

(2--y-) eE sin eHs 
+e,[Q cos2 ens+ (K,-Q,+)sin2 eHs1)- (n+a.) K,e*='sin eHs, (17) 

2 sheEs R z -  --- 
(z--g-) eE {e,A, (K,-Q,+)cos eHs 

- (Ki-Q,+-Q.) (Ki-Q,+)sin eHs} - (n+8.)Me'"'sin eHs, (1 8) 
A,,--cos eHs[ (K,-Q,+) sh eEs+Q, ch eEs] 
+e,,sineHs[ (Kj-Q,+) ck eEs+Q, sh eEs]. (19) 

Here we have introduced the notation: 

S I 

M-M(x, y; s)  =J ds' j ds"(ezcp, ( z  (st))cpi ( z  (s") ) (6 (sl-s") 
0 0 

-eH[sin(2eH (s'-s") )sign(sl-8") +cos(2eH(s'-s")) ctg eHs]) 
+2e2cpr ( z  (s') ) cp2 (e (s") ) eH[ -cos (2eH (s'-s") )sign (s'-s") 

+sin(2eH(s'-s"))ctg eHsl) ,  (21) 
z(sl)  - ~ [ z - + ~ / ~ ( x - - y - )  (1-ctgeEs) (axp 2eEs-exp 2eEs') I .  (22) 

Although the obtained expression i s  somewhat non- 
compact, it i s  nonetheless quite suitable for use. Thus, 
with the aid of the Green function, written in the form 
(8), it i s  not difficult to derive the Lagrangian of the 
electromagnetic field with the radiative corrections. 
As i s  well known; the correction, ~ ' ( x l ~ ) ,  to the 
classical Lagrangian of an electromagnetic field with 
the potential A (x) is connected with the Green function 
by the relation 

Substituting (8) into (23), we find 

It can be seen from this formula that the correction to 
the Lagrangian does not depend on the parameters of 
the plane-wave field entering into the configuration, but 
is determined only by the value of the constant compo- 
nent. This fact has already been pointed out.' 

Finally, writing down the Green function in the form 
(8) allows us to easily verify that, in the field of the 
configuration in question, the mean value of the induced 
local current, 

is equal to  zero. 

2. THE POLARIZATIm OPERATOR 

Let us compute the PO of a photon in the presence of 
the classical field (6) in lowest-order perturbation 
theory. In the coordinate representation, the PO i s  
given by the formula 

Substituting the Green function (8) into (27), and going 
over to the momentum representation, we obtain 

where 
T?='lSp {f's(z, .- y; sL)yvS(y,  z ;  8,) 1, (29) 

TZ"-'/,SP { 7 i P ( z ,  y; s,) +ir5g (2, g ;  s,) I yvIP fy, z; sl) +iy% ( ( y ,  Z ;  k )  1. 
(30) 

For the integration over x and y, it is convenient to go 
over to the new variables 

The functions entering into the expression for I IPu(x, y) 
do not depend on r,; therefore, the integration aver 
these variables yields the 6 functions of the conserva- 
tion laws. 

Using the formulas 

Here 
we carry out the integration over the remaining vari- 
ables, except f,. As a result, we have 
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Here 

w 

sh(eE(sl+sz)) b,=eH sin (eH (sl+sa) ) (34) 
b,=eE 

sh eEs, sh eEsr ' sin eHsl sin eHsz. 

We should, in accordance with the formulas (32), make 
in (33) the substitutions: 

and set f, =wpJb, after the differentiation. 

The computation of the traces in (29) and (30) are 
easy to perform. After carrying out the regularization 
procedure, which amounts to the substraction from the 
expression obtained for Ilu"(p, q) the value of this ex- 
pression for zero external field and the addition of the 
regularized PO in a vacuum, 

P* 
n L ( p ,  q ) = n & v ( ~ , ~ ) - n : : o ( ~ ,  q ) + n . , , ( ~ ,  91 ,  (36) 

we obtain the sought result. 

Because of gauge invariance, the tensor ll &(p,q) 
should satisfy the transversality condition 

In order to represent the result in an explicitly trans- 
verse form, let us introduce the two sets of vectors 
Ak(P), Aa(q): 

The vectors A,(#), A,(q) form complete orthonormal- 
ized systems 

On account of the conservation laws p, =q,, pz =qZ, and 
P. =q-, we have the relations 

It is clear that 
( P P ' - P ( p q ) )  = (pq)  [ A k P A ~ + ~ ~ 2 ~ A i \ r v l +  (P~)'~(~')'~A~~(P)A~'(P). (41) 

With the aid of the introduced sets of vectors, we can 
write the expressions for T i v  in the form (without the 
longitudinal part) 

TiB"=- (A,*A,*+A,''il,') ch (eE ( s , f  s , )  ) cos (eH(s,-s , )  ) 
- (A,'A2'-A~'A,') ch (eE(s,+s,) ) sin (eH(s,--s,)),  

(42) 

Tz*v=Hwv*{YI(~,  Y ;  S , ) ~ ~ ( Y ,  2; s z ) -ZI ( z ,  Y ;  s1 )Zp(y ,  2; s d l  
-G*{Yi(z, Y ;  ~ , ) Z , ( Y ,  2;  s , )+Zi(z ,  Y; s i ) Y o ( ~ ,  2; sz ) l ,  (43) 

where 

~ " = A ~ " M  {[(a,' + " n' ) ( a , ~  + f ino)  
P- P- 

- 
It is understood that the arguments x ,  y of the functions 
Y, Z in the formula (43) should be expressed in terms 
of the variables (31). 

