
Af=(2n)-'[oo(F=3) -oo(F=4) ] =Zp,H,/Il i  (21) 

where pI is the magnetic moment of the nucleus of the 
13'cs atom and I is the nuclear spin. In an HO=0.486-0e 
field, in which the signal shown in Fig. 3b was obtained, 
Af =546 Hz, which coincides with the value of the modu- 
lation frequency determined experimentally from Fig. 
3b. 

Thus, we have observed and investigated nonstationary 
RF coherence (free precession, nutation, spin echo) sig- 
nals during the impulsive excitation of the HFS transi- 
tions of optically oriented cesium atoms. The RF-co- 
herence spin-echo signals were obtained with the aid of 
either two successive microwave pulses, o r  one micro- 
wave pulse with the subsequent inversion of the magnet- 
ic-field gradient. We have obtained for the nonstation- 
ary coherence signals theoretical expressions which 
have allowed us to explain the characteristic SHF-pulse- 
duration dependence for the nutation signal and the ap- 
pearance of subsidiary spin-echo signals, a s  well as to 
determine the optimal conditions for echo-signal excita- 
tion for two methods of realizing it. We have also ex- 
plained the behavior of the nonstationary signals ex- 
cited by an unmodulated microwave-radiation pulse. 
There is good agreement between the experimental re- 
sults and the theory. 
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The longitudinal integral of the motion of a charged particle in a plane wave, an integral which is 
equivalent to conserved particle energy or ~ 0 n S e ~ e d  longitudinal particle momentum in reference systems 
in which the wave is either stationary or uniform, can be treated as a one-dimensional Hamiltonian if the 
quantity kt-oz is regarded as the time. The validity of the adiabatic invariant that follows from this 
Hamiltonian is investigated on the basis of the exact equation. Adiabatic invariants that are valid in the 
particular cases when the above-mentioned adiabatic invariant is not conserved are constructed. 

PACS numbers: 03.20. f i 

The integrals of, and the adiabatic invariants as- ants a r e  fairly widely used, and i t  i s  therefore useful 
sociated with, the motion of charged particles located to generalize this approach, which is the object of the 
in plane periodic electromagnetic fields enable us present communication. 
to investigate such problems a s  the acceleration of Let us consider a plane electromagnetic field that 
trapped particles when the wave velocity increases and has the nature of a wave, and i s  described by the 
the attendant damping o r  monochromatization of the potentials 
waves, the autoresonant motion and radiation of 
electrons, stationary nonlinearQ and slowly evolving A, cp=A, cp(*), $=ot--kz, (1 ) 
waves in a plasma, lo semiclassical quantization, " etc. 
This incomplete list shows that the dynamical invari- where the potentials, the frequency w , and the wave 
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number k can be slowly varying functions of the longi- 
tudinal coordinate z and the time t. Everywhere lengths 
and velocities a r e  divided by c; the momentum p, by 
mc; the energy y, by mca; the potentials, by m$/e, 
where m and e a r e  the res t  mass and the charge of 
the particle. Because of the cyclicity of the trans- 
verse coordinates of a charged particle in the field (11, 
the generalized transverse momentum 

pA+AL=C-~~t 1 
-- -- - (2) 

is conserved. If the potentials A and rp, besides being 
dependent on the phase J,,  also depend explicitly on the 
variables z and t, and w and k also depend on these 
variables, so  that they a r e  now determined by the 
equalities 

where u is the particle velocity, then the equations for 
p, and y can be written in the form 

The separation of the explicit dependence on z and t 
evidently makes sense only when this dependence is 
much slower than the explicit dependence on J,. Mul- 
tiplying (5) by k and (4) by w , and subtracting, we ob- 
tain an exact equation containing only derivatives with 
respect to the slow variables: 

It follows from (6) that, in the absence of the indica- 
ted dependence on the slow variables z and t, the quan- 
tity Y is an integral of the motion. This integral of the 
motion was apparently f i rs t  obtained by ~ i l insk i i :~  and 
is used in many of the papers cited above, as well as 
in other papers. Let us show that i t  is equivalent to 
quantities that a re  conserved in special reference sys- 
tems. 

1. If w Ck, then there exists a reference system Kl 
moving relative to the laboratory-system along the z 
axis with velocity o/k,  in which the dependence of the 
potentials on time disappears, i. e .  , in which 

~ - - ~ ~ ( k = - ~ q * = - k ~ ~ ~  , (8) 

and therefore the total energy is conserved: 

y1+cp'= (p;+ (C-A,) '+I)  '+q'=const. (9) 

2. For w > k, the dependence on z disappears in the 
system K2 moving with velocity k/w: 

lp=t'(0'-1(')~==o't' % (1 0 )  

and the generalized longitudinal momentum is con- 
served: 

- 

p / + A / =  (y' '- (C-A,)'-1)"+A,'-const. (11) 

The transformation of the expressions (9) and (11) into 

the laboratory reference system yields the integral 
of the motion Y divided by the Lorentz-invariant fac- 
tor (k2 - wz)1/2. 

