
the isotropic singularity and making a change of vari- 
ables to the variables H, &, o, Ha, and aa,  we obtain 
the solution (2.15). It is shown a t  the same time that 
no other solutions exist near the isotropic singularity. 

')we use a system of units in which the velocity of light and the 
gravitational constant are  each equal to unity. The metric is 
written in the form -ds2 =gt&xidxk, where gi, has the signa- 
ture (-+++I. The Latin indices run from 0 to 3; the Greek 
indices, from 1 to 3. 
2b the present paper we neglect the effect of the thermal 

fluxes. Such fluxes do not, in fact, arise in the homogeneous 
models. In the more general cases it  must be assumed that 
we are  considering matter with a sufficiently small coeffi- 
cient of thermal conductivity. Equations that also take 
account of the effects of thermal conduction can be f o d  in 
Ref. 3. 
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It is shown that the kinetics of the interaction of gravitational perturbations with collisionless particles 
(neutrinos) in the ultrarelativistic stage of expansion of the universe leads to a behavior of long- 
wavelength gravitational perturbations which is qualitatively different from that obtained by Lifshitz in 
1946 if the energy density of the collisionless particles is more than 5/32 of the total energy density. An 
important feature of the new long-wavelength asymptotic behaviors is their oscillatory nature. The 
asymptotic behavior is also found of high-frequency perturbations in an isotropic universe when 
allowance is made for the influence on the perturbations of the gas of collisionless particles. 

PACS numbers: 98.80.Dr 

INTRODUCTION 

In 1946, ~ i f s h i t z '  solved the problem of the gravita- 
tional stability of the isotropic relativistic cosmological 
model of the universe. He assumed that the matter of a 
hydrodynamic model with isotropic energy-momentum 
tensor. The results obtained in Ref. 1 concerning the 
ra te  of growth of perturbations were subsequently widely 
used in studies into the theory of the formation of the 
large-scale structure of the universe. 

In Refs. 2-5 the analogous problem was solved under 
the assumption that the matter of the universe can be 
treated in the framework of the model of a collisionless 
gas, i.e., a model described by a collisionless kinetic 
equation. This model of the matter i s  valid in the cases  
when the characteristic frequency w of the investigated 
processes is much higher than the collision frequency u 
of the particles of the matter (w >> v). The hydrodynamic 
model of matter used in Ref. 1 is valid i f  w << v. 

As i s  shown in Refs. 3-5, the model of a collisionless 
gas and the hydrodynamic model of matter lead to very 
different asymptotic behaviors of perturbations in an 

isotropic universe. This example suggests that i f  the 
universe contains not only matter described by the hy- 
drodynamic model but also a gas of collisionless parti- 
cles, then this gas could have a significant influence on 
the ra te  of growth (or damping) of perturbations. 

In a hot universe, a gas of muonic and electronic neu- 
trinos is collisionless.6 The muonic neutrinos become 
collisionless T=O.O~  sec  after the s t a r t  of expansion of 
the universe, while the electronic neutrinos become col- 
lisionless a t  ~ = 0 . 2  s e c  (see Ref. 6). 

Zel'dovich and ~ o v i k o v ~  also give relations for the 
equilibrium energy density of different particles in the 
universe a t  a time close to the time of "switching off" of 
the muonic neutrinos: 

These rat ios remain valid until the electron-positron 
pairs a r e  annihilated. I t  follows from the .ratios (1) that 
the rat io a! of the energy density of the collisionless 
particles to the energy density of the collisional parti- 
cles a t  the times 0.01 < T < 0.2 sec  is 
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From 7 =0.2 sec and later, this ratio becomes even 
larger, since a t  r=0.2 sec the electronic neutrinos a re  
"switched off," i.e., they become collisionless: 

8vll, c,, + Ge 7 
as- --. 

%+a,* 11 (3) 
After annihilation of the electron-positron pairs, the 
value of a decreases to a, =0.46 (Ref. 6). Note that the 
influence of gravitons i s  not taken into account in Eqs. 
(2) and (3). Because of the weak interaction between the 
gravitons and the remaining particles, the gravitons 
a r e  also collisionless. Therefore, allowance for grav- 
itons would increase the ratios (2) and (3). 