The formulas (33), (34), (36), (42)-(45) are the 
sought expression for the PO in the field (3). The ob- 
tained result can be transformed by summing over X 
and p and differentiating with respect to f in accordance 
with (35). But the formulas then lose their compact- 
ness; therefore, it i s  more expedient to carry out the 
subsequent transformations for a specific form of the 
plane-wave field. 

In the present paper we restrict ourselves to the in- 
vestigation of the interesting particular case when there 
is no constant electric field, and the plane-wave field i s  
a circularly-polarized monochromatic wave. The ten- 
sor of such a field can be written in the form 

P = H  [a2'La,'-at"aZv] +o *[n"aiU-ai"nvl ; 
a ( k z )  

(46) 

c p l =  (mle)  E cos ( k x ) ,  cp2= (m/e)E sin ( k z ) ,  E=eE,lmo, 

where w and Eo are the frequency and strength of the 
wave field. 

In the case under consideration the integrals (20) and 
(21) a re  expressible in terms of elementary functions. 
After carrying out a number of simple transformations 
(see above), and going over to dimensionless integra- 
tion parameters, we obtain for the PO the expression 

the rest of the components of the %,, tensor a re  equal 
to zero. 

pL= " 
u-uo-~ u1 sin O+E;U', 
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pL8 '11 a u 
+it  (=) f e t e -  i2- a uz e 2 * @ } ,  

a~ 
(53) 

au 
~ , , = ~ , . = e t ~ { - P [ I  sln pp + O ( i + p z ) + - ]  4m2 

8~ 
sin ppp- 

(T+? + T--  
Sin P P B +  sin ppB- 

(C -C-)l -- ' (T++T-) +' [ ~ ~ q ~  Lpp sinpp 
1 

+ T ( ~ - - ~ s ) c t g p p  

T.- {$+ 2cq ($)'c, sin O + - ~ * ~ ~ C * S } ,  (55) 

cbr,=-'/,(~--p') p ctg pp, (56) 

(D -a, .- -',, L P'~ 
U- $8 -2 ( (T) " ' * + ~ e ' l } ,  (57) 

@a1=U5i~=2-"{- ($): A+te-i*B},  (58) 

1 A = -  exp(-i&pp) (B ctg pp+i) - - - 
sin CLP 

' i ( i - - ~ ~ ) c t g p p ,  (59) 
s1n2 pp 

P'rl R = -  b+C+ p-c- 
(pet* w+i) {-exP(- iw~+)--srp(iW.,) .  PPB- 

(60) 

Here we have introduced the notation: 

P I  Y=arctg- ,  b =  CL sin P P  

P: sin ppp- sin ppB+ 

The vectors and iLi(q) a r e  connected with the vec- 
tors Ai(p) and Ai(q) in the following manner: 

. - 

&(p)  = (p'lm') '''11~ ( p ) ,  ,<,(q) = (q'lm')v~A,(q) 

The expression for the PO can, after the integration 
w e r  0 has been performed, be represented in the form 
of a double integral and a sum. After the integration, 
each term of the sum will contain 6(p -q *&), where 
n =0, 1, 2, . . . . Thus, the n-th term can be inter- 
preted a s  the amplitude of the process in which the ab- 
sorption or emission of n photons of the wave occurs. 
The term with n =0  describes the elastic scattering of 
the photon. 

Notice that if there is no magnetic field, then the 
number n can assume only even values. This circum- 
stance i s  a direct consequence of the Furry theorem. It 
is significant that inelastic processes involving real 
photons cannot occur. Indeed, using the conservation 
laws, we can easily verify that the relations 

pz=q2=ka=0, (pq)  = (pk)  = (qk)  =0, 

should be fulfilled in this case, i.e., the initial and 
final photons should move along the direction of propa- 
gation of the external wave. However, the PO vanishes 
when these relations a re  fulfilled. 

the formulas (47)-(61). Thus, from our result follows 
the expression for the PO in a constant magnetic fieldS 
when the wave field i s  switched off (i.e., for 5-0). 
Switching off the magnetic field (i.e., letting CL -0, 
q--m, with pq = op Jm2),  we obtain the PO in a plane 
monochromatic It should be noted that other 
sets of basis vectors a r e  used in the cited papers, and 
therefore complete coincidence of the results i s  at- 
tained after some transformations. 

