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The propagation of an electromagnetic wave in a threedimensionally inhomogeneous weakly anisotropic 
medium with a real dielectric tensor (deformed crystal, elastically stressed isotropic material, and others) 
is considered. It is shown that in the vicinity of the points that would correspond in the presence of a 
boundary surface to'internal conical reflection there should occur an intense mutual transformation of 
linearly polarized waves with mutually perpendicular polarization directions. For the case when the 
region of wave interaction is much smaller than the scale of the inhomogeneities of the medium, analytic 
expressions are obtained for the fields and for the transformation coefficients. It is shown that the effect 
takes the most complete and simplest form only in the cases when the problem has sufilcient asymmetry, 
i.e., it is inhomogeneous, is in not fewer than two dimensions. 

PACS numbers: 03.40.Kf, 77.30. + d 

lNTRODUCTlON of the classical form of the effect does not occur here 

It is known that conical (internal) reflection is pro- 
duced when a plane wave is incident on a homogeneous 
crystal in those cases when the refractive indices for 
the two types of normal waves a r e  equal to each other 
in the given direction of the wave vector k (Ref. I): 

n, (k, E)=nr(k, E l ;  (1 

c is  the dielectric tensor of the medium. (Following 
Ginzburg's book: we define the ordinary wave as the 
one corresponding to the larger refractive index.) 

The purpose of the present paper i s  to determine the 
changes that occur in the classical effect if the homo- 
geneous crystal is  replaced by an anisotropic smoothly 
inhomogeneous medium with an inhomogeneity scale L 
much larger than the wavelength A. Accordingly, the 
condition (1) is then satisfied not in the entire volume 
occupied by the wave, but only a t  certain points, at 
which the wave vector k(r) and the principal axes of the 
tensor t ( r )  have a suitable relative orientation (see 
Sec. 1). It is clear that this gives rise to a mutual 
linear transformation of the ordinary and extraordinary 
waves (see Secs. 1 and 4), and this transformation is 
similar in many respects to the types of transformation 
which occur when high-frequency electromagnetic waves 
pass through a magnetoactive plasma, namely, in the 
region of quasitransverse pr~pagat ion,~"  a s  well a s  in 
a neutral current layer7 and in the case of propagation 
in a direction close to that of the magnetic field.2 

and its place i s  taken by a specific polarization picture 
which is connected with the wave transformation. In 
some implicit form, however, the effect leaves a trace 
also in the ray picture (see Sec. 5). 

It is useful to note that effects connected with linear 
transformation of vibrational and wave modes a r e  known 
in many divisions of  physic^,^ principally in plasma 
physics. Optics i s  an exception, and the present art i-  
cle should fill this gap. Linear transformation effects 
manifest themselves most clearly in nonstationary os- 
cillations of lumped systemsg and accordingly in non- 
stationary quantum-mechanics problems connected with 
adiabatic perturbations.1° The latter includes, in par- 
ticular, the umklapp process in beams of polarized 
pa r t i~ les l ' "~ ;  the optical effect considered here is 
similar to it in many respects. 

The inhomogeneous anisotropic medium (with real  t )  
in which the "tangential" conical refraction takes place 
need not necessarily be an inhomogeneously deformed 
crystal. It can be also inhomogeneously deformed 
g h s s ,  in which the optical anisotropy is due to the 
ehsto-optical effect. Another optically inhomogeneous 
anisotropic material is a moving liquid with an in- 
homogeneous velocity field, in which the optical aniso- 
tropy i s  due to the Maxwell effect. By dissolving in this 
liquid a substance with natural optical activity (such a s  
sugar and others) we can obtain an optically anisotropic 
medium with complex tensor 2. 

Since there a re  no abrupt separation boundaries in the Thus, we consider primarily the case when the tensor 
case considered here, the ray scattering characteristic i is real. The presence of gyration (nonzero 1mC) 
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contributes to  a smoothing of the effects, and a notic- 
able action is exerted by the presence of even small 
gyration (see Sec. 4). 