Thus, it is clearly necessary to solve the problem of 
the development of gravitational perturbations in an iso- 
tropic relativistic model of the universe filled with two 
components-a perfect liquid and a collisionless gas. 
The present paper is devoted to the solution of this prob- 
lem. 

Among the results, we mention in the introduction the 
following. During the ultrarelativistic stage of expan- 
sion of the universe, the asymptotic behavior of long- 
wavelength perturbations depends essentially on the pa- 
rameter a. For a! < a *  = 5/27, the perturbations behave 
qualitatively in the same way as in the model universe 
filled with perfect liquid. For a > a * ,  the asymptotic 
behavior of the perturbations is qualitatively different 
from that in an isotropic universe filled with a perfect 
liquid. A characteristic feature of the new asymptotic 
behaviors is  their oscillatory nature. 

We see  from (2) and (3) that in the real  universe the 
condition a > a * is satisfied, and therefore the asymp- 
totic behaviors of long-wavelength perturbations during 
the ultrarelativistic stage of expansion of the universe 
differ qualitatively from the behavior found in Ref. 1. 

1. DERIVATION OF EQUATIONS FOR THE 
PERTURBATIONS 

The behavior of a gravitating system consisting of a 
mixture of a perfect liquid and a collisionless gas is de- 
scribed by the system of Einstein equations in which the 
right-hand side is the sum of the energy-momentum 
tensors of the liquid and the gas. This system of equa- 
tions admits a solution describing isotropic cosmologi- 
cal models. Because the structure of the energy-mo- 
mentum tensor of a collisionless gas, whose distribu- 
tion function in the unperturbed state has the form of 
Eq. (5) of Ref. 2, is the same a s  that of the energy-mo- 
mentum tensor of the perfect liquid [see, for example, 
Eq. (6) in Ref. 21, the equation for the scale factor a(q) 
of the cosmological model has the same form a s  for the 
perfect- liquid model: 

where E = c, + c2, in which c, is  the energy density of the 
gas, and E 2  is the energy density of the liquid. Here and 
below, we shall consider only the spatially flat cosmo- 
logical model with the metric 

ds2=a2 ( q )  (dqz-dt2-dy2-dz2). (4) 

During the ultrarelavistic stage of the expansion, when 
ci = 3P, =const/a4 and E 2  = 3P2 = const/a4, the solution 
for a(q) has the form a =a,q, where 

We consider small perturbations of the metric &,, and 
the distribution function 6f(x,p). Following Ref. 1, we 
impose on the perturbations of the metric the gauge con- 
ditions &,, =0, and introduce the notation 

1 
hmB=-6g,p, hB'=yash~=-h.6 (a, $, y, 6,. ..=I, 2,3). 

az 

Calculating the perturbations of the components of the 
energy-momentum tensor of the gas and the liquid, and 
also the perturbations of the left-hand side of the Ein- 
stein equations, we obtain, as in Refs. 1, 2, and 7, the 
system of linearized Einstein equations and the linear- 
ized kinetic equation for 6f(x,P): 

Here, we have introduced the noktion h =h t ,  qu =a2pa, 
qu = 6,f18, q2 =quqa ,pa a r e  the spatial momentum com- 
ponents of the particles, k is the gravitational constant, 
and 6uu a r e  the perturbations of the velocity components 
of the liquid. Both superscripts and subscripts follow- 
ing the comma denote simple derivatives with respect 
to the coordinates xu. The prime denotes differentia- 
tion with respect to q. In addition, in (6) we have intro- 
duced the function f: 

where fo is the distribution function of the collisionless 
gas in the unperturbed state. As is shown in Ref. 8, the 
function f, depends only on q. In all expressions, sum- 
mation over repeated indices is understood. 

Below, we consider perturbations during the ultrare- 
lativistic stage of the expansion of the universe, when 
El =3Pi, c2 = 3P2, a =a,q. In this case, we can set  q >> 
mca in Eqs. (6). 

