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A quantum-mechanical investigation of the processes of short-pulse propagation in a two-level resonance 
medium is carried out. The coherent-state representation for fields and matter is used in the calculations. 
A consistent system of Bloch and electromagnetic-field equations similar to the set of LagrangePoisson 
equations is obtained. It is shown, that this system goes over in a particular case into the Korteweg-de 
Vries equations. Self-induced transparency and its distinctive features in the cases of low- and high-power 
pulses are also investigated. As was to be expected, the obtained expressions go over in a particular case 
into the McCall-Hahn solutions. 

PACS numben: 42.65.G~ 

The production of short  and ultrashort high-power In the case of a single mode R ,  can be written in the 
light pulses has stimulated intensive investigation of form 
their propagation in resonantly absorbing In I 

all  the papers without exception the theoretical de- RSt= C r a j  expcihr,), 
9-1 

(3) 
scription of the propagation process is based on a semi- 
classical approach in which the two-level medium is where k is the wave vector and xi is the position vector 
treated quantum mechanically, while the field is de- of the particle. On introducing the single-particle phase 
scribed by the Maxwell equations. states 

In the present paper we ca r ry  out a consistent quan- I *)jt=exp (-ikq) I *>a raj exp (ikxj) I * ),k-ral*) (4) 
turn-mechanical analysis of the interaction of short 
light pulses with a two-level medium. For  this pur- and the dipole interaction between the single field mode 

pose, we use the coherent-state representation for the and the medium, we can choose the R ,  operators in the 

field and the material.6'8 A continuous representation form (2) both for  samples of small length and for ex- 

of this sort  enables us to reduce the evolution of the tended media. 

quantum-mechanical system to  the evolution of a clas- 
sical system during which the quantum-mechanical 
relations between the physical quantities a re  preserved. 
It is on this basis that we consider the phenomenon of 
self-induced transparency. The density matrix, the 
field characteristics, and the angular momentum are  
used in the Boson representation. 

1. THE KORTEWEG-DE VRlES EQUATIONS 

For  the unified description of the field and the en- 
semble of two-level particles, let us choose the co- 
herent-state representatione8: 

b l $ ) = $ l b ) ,  aria+, a - ) -a t la+ ,  a-), (1 

where b is the photon-annihilation operator, the a, a re  
the effective spin operators for  the excited and ground 
states repsectively, I P )  is a coherent state of the pho- 
ton field, and ) a + ,  a_) is a coherent state of the angu- 
lar  momentum. 

The operators corresponding to the cooperative angu- 
lar  momentum R ,  and its  components a r e  expressed in 
the second-quantization formalism in terms of the op- 
erators a:, a, a s  follows: 

R.== Car+<hlr , lp )a , ,  
h,S 

R+=ab+aT, R8='/,(a++a+-a-+a-) , 
(2 

where r ,  is the effective-spin operator for samples of 
length smaller than the wavelength, and A(p)  is the final 
(initial) state. 

In the Heisenberg representation, the equation of 
motion for  some physical operator A has the form 

d A  i  
-5-  

dt 
[A,%l, (5) 

where &P is the total Hamiltonian of the field +medium 
system. In the rotary-wave appraximation this Hamil- 
tonian will have the form 

Here fiu is the energy of the excited level of the active 
center and g is the interaction constant. 

The form of the operator A is specified by the prob- 
lem under consideration. On the basis of the equations 
of motion (5) and the Hamiltonian (6) for  the quantities 
characterizing the field and the medium, we obtain the 
consistent system of differential equations: 

dpldt=rq+mR,, dR.ldt=rR,-qR.; 
dqldt=-rp-mR,, dR,ldt=-rR.+pR,; (7) 

drldt=O, dR,/dt=qR,-pR,, 

where 

p=f'<b+)+f<b>,  R,=<R+)+<R->, 
q= i { f '<be>- f<b) ) ,  R v = i { < R + ) - < R - ) ) ,  

r=o ,  R,=2<R,), m= 1 f 12,  
f is the interaction constant. The system of equations 
(7) is a consistent set  of Bloch equations (the right- 
hand side) and electromagnetic field equations (the left- 
hand side). 

The averaging of the quantities entering into (7) was 

253 Sov. Phys. JETP 50(2), Aug. 1979 0038-5646/79/080253-04$02.40 O 1980 American Institute of Physics 253 



performed over the coherent states with the aid of the 
density operator p: 

P-Wr,  (8) 

where pFul is the density operator of the field (medium). 
The factorized form of p is determined by the fact that, 
first, we choose a representation in which P does not 
vary in time; second, the field and the medium do not 
interact a t  the initial moment of time; third, the radia- 
tion is assumed to  be totally coherent. 

Using the Klauder-Sudarshan theorem: we can ex- 
press the solutions to the Eqs. (7) in terms of the in- 
tegrals, I,, of the motion, the mean values, 

of which clearly do not vary in time, and a r e  deter- 
mined by the initial conditions. Here I a,) 
= I D + ,  a_ ,@) ,  @a, =daa+@a-dap, andP(a,)  
=P,(@)P,(a+ a_) is the weight function. Analyzing the 
system of equations (7), we see  that the structure of the 
obtained equations is similar to  the structure of the 
system of differential equations determining the motion 
of a solid about a fixed point (the Lagrange-Poisson 
equations),'O which significantly facilitates the deter- 
mination of the solution. 