1. GENERAL PICTURE OF THE EFFECT AND 
DEGENERATE CASES 

A .  Localization of the effect. It is easily seen that 
condition (1) is satisfied by far  not on all rays. In par- 
ticular, to satisfy this condition it is necessary that the 
two angle coordinates of the wave vector k coincide 
with the two angle coordinates of the optical axes. The 
set  of points on the ray, likewise, is not two-dimen- 
sional but only one-dimensional. If on the other hand 
we take a one-parameter family of rays, then the ap- 
pearance of a finite number of "singular" points of (1) 
is  quite probable. Finally, if we take a two-parameter 
family of rays (i.e., a wave filling some region of 
space), then the condition (1) can already be satisfied 
on a certain one-parameter family of rays. The points 
(1) form in this case a certain "singular" curve. It is 
in some sufficiently close vicinity of this curve (in a 
"singular" zone) that the electromagnetic waves under- 
go a linear transformation of the type considered. 

It should be noted that for problems with sufficiently 
high degree of symmetry there a r e  quite typical dif- 
ferent degenerate cases in which the singular points a re  
either completely absent, or  fill a certain two-dimen- 
sional region ("singular" surface), or else the singular 
line coincides with one of the rays. By way of the 
simplest example, we can cite the case of propagation 
of a plane wave in a homogeneous anisotropic medium. 
If the direction of the wave vector does not coincide 
with the direction of any of the optical axes, then there 
a r e  no singular points a t  all, but if it does coincide, 
then the singular points fill the entire volume. 

We now take not a homogeneous medium but a plane- 
layered one (with a preferred z axis), and leave the 
wave plane in the x and y directions. For the sake of 
simplicity we assume that all the optical axes a re  per- 
pendicular to the y axis. Then singular points do not 
exist a t  all a t  k ,  # 0, but a re  perfectly possible (at a 
certain z,) if k, =O. In this case the singular points 
form a singular plane z =z,. By way of another exam- 
ple we can cite cases when an anisotropic medium has 
spherical symmetry while the wave has axial symmetry 
with an axis passing through the symmetry center. For  
the sake of simplicity we assume that refraction (the 
bending of the rays) is very small, and b e  wave is al- 
most plane. It is then obvious that all the points on the 
ray passing through the center a re  singular, and 
there a re  no other singular points in this problem. 

It is easy to  verify that in the above examples the de- 
generacies a re  lifted when the symmetry of the problem 
is lowered: for example, if the plane-layered medium 
is replaced by a two-dimensionally inhomogeneous med- 
ium, and the spherical symmetry is replaced by axial 
symmetry. Analytic calculations (in Sec. 4) will be 
carried out only for nondegenerate cases. 

B. The polarization picture. From qualitative con- 
siderations it is  easy to visualize the picture of the 

transformation in the general case. It recalls in many 
respects the picture of linear transformation in quasi- 
transverse propagation in a magnetoactive plasma. I t  
is known that the vectors of the electric induction D 
of the ordinary and extraordinary waves a re  directed 
along the principal axes of the two-dimensional part 
qua of the tensor fi =;-I, taken in a plane perpendicular 
to the wave vector. One of the waves (the ordinary one) 
is polarized in a direction corresponding to  the larger 
of the eigenvalues qae, and the other in a perpendicular 
direction. If the properties of the medium vary suf- 
ficiently slowly, then the type of the wave is also pre- 
served2: its vector D follows the motion of the princi- 
pal axes of the tensor qU8. 

We assume now that the ray passes through a singular 
point. When this point is approached, the anisotropic 
part 

of the tensor qua, the part that determines the polariza- 
tion direction, is proportional (in the simplest case) to 
the distance to the singular point, and the directions of 
the principal axes do not undergo a discontinuity on 
passing through this point, s o  that the direction of the 
wave polarization remains likewise unchanged. On the 
other hand, a jumplike change takes place in the cor- 
respondence between the axes and the eigenvalues: the 
axis corresponding to the larger eigenvalue qua (i.e., 
to the extraordinary wave) now corresponds after pass- 
ing through the singular point to the smaller eigenvalue 
(i.e., to the ordinary wave). Thus, on passing through 
such a singular point the ordinary wave is completely 
transformed jumpwise into an extraordinary wave a s  a 
result of the actual 90" jump of the principal axes. 