Using a dependence of the perturbations on the spatial 
coordinates in the form exp(inuxa), where na =const, 
and bearing in mind the explicit form of scalar, vector, 
and tensor perturbations,1 we obtain from (6) in the ul- 
trarelativistic limit a system of equations for all types 
of perturbation. 

For  scalar perturbations, the system (6) acquires in 
the ultrarelativistic limit the form 

( 7 4  
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(n) of the velocity of the liquid also remains constant for 
the vector perturbations. 

Finally we write down the system of equations for ten- 
( 7 ~ )  so r  perturbations during the ultrarelativistic stage of 

expansion of the universe: 

( 7 4  3% 3 a -+ ixQt = - - v ( l - x " ) ,  
d t  2 i + ~  ( 9 4  

In deriving these equations, we have introduced the func- 
tion 

and used the expression for a, [see (5)], from which i t  
follows that 

where (Y = is the ratio of the energy density of the 
collisionless gas to the energy density of the perfect 
liquid. In addition in (7) we have used the notation x = 
COS~?, t =nq, n2=nana = baBnB. The dot in (7) denotes 
differentiation with respect to t; 9 and r p  a r e  spherical 
coordinates in the momentum space. In particular, naga 
=nqcos9. The functions y(t)  and A(t) were introduced 
earlier in Ref. 1. 

We note the differential consequences of the system 
(7), which a re  important for the following calculations: 

Here and below, we use the notation g = W2/& and also 
for the projection of the velocity of the perfect liquid 

onto the direction of propagation of the wave: 8 ,, =a(na/ 
n) 6ua. 

The system of equations for the vector perturbations 
during the ultrarelativistic stage of expansion of theuni- 
verse has the form 

Here, we have introduced the notation 

To investigate the obtained systems of equations, we 
use the operation method. We introduce the Laplace 
transforms 

a +(M+L 

zp= j d t  e-p'z ( t )  , z ( t )  = - d p  eP1zp, (10) 
1. 2ni - , -+b  

where z (t) i s  any of the functions y , A, V, Q, =u,g, ail, 9,. 
Determining @ from the f i rs t  equations in the systems 

(7)-(9) and substituting the result in the right- hand side 
of the remaining equations, we obtain integrodifferen- 
tial equations for the functions p ,  A, Q, v ,g ,  a,,, and9,. 
After the transition in these equations to the Laplace 
transforms, omitting a number of lengthy but simple. 
calculations (in the case a! - *, these calculations a r e  
given in Ref. 3), we obtain equations for y,, A,, Q,, and 
v,. In deriving the equations for y, and A,, we haveused 
the equations (7f) and (7g). 

As a result, the equations for  the Laplace transforms 
in the case of scalar perturbations could be reduced to a 
second-order differential equation for the new unknown 
R ( P ) :  

4 12 
R=p ( l + p z )  '"e-Pkrp ( p ) ,  (1 1) 

where 

-. 
(8b) 

3 a  p-i 30kut0 + - [ P - i p  in (-)I ( 9 ~ t o p + 1 8 k o +  ( 2 + w ) A )  - - + 18pdOz 
l + a  P+L P 

( 8 ~ )  --3j1&~p-Af~ + - 4 t r l  + - 54 [_ 2p (T 1 k t o  + -) A 
p l + a  1+3p 9~ 

where we have used the notation 
-- ' 

a (1+3p2)  
8nk '" P 

a , = - - j d c p c o s c p  c3at2 j d q q J f .  + I  

o ~ = 6 p ~ + 9 g ~ - t ~ ~ ( p ~ + h ~ )  -3 dx QS (2, to),  
A differential consequence of the system of equations --I 

(8) is  

6,-wnst, (8d) yo,Ao,g,, 911,0. and @,&,to) a r e  the values of the perturb- 
where 9, =a(sa/s)6ua is the projection of the velocity of ations a t  the time to =nqo. 
the liquid onto the polarization vector of the vector per- 
turbation. The result (8d) agrees completely with Lif- The functions y, and A, can be expressed in terms of 
shitz's result in Ref. 1, in which the physical component R a s  follows: 
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From the system of equations for the vector perturba- 
tions we obtain, after a Laplace transformation, the 
equation 

a 
Q," + -[8+12p2-~ip(l+p')ln l+a (c)] Q. P+$ 

From the system of equations for  the tensor perturba- 
tions, we obtain the equation 