Notice that for the integral, Y, of the motion to exist, 
i t  is only necessary that the variables z and t en te r  into 
the potentials in the combination wt - kz, no restric- 
tion being imposed on the x and y dependence of the 
potentials. This significantly broadens the range of 
applicability of the integral, Y, of the motion: i t  in- 
cludes fields in waveguides, the wave can be super- 
posed on constant electromagnetic fields, etc . 

Let us show further that, for charged particles in the 
field (1 ), we can introduce a one-dimensional canonical 
formalism with the conserved Hamiltonian 

with the role of time played by the variable 7: 

T-kt-or ,  (13) 

and the coordinate J ,  having as its canonical conjugate 
the momentum 

We can, without loss of generality, impose on the 
potentials the Lorentz-invariant gauge 

and then 

The canonical equations 
. - 

which follow from the Hamiltonian (12), 

a re  equivalent to Eqs. (3)-(5) (in the absence of any 
explicit dependence on the slow variables z and t). 

The developed Hamiltonian formalism is Lorentz 
invariant, and can be rewritten in a covariant form. 
In the reference system Kl, in which w' = 0, the Hamil- 
tonian (18) coincides with the total energy, n = -p' 1 9  

and ?=Rtt'. In the case when w > k ,  Hand n a re  im- 
aginary, and in the reference system K, 

It follows from the canonical~formalism that there 
exists for a field, (I), that is periodic in J , ,  and de- 
pendent on the slow variables z and t the adiabatic in- 
variant 

The adiabatic invariant (20) describes well the be- 
havior of the particles during the slow variation of the 
field parameters, except for  transit particles in the 
case when the phase velocity varies, i . e . ,  when w/k 
# const. Therefore, let us investigate the applicability 

264 Sov. Phys. JETP 50(2), Aug. 1979 V. Ya. ~avydovski~  264 



of the adiabatic invariant (20) when the only varying 
parameters of the wave a re  o and k. In this case Eq. 
(6 )  with allowance for the expressions 

r=k(Y-kcp+oA.)/(kz-o') 
+oo((Y-ktp+oA,)'- (k2-e2)  [ (C-A,)'+I])"/(k'-02), (21) 

p.=o ( Y - b + o A , )  l (kLo')  
+ko{(Y-kq+oA.)'-(k"o') [ (C-A,) a+ l ] ) ' / (k2-oa) ,  (22)  

which follow from (2)  and (7), assumes, after being 
averaged over $, the form 

dY Y d(k2-a') ---- 
dt 2(k2-a') dt 

where the angular brackets denote the mean value and 
V=o/k. When 

 c con st (24) 

Eq. (23) i s  integrable: 

which coincides with the adiabatic invariant (20) when 
w and k a re  the only vacying field parameters. 

Let us also note that the result (25)  is valid for 
trapped particles even when the requirement (24) is not 
fulfilled, since fo r  such particles the expression in the 
angular brackets in (23) vanishes on account of the fact 
that o assumes the values +1 and -1 equally frequently 
for each value of $. The foregoing corresponds to the 
fact that, for V- 1 ,  the expression (25) implies un- 
limited growth of the energy, which is valid for trap- 
ped particles, but physically absurd for untrapped 
particles. 

Let us discuss the difference between the situations 
for the transit and trapped particles in greater detail. 
If w/k +const, then the reference systems Kl and K ,  
are  noninertial , and a quasigravitational inertial- 
force field exists in them. This field can be neglected 
in the construction of the adiabatic invariant for  trap- 
ped particles, since the motion of these particles i s  
bounded; for transit particles the quasigravitational 
potential changes significantly, and allowance for this 
circumstance in the construction of the adiabatic in- 
variant is necessary. The physical meaning of the fore- 
going becomes clear when we consider the case w/k 
< 1 .  In going over into the K, reference system, we 
use the o/k value corresponding to some phase $,,, 
i . e . , to definite values of z and t .  The dependence 
of the potentials on t disappears in the neighborhood of 
this phase, and the entire developed theory is valid for 
trapped particle, which remain close to the phase JIo. 
Untrapped particles get away from the phase ICI,, but 
f a r  from this phase the value of w/k does not coin- 
cide with the value a t  the point JIo, the field becomes a 
running field, the Harniltonian y' + qd i s  not conserved, 
and the quantity J is not an adiabatic invariant. For  
untrapped particles the quantity y' + + 4 ,  where 4 
is the gravitational potential in the Kl system, is  con- 
served. Therefore, the adiabatic invariant (20) is  not 
conserved for untrapped particles in the case when w/k 
+ const. 