We assume now that the ray passes nok through the 
singular point but close enough to  it (see Fig. 1). Then 
on the ray segment closest to the point (having a length 
I of the order of the impact parameter p )  the axes a r e  
likewise rotated through 90". If 1 is much larger than 
the period A of the spatial beats of the ordinary and 
extraordinary waves, then the polarization of the wave 

FIG. 1. Rotation of principal axes of two-dimensional real 
tensor qaB in the course of motion along the beam. The solid 
(dashed) arrows indicate the principal-axes unit vectors corre- 
sponding to the larger (smaller) eigenvalue. The hodographs of 
these unit vectors are marked by solid (dashed) lines drawn 
through the ends of the unit vectors. AB-ray passing through 
the singular point Q, ab-singular line. A jumplike rotation of 
the unit vectors takes place at the point Q. CD-ray passing 
past the singular line; C'1Y-section where the unit vectors 
undergo the fastest rotation. Its length i s  as  a rule of the or- 
der of the distance p between CD and ab. 
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manages in the main to  keep up with the rotation of the 
axes. On the other hand, if 1 <<A, then, on the contrary, 
the wave hardly has time to react to the rotation of the 
axes, since the phase shift between the ordinary and 
extraordinary waves, which builds up on the indicated 
segment, is small. Thus, the width of the singular 
zone is determined by that critical value p, of the pa- 
rameter p a t  which A -p. 

The quantity po can be easily estimated by f i rs t  rep- 
resenting the tensor i in the form 

where E, is a certain scalar function that coincides with 
the quantity (1/3)Tr$ or  is close to it. If we now 
recognize that 

then we obtain for p, the estimate 

C .  Possibility of calculating the effect. A sufficiently 
compact (geometrical-optics) method of calculating the 
described effect can be developed if the medium is 
weakly anisotropic, i.e., when 

Ae=max IAeijl a e o .  
1.1 

In this case A&/&, is an additional small parameter of 
the problem, accurate to  which the calculation is car- 
ried out. For  geometrical-optics equations, in turn, i t  
is possible to construct also analytic solutions-in the 
known particular case when the effect is localized, i.e., 
when the width p, of the singular zone is much less than 
the inhomogeneity scale L: 

For this case, in particular, the estimate (2) will also 
be confirmed. 

2. GEOMETRICAL OPTICS OF WEAKLY 
ANISOTROPIC MEDIA 

If the parameter A ~ / C ,  is  small, then, generally 
speaking, we can use the quasi-isotropic approxima- 
t i ~ n . ' ~ . ~  The rays in this case a re  assumed to be the 
same a s  in an isotropic medium with permittivity r:,(r), 
and the field is  calculated from the formulas 

where and q, a r e  arbitrary real  unit vectors that 
form, together with the tangential unit vector t an 
orthogonal right-handed triad; satisfies the energy- 
flux conservation law 

div (e:oo%) -0; 

F , , , .  . . ,c, a re  the components of the tensor E,, along 
the unit vectors q, and q,; the quantities r, and r,, 
which determine the polarization of the field, a re  ob- 
tained from the equations 

Here 

where n and b are  the normal and binormal to the ray, 
and T is the ray torsion radius (T-I =b-dn /d~) .  

Although Eqs. (4)- (6) do make i t  possible, in princi- 
ple, to describe the linear wave transformation, in con- 
t ras t  to the traditional geometrical-optics 
their application to our application to  our problem en- 
tails certain difficulties. The point is that these equa- 
tions determine the difference between the refractive 
indices only accurate to quantities of the order of 
( A E ) ~ & ; ~ ~ ,  and this in turn can lead to an incorrect de- 
scription of the linear transformation in cases  when 
I ti, - n,l S ( A E ) ~ & ; ~ ~  (see Ref. 6). This is precisely the 
case realized here, since the effect is being considered 
near points where n, =n, but Ac + 0. We therefore must 
s tar t  out not with Eqs. (4)-(6), but with the more ac- 
curate geometrical-optics equations derived in Refs. 
16 and 6 (a short derivation is given in Appendix 1). 
They differ from (4)-(6) in the following: 

a )  The rays a r e  assumed in exact correspondence 
with the tensor i ( r ) ,  i.e., to correspond to an ordinary 
o r  an extraordinary wave. 

b) yo in formula (4) is replaced by 

where cy, and ti, a r e  the phase shift and the refractive 
index corresponding to  the chosen type of wave, and 
n, =% (k, ,c ) is  the refractive index corresponding to  the 
other type of wave, but t o  the wave vector k, =Vq,. 

c) The unit vectors q, and q, form a right-handed 
triad and the wave vector k,. 

d) Equations (6) a re  replaced by 

where E;,', . . . ,&: denote the components of the tensor 
E - I  along the unit vectors q, and e. 