1 

$+a (l+p2)' 
(15) 

where 
+I 

(4-z2)@,(z,to) +t ( + 

V , = U ~ / ( ~ + P ' ) ~ ~ ,  y(p)=- j& ot Vo pvo) 
p + u  

-1 

3 p-i 

i+a 1-10 

2. FINDING OF THE ASYMPTOTIC BEHAVIOR OF 
PERTURBATIONS FOR t = nq << 1 

Thus, the finding of small perturbations in an isotrop- 
ic universe has been reduced to the solution of the lin- 
ear  second-order differential equations ( l l ) ,  (14), and 
(15) and integration in the complex plane in accordance 
with the second equation of (10). 

To find the perturbations in the limit t =nq<< 1, we re- 
place the path of integration Rep = b in (10) by Rep =A, 
where A is a sufficiently large positive number. For 
Rep > b, the functions z, a r e  analytic, and therefore the 
value of the integral (10) is not changed by such a dis- 
placement of the contour. To calculate the integral (10) 
along Rep =A,  i t  is sufficient to know the expansion of 
z, in the limit Ip I - -. 

We seek the solution of Eqs. ( l l ) ,  (14), and (15) a s  
Ip I - - a s  follows. We expand the coefficients of Eqs. 
(lld, (14), and (15) in powers of 1/p, after which these 
equations take the form 

where V =R, 1 =-3 for scalar perturbations, V = Q p ,  
1 = 1 for vector perturbations, and V = Up, 1 = 0 for ten- 
so r  perturbations. In all  three cases,  the coefficient a. 
is 8a/5(l +a) .  

We write down some of the f i rs t  coefficients b,. For 
scalar perturbations, 

I14a+90 b*=-- 1 
koto+4toA + - bo, 

5 ( i+a)  2 

+ I  108a+140 72i19,,. 1 3 
b,=-18i jdz z@, (z, to) - 

35(l+a)  
+ - b* - - bo. 

-I 
l+a 2 8 

For  vector perturbations 

For tensor perturbations, 

bo=t2vo, bl=toi)o. 

The expressions for the coefficients a, a r e  

in the case of Eq. (11); 

in the case of Eq. (14); and 

in the case of Eq. (15). 

We find f i rs t  two independent solutions of the homoge- 
neous equation corresponding to Eq. (16). For a# 5/27, 
these solutions have the form 

where 

q,=-'/zf ip for a>5/27. 

q,=-1/2fp for 

For (Y = 5/27, the solutions of the homogeneous equation 
corresponding to (16) have a form that differs from (17). 
For the time being, we shall not consider this case. 

The coefficients A: in (17) a r e  determined by the re- 
cursion relations 

We find the general solution of Eq. (16), which in the 
limit Ip I - - has the form a ( p )  exp(-pt,), where a ( p )  - 0 a s  Rep- +m [this requirement follows directly from 
the definition for the Laplace transforms (lo)], in ac- 
cordance with the formula 

where 

Finally, the expressions for p, and )b can be reduced 
to the form (a:, = 0) 
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Here, is an operator which interchanges the indices + 
and -. For example, 

(I-&)A-F,+q-=A-F,+q--A+F,-q+ . 
etc. The coefficients F: and a r e  determined from the 
relations 

and the coefficients 4 and Alk from 

ArkF=al-Fk+fal+F,-, ArkE=al-E,+-al+E,-. (21d) 
The coefficients D* and E' have the form 

We also write down an expansion in the limit Ip ( - .o 

for the functions Q, and v, [(-I)!! E 11: 

Here, the coefficients f i  and E; can also be determined 
from the expressions (21a) and (21b), in which i t  is nec- 

essary to substitute the coefficients b, anda, correspond- 
ing to the considered case. 