$3. PROPAGATION OF A PHOTON I N  A WAVE FIELD - 

AND A CONSTANT MAGNETIC FIELD 

For a weak wave (a low-energy photon), the external 
field can be regarded a s  some material medium that i s  
in general nonlinear. In the linear approximation, the 
propagation of a photon in such a medium i s  described 
by the solutions to the Maxwell equation 

P'AVP) + j  dqnN"(p, q ) ~ . ( q )  =o. (63) 

The solution to this equation can be written in the form 

1 a 
A'(P) = J d ~ ' e d ( p , p ' ) 6 ( l + ~ ( p ' ) ) h , ( p ' ) :  (64) 

p h-, 

Here e;(p, p') and &(PI) a r e  the eigenvectors and 
eigenvalues of the operator II ""(p, p'): 

while the hk(pf) a r e  the amplitudes of the normal modes. 

Let us consider the propagation of a photon in the 
field (46), using the polarization operator (47) a s  the 
kernel of Eq. (63). To find out the principal laws gw-  
erning this process, it i s  sufficient to investigate the 
propagation of a photon along the lines of force of the 
constant magnetic field. The problem then gets sim- 
plified significantly, since (65) reduces to a system of 
algebraic equations. Indeed, if pf =0, then the PO is 
given by the expression 

~ : : ~ ( p ,  q )  I .: = o = ~ l u X 1 v N 1 l ~  (p-q-2k) +&k4,*6  (p-i+2k) 

~[.i,~.i~~(~)m,~+ll~~(p)li,~~,,~ + s  (p--q+k) [ i ~ u i ~ ( q ) ~ z a + L p ( ~ ) i 2 v m s z ~ ,  

where 
(66) 

Substituting (66) into (65), we obtain the eigenyectors 

and a system of equations for the coefficients f,;,: 

Here we have introduced the notation: 

It i s  easy to obtain the PO for particular cases from 
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The system (60) has solutions provided that its deter- 
minant vanishes. As a result we have the dispersion 
equation 

The eigenvectors (68) correspond to elliptically po- 
larized waves, the intensity of the electric field of the 
wave having a longitudinal component in the general 
case. Indeed, for fit =O the polarization vectors a re  

and the corresponding field intensities are  

E,=2-'"p,(a,+ia,) , H,=2-"pn (aa-ia,), 
E,=2-'"p, (a,-ia,) , H,=2-"p, (a,+&), 

E,=m-I (p,'--p,,')n, H,=O. 
(7 3) 

It should be noted that, since the functions (70) vanish 
at p-  =0, the propagation of transverse photons with the 
vacuum dispersion law along the external wave is al- 
ways possible. 

In weak fields the square of the photon momentum dif- 
fers little from zero for an arbitrary direction of prop- 
agation of the photon." Therefore, it is of interest to 
analyze Eq. (71) in the region of asymptotically strong 
fields, where we can expect significant deviations from 
the vacuum dispersion law. 

Let us derive the dispersion equation in the approxi- 
mation of a superstrong constant magnetic field. As- 
suming that 

p i ,  q a i ,  E'qYpaI, q r / p m a ~ l ,  

but not assuming the wave-field intensity to be small 
compared to the magnetic-field intensity, we have up to 
terms that a re  constants.with respect to p 

where 

The substitution of (74) into (71) yields the dispersion 
equation2' 

[2n(t)  - i l  [ ( t + w ) I ~ ~ ~ ~ - i - n  ( t ) l [  (t-2a)lbaq2-1-n (t)l 
+ z n v t t  t ( t + w ) ~ ~ ~ ~ ~ - ~ - n ( t )  I 
+211a ( t ) [  (t-W)/~'qZ-l-II(t)I-- 

+ n ( t )  (4n(t);n(t j -n( t )  [2n(t)-ii}=o. (76) 
This equation can easily be solved for t2q2, and the 
qualitative behavior of the dispersion curves t =t(t2q2, A) 
can be obtained, using the method of Refs. 7. 

The presence in (76) of shifted arguments ( t i  A) and 
(t* 2A) is due to the absorption or  emission of photons 
of the external wave. If such processes can be ne- 
glected, then the equation gets simplified considerably, 
and assumes the form 

The expression (77) coincides in form with the well- 
studied dispersion equation in a strong constant magnet- 
ic field,' the dynamical variable t2q2 being the analog of 
the square of the transverse photon momentum pt .  

In conclusion, the authors express their gratitude to 
I. M. Ternw and V. N. Rodionov for useful discussions. 

 or fields of the configuration in question, corrections to the 
dispersion law in the case of weak fields a re  obtained in Ref. 
6 ,  in which the calculations are  carried out by a different 
method . 

2)~n the formula (761, we have neglected the term h / 3 d  ln  2p in 
comparison with unity. - 
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