Thus, the changes made in formulas (4)-(6) affect 
only quantities of second order in A&/&,, but it is  pre- 
cisely these quantities which guarantee here the cor- 
rectness of the approximation. In certain cases (for 
example when describing quasitransverse wave propa- 
gation in a magnetoactive plasma, these terms make a 
substantial contribution to the quantities v , ~ ,  and 
therefore also t o  the t r ans format i~n .~  In our case, 
however, a t  real  2, the inclusion of second-order 
terms does not influence the minimum of the quantity 
1 n, - n,l, which remains equal to zero if variation with 
respect to k is made. Therefore the refinements in this 
case a re  small (-A&/&,)-they concern the directions of 
the optical axes and the details of the polarization pic- 
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ture; this makes it possible to use the quasi-isotropic 
approximation in its initial form (4)-(6). However, al- 
lowance for gyration (which will henceforth be assumed) 
calls for additional precautions in the use of Eqs. (4)- 
(6), and we shall therefore assume that the refined 
method is used, i.e., Eqs. (7), (6a), etc. 

Since the tensor E is assumed to be Hermitian, we 
can regard T&l a s  an increment to the imaginary part of 
v,,, and will use in this connection the notation 

the restrictions on 3 ,, will be discussed in Sec. 3. Ac- 
cordingly, the singular points will be def ined to be those 
a t  which the conditions 

which go over into the conditions (1) for real 2, are  
satisfied. 

3. LINEARIZATION OF THE COEFFICIENTS OF THE 
GEOMETRICAL.OPTICS EQUATIONS (CASE OF 
LOCALlZABlLlTY OF THE EFFECT) 

We now assume that the condition (3) is satisfied and 
consider the behavior of the wave in the vicinity of some 
singular point Q. We assume that the size of this vi- 
cinity is much less than the inhomogeneity scale L, but 
much larger than the width p, of the singular zone. We 
introduce in this vicinity the curvilinear coordinates 
a, 0, and o, where o is the linear coordinate on the 
ray, while a and P a r e  the parameters of the ray 
family; we assume here that the points Q we have 
a = P = o  =O. For example, the coordinate o can be 
reckoned on all the rays from a plane passing through 
Q and normal to the ray; the parameters a and f i  can be 
chosen to be the Cartesian coordinates of the points 
where the rays cross the indicated plane; these co- 
ordinates lie on this plane with origin at the point Q 
and their axes a re  arbitrarily oriented (see Fig. 2). We 
assume that within the considered vicinity the contribu- 
tion of the gyration and of the torsion to the wave picture 
is not too large: 

We can then use in this vicinity the expansions 

where a, b,v,A,B, V,D are  real constants, and the dots 
denote terms of second order in a, P, and o. 

It is easily seen that if the two coefficients v and V 
in the expansions (10) a r e  equal to zero, then Eqs. (5) 
lead in first  order in a to plane waves, in other words, 
to describe the linear transformation in this caee we 
must consider higher terms of the expansions of v,, and 
O,, in powers of o, something we do not propose to do 
in the present paper. We confine ourselves therefore 
to the case when u2 + Va not only is different from zero, 
but is nowhere comparable with the slow parameters of 
the problem. 

Another degenerate case occurs when a : b : u 

FIG. 2. System of coordinates and of polarization unit vectors 
in the region where the ray approaches the singular line: the 
dimensions of the region are  much smaller than the inhomogen- 
eity scales; Q, ab, AB, and CD are  defined in Fig. 1. Ei,- 
electric vector of incident linearly polarized wave; El and E2- 
ordinary and extraordinary components of the transmitted wave 
(Eill EIa,I Ell '+[ E21 '= 1 Einl '). The unit vectors qi and q2 are 
the initial (arbitrarily chosen) polarization unit vectors; GI 
and G2 are the unit vectors of the plane waves El and E2; cp i s  
the angle of rotation from ql to GI. All the unit vectors 
ql, . . . ,&, are perpendicular to the ray. u, a, p, &, and are  
spatial (locally Cartesian) components: u-coordinate along the 
ray, a, 8-initial (arbitrary) transversecoordinates; the coor- 
dinates 2 and 6 are chosen such that the singular line lies in 
the (u, 8 )  plane; 6 is the angle of rotation from the a axis to the 
cu axis. 