Next, let us derive the adiabatic invariants for a . 

varying wave phase velocity, assuming the remaining 
wave parameters to be constants. We do this for the 
cases when either k, o r  w, varies. 

1. Let w = const and k = k(z). This case corresponds 
to a stationary wave in an inhomogeneous medium. 
Equation (6) reduces to the form 

The adiabatic invariant for  trapped particles in a cir- 
cularly-polarized wave is obtained in Ref. 2 by going 
over into a reference system moving with the phase 
velocity of the wave, while the invariant for  untrapped 
particles is obtained in Ref. 13 by direct integration of 
Eq. (26)  after being averaged over z .  Also constructed 
there is a Hamiltonian which allows us to generalize the 
obtained result to transverse waves of any mode of 
polarization. 

It is not difficult to extend the results of Refs. 2 and 13 
to the case of waves of the type ( 1 )  that also have a 
longitudinal component. In this case there exists the 
conserved Hamiltonian: 

in which the momentum y + cp and the coordinate JI should 
be regarded a s  the canonically conjugate variables. 

The canonical equations that follow from (27) coin- 
cide with the equations of motion if a s  the time we use 
the proper time of the particle: 

Thus, the adiabatic invariant with respect to the pro- 
per time i s  the expression 

2 .  Let k = const and w = w ( t )  . This is the case of a 
non-stationary uniform wave. The equation for Y 
assumes the form 

This case has hitherto not been considered. Let us,  
therefore, investigate i t  in somewhat greater detail. 
Let us first  consider the circularly polarized wave 

A,=A cos rp, A,--A sin rp, rp = ( t )dt-kz ,  

and then generalize the obtained result after construc- 
ting the corresponding Hamiltonian. 

Let w < k. In this case there exist trapped particles, 
the period of whose motion i s  given by . 

8k T=- (C-A) + 1 
k2-02{ '  + 4CA 

where 
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is a positive parameter, which, fo r  trapped particles, 
is less then unity and K@) is the complete elliptic in- 
tegral of the f i rs t  kind. Averaging Eq. (30) with res- 
pect to t over the period (311, we ar r ive  at the equation 

- 
where E(B) is the complete elliptic integral of the se- 
cond kind. Integrating (331, we obtain the adiabatic 
invariant 

J-BB(B)/(I-F)"-const. - - (34) 

Similar calculations fo r  untrapped particles lead to 
the expressions 

The left member of (36) is a total differential, and 
therefore 

The adiabatic invariants (34) and (37) pertain to the 
case w <k .  Let us  write out the expressions for  the 
opposite case, w > k: 

For w < k, the quantity Y is always positive, while for  
w > k, it can also be  negative. In (38) a' is the sign of 
Y: 

a'+p Y. (39) 

Equation (30) for  w > k assumes the form 

(40) 
The left-hand side of (40) is a total differential, and - 

therefore 

The adiabatic invariants (34), (37), and (41) coincide 
up to constant factors with the expression 

This is not accidental, because for  k =  const and w 
=w(t), we can construct the conserved Hamiltonian 

-- 

0 

with the canonically conjugate momentum p, +A, and 
coordinate IJ and the time 

the canonical equations that follow from (43) being the 
equations of motion of the particle in the wave. 

Thus, the quantity 

J' - $ (p.+A.)d$ (45) 

is an adiabatic invariant. Notice that the Hamiltonians 
(27) and (43) and the corresponding adiabatic invariants 
(29) and (45) are not Lorentz invariant. This is due to 
the fact that the reference systems in which w = const 
and k  = k(z) o r  k = const and w = w(t) are, on the basis 
of these requirements, preferred systems. 

From the above-expounded theory we can draw the 
following practical conclusion: in the case when the 
phase velocity of the wave is invariable, we should use 
the adiabatic invariant (20); in the cases, however, 
when w = const, k =  k(z) and k = const, w = w(t) (29) 
and (45) are the adiabatically invariant expressions. 

In conclusion, let us  note that one of the most impor- 
tant consequences of the canonical formalism con- 
structed here i s ,  in our opinion, the possibility of 
writing down the equilibrium Gibbs distribution f o r  
particles in a strong wave: 

Another possibility that arises from the above -developed 
approach consists in the construction of transverse 
adiabatic invariants: 

which describe the slow dependence on the transverse 
coordinates, thereby removing the assumption that 
the wave is an ideal plane wave, an assumption which 
greatly limits the generality of the method. 
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