Introducing the local time T = t - x/u, and omitting the 
apparent, but tedious calculations, we can derive from 
the system (7) the well-kntswn Koretweg-de Vries equa- 
t ions : 

where n =(b+b) =n(x, t) is the photon density, R, =(a,) 
is the inversion density of the medium, E =n(O) +R3(0); 
n(0) and R,(O) a re  the initial values of the photon and in- 
version densities, respectively. The general solution 
to (10) has the form 

where X =n, R,; S,,m a r e  constants that depend on the 
initial conditions, and 6 =a (t - x/u). The quantities P, 
q, R,, and R, a re  connected with n and R, by the rela- 
tions 

(px+q')/4g'-n, R . ' + R ~ = ~ = R ~ - R ~  (12) 

Since the solutions to Eq. (10) exist in the form of 
running periodic running waves, we can, using the 
standard methodlo for the Lagrange-Poisson equations 
(7), show that cp =wt - k x .  Then 

p = 2 g ( n ( s ,  t ) ) "  sin (wt-kz) ,  R,=d(z, t )  w s  ( a t - k z ) ,  

q=2g(n(z, t ) )"cos ( a t - k z ) ,  R,-d(z, t ) s in (o t -kz ) .  
(1 3) 

On the other hand, energy is conserved during the 
propration of electromagnetic waves in a medium (the 
Poynting theorem): 

-. 
E(x, t) and B can be found by solving (10). The electric- 
field intensity, E ( x ,  t), is then described by the formula 

(15) &(z, t )  w s  ( a t - k z )  . 
- 

The eernal-electromagnetic-field-induced polariza- 
tion, 9,  of the medium will have the form 

# = p { ~ ~ ,  cos (a t -kz )  -Ruet sin ( a t - k z ) )  
=X cos ( a t - k z )  -Y sin ( a t - k z ) .  (16) 

In the formulas (14)- (16) we have used the following 
notation: U(x, t) =n2(4r)-lE2 (x ,  t) is the energy density 
of the electromagnetic field; S(x, t) =e,cg-lU(x, t )  is the 
Poynting vector, W =tiwR,(x, t )  is the energy density 
stored by the medium, g is the refractive index, 
e,(x =1,2,3) is the unit polarization vector, and p is 
the transition dipole moment. 

For  the steady-state process, and for T =x - x/u, 
(14) goes over into 

The integration of (17) yields the f i rs t  integral: 

Since Eqs. (7) and (14) describe one and the same pro- 
cess, (18) will be the integral of motion for  (7) as well. 
Substituting the formulas (15) and (16) into (14), we can 
write (18) in terms of the envelopes: 

I= (clv- 1) n ( z ,  t )  +R, ( z ,  t )  =n(O) +R, (0). (1 9) 

The expressions (7), (14), and (19) describe the most 
general case (in the rotary-wave approximation) of.the 
resonance interaction of a photon field with a two-level 
medium. Each particular effect (boson avalanche, self- 
induced transparency, nutation) is determined by speci- 
fying the first  integrals Zi  and the constants S i  and k. 

2. SELF-INDUCED TRANSPARENCY 

We shall assume that the two-level active centers of 
the material interact only via the radiation field. We 
shall characterize the high-frequency polarization in- 
duced in such a medium by the pseudo-spin vector (the 
Bloch vector): 

For  the case of the electromagnetic interaction with the 
medium of pulses of short duration (right down to T, 

-10'" sec, where T* is the pulse length in the medium), 
the condition rpl>> w is naturally fulfilled. We assume, 
as usual, that T, is much less than all  the relaxation 
times. 

In the preceding section we showed that the self-con- 
sistent system of equations, (7), for the coherent in- 
teraction of the field with the pseudospin reduces to the 
Korteweg-de Vries equation, (lo), for (n) and (R,). We 
shall seek the particular form of the solution to (10) for 
an absorbing medium ((R3(0)) =- R). In this case the 
quantity I =n(O) - R will serve a s  the integral of the mo- 
tion; h = a n ( ~ ) ( l ~ , ( ~ ) l p ~  is the interaction energy; R is 
the cooperative angular momentum for the electric- 
dipole transitions. The successive integration of the 
Korteweg-de Vries equations leads to the expressions 

254 Sov. Phys. JETP 50(2), Aug. 1979 Bogdanov et a/. 254 



which are also the equations of motion for the nonlinear 
oscillator, i.e., the Korteweg-de Vries equations and 
the equations of motion of the spherical pendulum a r e  
equivalent. Consequently, the processes of nonlinear 
resonance interaction between a field and a two-level 
medium are  described by the theory of nonlinear oscil- 
lations, which is represented in our paper by Eqs. (21). 