=A : B  : V, i.e., when v,, and Rev,, a re  proportional to 
each other in first  order in a, P, and o. In this case, 
a s  can be easily seen from (5), a t  Imir,, = O  the terms 
of first  order in a, P, and a likewise do not lead to 
linear transformations. In other words, in this case 
the quantities v,, and Rev,, contribute to the transfor- 
mation only via the quadratic and higher-order terms 
of their expansions in a, P, and o. 

It  is obvious that the two degenerate cases can be 
eliminated by imposing the condition 

and by stipulating also that d not be a small parameter 
anywhere. It is useful to note that the quantity d is in- 
variant to arbitrary rotations of the unit vectors q, and 
q, and of the axes a and P. 

We now choose the directions of the unit vectors q, 
and q, and of the axes a and 6 (which have s o  far been 
arbitrary) such a s  to simplify to the utmost the ex- 
pressions (lo), and consequently Eqs. (5). Namely, we 
rotate the unit vectors q, and & in such a way that V 
becomes equal to zero, and we-rotate the axes a and 
P in such a way that the coefficient B becomes equal to 
zero: - 

q,=q, cos cp+q2 sin cp, . . . , r l = r ,  cos cp+r2 sin cp, . . . , 
cp='/, arg (v+iV) , 

a=a cos c+p sin 6 , .  . . , c=arg[ (-aV+Av)+i(-bV+Bv) 1. (12) 
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We denote the new values of the coefficients a, . . . , V 
by d ,  ..., v: 

These transformations have a simple physical meaning: 
q, and q, are  chosen such that a t  sufficiently large a, 
i.e., a t  sufficiently large distances from the singular 
point, the main contribution to the coefficients of Eq. 
(5) is  made by the diagonal component v,,. This in turn 
makes it possible to specify the initial condition for the 
normal wave in a very simple form, namely, for the 
initially extraordinary wave this condition takes the 
form 

and in the case of the initially ordinary wave the sub- 
scripts 1 and 2 in (14) should be interchanged. 

The rotation of the axes a and P likewise have a sim- 
ple physical meaning. The point is that in terms of the 
new variables the equations of the singular line (8) take 
the form 

i.e., the line lies in the coordinate plane & =O. At 
6 * 0 there a re  no singular points a t  all (within the lim- 
its of the considered singular region). 

Substituting now the transformed expressions for vll 
and v,, in (5) and discarding the terms nonlinear in a, 
P, and a, we obtain Eqs. (5) in the form 

4. FIELDS AND TRANSFORMATION COEFFICIENTS 
WHEN THE EFFECT IS LOCALIZED 

If we introduce in (15) the dimensionless variable 

and put 

r%'--r, arg (@+Ah), 

then Eqs. (15) a re  transformed into the system 

which contains only one parameter 

whose physical meaning is that it determines the change 
Acp of the phase difference of the normal waves in the 
section of rotation of the polarization directions of 
these waves (i.e., of the principal axes of the tensor 
qae) .  In fact, inasmuch a s  in terms of the unit vectors 
Q, and ?& the component Dl, is constant in a (and its 
modulus is  (02 +A2&2)1h], and the component v,, varies 
linearly with o, the length 1 of the rotation section 

(where l U,,l s I vlll) i s  of the order of 

The difference An between the refractive indices in this 
section is -&;Ihl 0,,1. Thus, the quantity A q  = klAn is 
actually 6f the order ofp.  

We note that the reason why p becomes infinite a t  
iJ = O  and vanishes a t  d = O  is  (as indicated in Sec. 3) the 
neglect of second-order quantities in a, P, and o in the 
expansions (10). 

Equations (16) and the initial condition (14) coincide 
(subject to the notation change fl  - y,, r; - 7,) with the 
system of equations and the initial condition considered 
in Ref. 5 (and the meaning of the parameter P is es- 
sentially the same). The solution of this b m d a r y -  
value problem i s  (accurate t o  an arbitrary common 
phase factor): 

where D,,(z) is a parabolic-cylinder function." 