Integrating term by term the terms of the series (19), 
(20), (22), and (23) by means of the relation 

and restricting ourselves to the f i rs t  terms of the re- 
sulting expansions (in powers of t =nq), we arrive a t  the 
following results in the limit t =nq<< 1 (here, we omit a 
number of lengthy calculations which repeat almost lit- 
erally the calculations given for the case a - - in Ref. 
5); in particular, for the given case ( a +  -) Eqs. (5.5), 
(5.6), and (5.8) of Ref. 5 remain valid, and in (5.7) for 
Q(t) there is added the term 8i9Jt;(l + a ) ;  using (18), 
(21). and the expressions for b, and a, to calculate the 
coeff ic ientsy,  q*, and $* in Eqs. (5.5)-(5.8) of Ref. 5, 
we arrive a t  Eqs. (24)-(31). 

1) In the case a < 5/27 

where 

+I  d x s ~ s  (s, to), I2 = +I j d x ( 1 -  z') ' " @ v ( z ,  t o )  3 

-L -1 

+I 

I* = j d z T ( 1  - Z ~ ) ~ ~ ~ @ " ( X ,  to). 
-1 

In the limit a - 0 we obtain from (24)-(27), up to "ficti- 
tious" transformations (see Ref. I ) ,  the solutions ob- 
tained in Ref. 1. 

2) In the case a > 5/27 

ito ( I ,  - 46,, d ( l  +a) ) 
p=po+ 

168 - 328' 
(28) 

225 Sov. Phys. JETP 50(2), Aug. 1979 A. V. Zakharov 225 



In the limit a! - -, we obtain from (28)-(31) the asymp- 
totic behaviors obtained previously in Refs. 4 and 5 for 
long-wavelength perturbations in an isotropic universe 
consisting of a collisionless gas. (In the expression for 
p obtained in Refs. 4 and 5 there a r e  some minor mis- 
prints.) 

In the foregoing calculations, we have not considered 
yet the case a =5/27. This case can be treated sepa- 
rately by calculations similar to those made above. 
However, the results for a! =5/27 can be obtained di- 
rectly from (24)-(27) o r  (28)-(31) by going to the limit 
0-0. As a result, for a! =5/27 we have 

We see  from Eqs. (24), (28), and (32) that the scalar 
perturbations contain terms that grow in accordance 
with the law q7, where y varies in the range from 3/2 to 
2 depending on the parameter a. However, the condi- 
tions of applicability of the linearized Einstein equations 
a r e  

Using these conditions for q =qo, we obtain the inequal- 
ities 

I,-46,,, , / ( l+a) <to, Iz-46,1(l+a) < t o ,  ( 3 6 ~ )  

from which it follows that long-wavelength perturbations 
do not attain large values even a t  the upper limit ( t=  1) 
of applicability of the expressions (24)-(35). For ex- 
ample, from (28) we obtain ( P ) ~ . ,  <<tiJ2<< 1. 

In Refs. 4 and 5, I did not take into account the condi- 
tions (36b) and this led to the incorrect conclusion that 
there is appreciable growth of scalar perturbations. 

Using the asymptotic behaviors for the perturbations 
of the metric, one can calculate the perturbations of the 
macroscopic characteristics of the liquid and the gas. 
In particular, from (7f) and (7g) we obtain for the pro- 
jection of the vector of the macroscopic velocity of the 
liquid onto the vector n, (the longitudinal component of 
the velocity) and for the perturbation of the energy den- 
sity of the liquid 

t - t  3" t - to  
+ 6 1 , , 0 c o s - $ - - -  4 (i  +a)igosinT, 

For the transverse velocity aL =a(S,/S)6ua, we have the 
result (8d). 

From the relations (37) and (38), which hold for all 
values of t =nq, we see  that in the limit t << 1 the per- 
turbations of the energy density of the liquid and the 
longitudinal velocity component of the liquid, like the 
perturbations of the metric, undergo for a!> 5/27 slow 
oscillations as the sine o r  cosine of the argument 
p In (t/to). The amplitude of the oscillations for g in- 
creases in accordance with the law q3I2, but this 
growth does not lead to very large perturbations of the 
energy density of the liquid because of the conditions 
(36~) .  