The general solutions for n and R, will be 

n-11-(2~-h)sn'(e, m), R,=V,+ (us-u,)sd(9, m), (22) 

where the I ,  and u, are  the roots, expressed in terms 
of the integrals of the motion, of the right-hand sides 
of the equalities (21), 6=51(t- x /v ) ,  rn is the modulus 
of the elliptic function svi, and 52 is a characteristic 
oscillation frequency." *l2 

Let us assume that a weak pulse [n(O)<R] is incident 
on the medium. Then the first  integrals and the con- 
stants will have the form 

1s = 
(I-R) +A _ n(0) -2R+A 

a' ' a 2  ' 

if n(O)<<R, then m2 - 0 and S~L-s in .  

For the above-given values of the constants, the so- 
lutions, (22), of the equations will be 

n==n(O) (c/v-I)-' COS' {g[N(cIu- l ) - ' ] 'h( t -z lV)) ,  

R,=-R+n(O) sin' ( g [ N ( c l u - ~ ) - ~ ] " ' ( t - z l u ) ) .  (24) 

As can be seen from here, n and R, oscillate with the 
characteristic oscillation frequency i2 = g d V h  = T;~, de- 
termined by only the density, N, of the active centers, 
it being independent of the density of the incident pulse. 
For the oscillations to be observed, it is necessary 
that 51> T,-' (T, is the characteristic time of the trans- 
verse irreversible phase relaxation). But 51-' = S2l1e, 
where S2, is the rate of collective spontaneous decay,', 
~ ~ ~ 5 1 ; ' .  Consequently, the oscillations a re  possible if 
07, -T,. However, a s  a rule, T is little less than T, 
(Ref. 13), and in the case of weak pulses a is large, 
i.e., a2- -, v<< C, (YT, >> T,, since the magnitude of the 
energy density of the exciting pulse of significantly 
less than the concentration of the active centers. Con- 
sequently, after the period of time T, there occurs a 
nonoscillatory, noncoherent damping of the weak oulse 
a s  a result of the dephasing action of the relaxation 
characterized by T,. 

Let us consider the transmission of a high-power 
pulse [n(0)=2R]. In this case the integrals of the mo- 
tion and the constants assume the form 

Then the solutions (22) assume the form 

n--n(0)a-' sechz Qz, R8=-R+n(O) th' QT. (26) 

Thus, it can be seen from (25) and (26) that a soliton 
is formed provided n(0) =2R, i.e., the incident-energy 
density of the electromagnetic field is sufficient for it 
to  make the medium go over completely into the super- 
emissive state. Indeed, if we define the intensity as 
energy referred to  the lifetime of a soliton in a medium 
of length L, i.e., if 

then we obtain 

Here A = kLa, k being the absorption coefficient. The 
formula (28) coincides with the intensity obtained in the 
semiclassical approachlS up to the correction factor A, 
which takes account of the delay of the pulse (or boson 
avalanche ). 

Further, the inverted state decays. The medium goes 
over into the ground state, forming a soliton. Thus, 
the return of the medium into the initial state is similar 
to a boson avalanche,14s15 and can be described by the 
corresponding eq~ations.""~ A pulse with n(0) =2R is a 
2n pulse, since its height does not vary (the amplitude 
c2 =n(0)aZ =n(O), since a2 - I), returns the medium to 
the ground state, has the shape of a secant, and its 
length T, - 7, < T,. 

For  pulses lying in the intermediate region n(0) 
c 2 ~ 1 ,  the solutions (8) will have the form 

n=n(O)a-2 cna(8T, m), R,=-R+n(O) sn2(Q.r, m). (2 9) 

Such a pulse also makes the medium go over into the 
superemissive state R, 6 R , whose coherence is de- 
pendent upon the duration T, = ar, S T, (in this case a 
is little less than unity). The deexcitation of states of 
this type also yields coherent pulses whose shape is 
close to that of a 2n pulse, since cn(51r, m) assumes a s  
m - 1 a shape close to that of the secant, and oscilla- 
tions do not arise because of the closeness of the values 
of rp and T,. It is clear that the initial-density value 
n(0) =R specifies a r pulse. 

For n(O)> 2R the parameters characterizing the 
evolution of the medium and the field during the propa- 
gation of the electromagnetic-field pulse a re  deter- 
mined by the value of n(0). In this case 51 
4 l(S2 =g(n(0))lha-l, d =N&,-2), which leads to the increase 
of the velocity of propagation of the pulse. If, for ex- 
ample, in the case of a 2 r  pulse the duration T, 

=g-l(2/N)lh, then the velocity of the pulse' is twice the 
velocity of the 2n soliton. The densities n(0) lying 
within the range from 2Rk t o  2R (k +1) develop in the 
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medium into [2nk, 2 r ( k  +I)] pulses. The dynamics and 
interaction of the 277 solitons can be more fully de- 
scribed with the aid of the conventional technique used 
in the investigation of nonlinear waves described by the 
Korteweg-de Vries equations (10). 

The following conclusions a r e  among the most in- 
teresting results that follow from the above-expounded 
theory. 

1. The condition for self-induced transparency to be 
observed is not determined by the a rea  of the pulse, but 
by the density of the incident photons [n(O)J. 

2 .  Self-induced transparency is a development of a 
boson avalanche in an extended medium. 
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