Thus, the wave linearly polarized in the direction of 
the unit vector q, is transformed into a wave linearly 
polarized in a perpendicular direction. The coefficient 
of this transformation i s  

On the rays passing through the singular line, this co- 
efficient becomes minimal-it is equal to zero if there 
is no gyration o r  torsion. On the other hand the coef- 
ficient of transformation of the ordinary wave into the 
extraordinary one is maximal in this case, a s  expected 
from general considerations (see Sec. 1). Conversely, 
with ircreasing distance from the singular line we have 
k,, - 1, but the mutual transformation of the ordinary 
waves into extraordinary ones vanishes. 

The parameter D contained in (17) and describing the 
gyrotropy of the medium and of the degree of "twist" 
of both the ray and of the anisotropic properties of the 
medium, always leads to a smoothing of the effect, 
since the minimum of the parameter p increases (see 
Appendix 2). 

Equation (17) yields also a more accurate estimate 
of the width p, of the singular band in a direction per- 
pendicular to  the rays; it suffices for  this purpose to 
se t  p =O. In the simplest case, when 

D< ( e o " ~ / k ) ' ~ ,  

we obtain 

The width of the singular band in the direction of the 
rays can be obtained by choosing for 5 the variation 
interval (-1,l): 

I t  is  clear that both estimates agree with each other and 
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with the estimate (2) in the simplest cases (far from 
degeneracy), when 

5-8"- max laAei4azkl. 
1J.k 

5. "IMPLICIT" RAY PICTURE OF "TANGENTIAL" 
CONICAL REFRACTION 

We consider the Hamilton equations 

using the invariant form of the expression for n&,E^): 

where the upper sign corresponds to the extraordinary 
wave and the lower to the ordinary wave. The first  
equation of (20) then yields the following expressions 
for  the components of the group velocity along the unit 
vectors Q, %, and q, =kAkl: 

where 
.. . . A  

$ = = ~ e i ,  $==lmq, q=q+ 

(since i = 2+). 
If the tensor <' corresponds to a uniaxial medium and 
GS = 7);, = 0, then on approaching the singular point 
(where q,, - q,, =q;, = 0) we have qis, qls - 0 and v,, v, - 0, 
i.e., the vectors v and k become parallel. On the other 
hand, if the tensor q' corresponds to a biaxial medium, 
then when the singular point is approached the vector v 
begins to change rapidly its direction, moving along the 
cone corresponding to the internal conical refraction. 
Similar jumps occur in the vector dk/dt ,  but not in the 
vector k, a s  is verifiedby the second equation of (20). 
I t  is easily seen from (21) that the integral break in 
the vector v is independent, both in magnitude and di- 
rection, of the impact parameter of the ray relative to 
the singular point and of the side on which the ray 
passes near this line. Consequently, all the rays 
"break" in like fashion (by an angle equal to the apex 
angle of the internal conversion refraction cone) and 
there is no scattering of the rays. 

We note that allowance for  these breaks does not af- 
fect adversely the estimates of the accuracy of the 
employed geometrical-optics method (-AE/Z,), a s  can 
be easily verified by investigating the discrepancy 
Eqs. (5), i.e., their discarded terms. The structure 
of this e r r o r  is  indicated in the Appendix 1. 

In conclusion, the author considers it his pleasaunt 
duty to thank S. N. Stolyarov and A. G. Prudkovskii 
for a discussion of the work and for useful remarks. 

APPENDIX 1 

DERIVATION OF THE GEOMETRICAL-OPTICS 
EQUATIONS 

We write down Maxwell's equations for  the electric 
induct ion 

VD-rot rot ( i ~ )  =O (A.1) 

and seek the solutions in the form 

where the notation is the same a s  in Sec. 2. Substitut- 
ing (A.2) in (A.l) and projecting it on the unit vectors 
Q and %, we obtain Eqs. (5) and (6a) if we discard the 
error-the terms of order of 

azr. r, a g  
Ikl-*- -- a~ a~ ' lkl azm a~ ' 

b e ,  ar. Ae, aq, r, aAe, -- - Fa-, -- 
eo azk ' so a ~ ,  e ,  azi 

which lead to corrections not larger than 

Finally, without substantially affecting theapproximation 
accuracy, we can replace D in the left-hand side of 
(A.2) by EE,. 