The perturbations of the components of the energy- 
momentum tensor of the gas can be calculated by means 
of Eq. (16) in Ref. 2, and also by means of the linear- 
ized Einstein equations obtained a t  the s t a r t  of this pa- 
per. From these last, the integrals off can beexpress- 
ed in terms of the perturbations of the metric and the 
perturbations of the velocity and energy density of the 
liquid. 

As we see from Eqs. (24)-(31), there exists a critical 
ratio of the energy density of the collisionless gas to the 
energy density of the liquid, this being equal to a* 
=5/27. If the ratio a! is  smaller than the critical value, 
the long-wavelength perturbations behave in qualitative- 
ly the same way a s  in the case a! = O  considered in Ref. 
1: The perturbations can be represented a s  a sum of 
power-law functions of the form q'312"8, q'312'", q(-1J2'+e, 
q'-1J2'd, where the parameter0 varies in the range O< 0 
a i. A difference from the solutions of ~ i f sh i t z '  i s  a 
slight change in the exponent of q. 

For a! > 5/27, when the enorgy density of the collision- 
less gas is more than 15.6% of the total energy density, 
the perturbations acquire an oscillatory nature, i.e., 
they differ qualitatively from the solutions obtained in 
Ref. 1. As follows from Eqs. (2) and (3), the energy 
density of collisionless neutrinos in the universe is be- 
tween 16.6% (for 0.01 < 7 < 0.2 sec)  and 38.8% (for 7 

< 0.2 sec) of the total energy density. Therefore, dur- 
ing the ultrarelativistic stage in the expansion of the 
universe the asymptotic behaviors of thelong-wavelength 
perturbations have the form (28)-(31), these commenc- 
ing after the "switching off" of the muonic neutrinos (7 
=0.01 sec). The results for long-wave perturbations 
during the ultrarelativistic stage obtained in Ref. 1 from 
the hydrodynamic description of the matter can hold only 
for 7 < 0.01 sec. 

Note that during the complete period of the ultrarela- 
tivistic stage of expansion of the universe the long- 
wavelength perturbations can pass through only a few 
oscillations, since the argument of the sines and cosines 
in (28)-(31), which is equal to Bln(t/to) = ip ln (? /~ , )  for 
rO =0.01 sec.  does not reach values appreciably exceed- 
ing 2n during the time of the ultrarelativistic stage. 

3. ASYMPTOTIC BEHAVIOR OF THE PERTURBATIONS 
FOR t=nq>> 1 

To find the asymptotic behaviors for t =nq>> 1, weuse 
the method of integration in the second equation in (10) 
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proposed by Landau to solve the problem of oscillations 
of an electron plasma (see Ref. 9). We integrate in (10) 
along a contour displaced far  to the left of the points p 
=pk, where pk a r e  the singular points of the functions 
p,, X,, Qp and v,, and surrounding these points. Fo r  
sufficiently large t =nq, the most important contribution 
to the integral (10) is made by the integration over the 
part of the contour in the immediate proximity of the 
points p =p,. Therefore, to calculate the integrals (10) 
by Landau's method it is sufficient to know the expan- 
sions of the functions p,,  Xp, Q, and v, in the neighbor- 
hood of their singularities. The singular points of the 
solutions of Eqs. ( l l ) ,  (14), and (15) coincide with the 
singular points of the coefficients of these equations (see  
Ref. 10). Therefore, the functions p p  and X, have singu- 
larities a t  the points p =ii, p =ii/3'I2, and, a s  is read- 
ily seen from Eqs. (13), a t  the point P = 0. The func- 
tions Qp have singularities a t  the points P = k i  and P = 0, 
and the function vp a t  the points p =d. 

To find the solutions of Eqs. (11 ), (14), and (15) in the 
neighborhood of the points p =d, we introduce the var- 
iables s =l  kip and expand the coefficients in powers of 
s. We find the general solutions of the homogeneous 
equations corresponding to ( l l ) ,  (14), and (15). These 
solutions have the form 

for Eq. (11) and 

for Eq. (14). Fo r  Eq. (15), the one independent solution 
has the form 

U, - A."'sn+'"(s3 In s)", 

and the second 

..",-a 

After this, we find particular solutions of Eqs. ( l l ) ,  
(14), and (15) in the form of the se r i e s  

The coefficients A: can be  found by substitution of the 
ser ies  in ( l l ) ,  (14), and (15) and by equating the coeffi- 
cients of equal powers of s and s31ns. 