APPENDIX 2 

ESTIMATES OF THE INFLUENCE OF Im 2 
We estimate now the critical value D, of the quantity 

D =ImU,,, the approach to which increases strongly the 
influence of gyration on the transformation process (in 
the case when the effect is localized). It is  clear from 
(17) that this takes place a t  

At D>>D,, the effect vanishes almost completely, since 
the mutual transformation of the ordinary and extra- 
ordinary waves ceases everywhere. At D -Dm this 
transformation is preserved in the singular zone, but 
even on passing through the singular line the coef- 
ficient of this transformation i s  much less  than unity. 

Comparing (A.3) with the estimate obtained in Sec. 4 
for the width p, of the singular zone in the direction of 
the rays, we obtain 

In other words, the effects of gyration a re  significant 
in the case when the gyration manages, over the length 
of the singular zone, to make a contribution of at least 
of the order of a radian to the phase shift between the 
ordinary and extraordinary waves. 

It is  clear that s o  radical an influence on the trans- 
formation process can be expected a lso  from the anti- 
Hermitian (dissipative) terms of the tensor g, and 
their critical values should in this case satisfy esti- 
mates similar to the estimates (A.3) and (A.4). It fol- 
lows therefore, in particular, that the influence of the 
dissipation on the transformation is small  if the inte- 
g ra l  absorption on passing through the singular zone 
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is small. A more detailed allowance of the dissipation 
is not a simple task, since the geometrical-optics 
equations used here (which a re  connected with Eqs. 
(7) and (6a) a re  essentially based on the assumption 
that the tensor EI is  Hermitian. On the other hand, the 
quasi- isotropic approximation [formulas (4) and (6)], 
although not using this assumption, likewise do not 
guarantee a correct description of the effect (see Sec. 
2). 
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Radiative transitions in collisions of atoms and the 
photodissociation of vibrationally excited molecules 

1. I. Ostroukhova and G. V. Shlyapnikov 
I. V. Kurchatov Institute of Atomic Energy 
(Submitted 12 December 1978) 
Zh. Eksp. Teor. Fiz. 77, 483-491 ( A u p t  1979) 

We haw developed in the quasiclassical approximation a theory which permits detennination of the 
probability of radiative electronic transitions in the case when the extremum of the difference in the 
potential energia occurs close to the turning points on the potential curves. This theory contains 
previous results as limiting cases and, together with them, solves the problem of determining the spectral 
chamct&tia of the considered hlnsitiona over the entire frequency region. 

Rdiation and absorption of photons in mlfisions of 
atoms is due mainly to transitions between the electron- 
ic  terms of the quasimolecule formed in the collision 
process. The basis of the classical and quasiclassical 
theory of processes of this type was set forth in the 
work of Kramers and ter-Haar,' ~ a t e s ?  and ~ a b l o n s k i . ~  
Subsequently this theory was extended to the photodis- 
sociation of molecules with high vibrational 
The classical approach, which assumes that the nuclei 
a re  moving along classical trajectories, leads to  a de- 
pendence of the cross sections for these processes on 
the difference of the potentials of the two electronic 
states. This approach is not valid, however, in the re-  
gion of internuclear distances where the potential dif - 
ference has an extremum, and for determination of the 
cross sections i t  is already impossible to use the con- 
cept of a classical trajectory of the motion of the nuclei. 
In this case an applicable method is that which uses 

quasiclassical wave functions of the nuclear motion for 
calculation of the probability of an electronic radiative 
transition. Both approaches a re  incorrect if the radia- 
tive transitions occur near the turning points on the 
potential curves. Use of quantum-mechanical nuclear 
wave functionss in this region of distances permits the 
transition probability to be obtained if the difference 
of the slopes of the potential curves near the turning 
points is sufficiently great. '' 

In the present work we have developed a quantum- 
mechanical theory which permits determination of the 
radiative transition probability even in the case when 
the extremum of the difference of the potential curves 
occurs close to the turning points (the slopes of the po- 
tential curves at the turning points differ hsignificant- 
ly). This theory contains the previous results as limit- 
ing cases. By combining this theory with existing the- 
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