Restricting ourselves to the f i r s t  te rms of the se r i e s  
for pp,  Xp, Q,, and v,, we obtain the following expan- 
sions in the neighborhood of s = 0: 

w h e r e ~ * , N * , K f , ~ ' *  a r e  power se r i e s  in s ,  and C:,Ci, 

B;, B+,, D; a r e  constants. The superscript  + is append- 
ed to solutions in the neighborhood of the points p =i; in 
this case,  s = l  +iP. The superscript  - i s  appended to 
solutions in the neighborhood of the points P =-i, and 
then s = 1 - i p .  

It remains to determine the expansions of the func- 
tions p, and h, in the neighborhood of the points p = O  
and p = *i/3'l2 and of the function $ in the neighborhood 
of the point p = 0. In the neighborhood of the point p =0,  
the solution of Eq. (11) has the form of a power se r i e s  
in s. Substituting in (13) 

we obtain 

f pp+h, = Lp lnp+L,, 
3 (43b) 

where L, and L2 a r e  power se r i e s  in s. 

To solve Eq. (11) in the neighborhood of the points p 
=ii/31/2,  we introduce the variables s = 1 *i.3'l2p, and 
expand the coefficients of Eq. (11) in powers of s. The 
general solution of Eq. (11) can b e  represented in the 
form of a linear combination of the solutions R t  and R, 
of the homogeneous equation plus the particular solu- 
tion 

where 

The coefficients A,,, B,,, and Dm a r e  found by substituting 
these se r i e s  in (11) and equating the coefficients of equal 
powers of s. 

The f i rs t  te rms of the se r i e s  in the neighborhood of P 
=*i/3ll2 for p, and X, have the form (s = l  *i-3lI2p) 

i a 
pp*+h,*-T- A,* + - A  * 

2 3  ( 1+a , s )  s ln  s+O'(sslns) +Fz*, (45) 

where A: =const, and and a r e  power se r i e s  in s. 

Equation (14) fo r  Q, in the neighborhood of the point P 
= O  has general solution of the form 

The f i r s t  te rms of the expansion (46) have the form 

where F is a power se r i e s  in p. 

To find the asymptotic behavior of the perturbations 
for t =nv >> 1,  we substitute the expansions (39)- (45) and 
(47) in (10) and calculate the integrals around the con- 
tour indicated above. Using the expressions 
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where y =l and 3'12, and C, a r e  the parts of the con- 
tours surrounding the points p = d / y ,  and the expres- 
sion 

where Co i s  the part  of the contour surrounding the point 
p =0, we arr ive  a t  the following results when t =nq >> 1: 

In obtaining the asymptotic behaviors for  p, and Xp, we 
have not taken into account the contribution from the in- 
tegrals over the part Co of the contour surrounding the 
point p = 0, since allowance for the integrals around Co 
of (43) leads to additional terms in (50) and (51) corre- 
sponding to fictitious changes of the metric,' which, fol- 
lowing Ref. 1, we omit. 

The first  terms in (50) and (51) describe the propaga- 
tion, with the velocity of sound c/3'I2, of sca lar  high- 
frequency oscillations in the liquid. The second terms 
in (50) and (51) describe the propagation with the veloc- 
ity of light of high-frequency scalar  oscillations in the 
collisionless gas. The amplitude of the oscillations in 
the gas is damped in accordance with a faster  law, 1/q3, 
than in the liquid (1/q2). If the liquid is absent, then for 
scalar perturbations in the collisionless gas we have the 
results that follow from (50) and (51) for A: = O  (and not 
the results (24) and (25) of Ref. 3 and (5.1) and (5.2) of 
Ref. 5, which were obtained on the basis of the incor- 
rect  assumption that the coefficient G! in (1.4) and (1.5) 
in Ref. 3 is nonzero). In the absence of the collisionless 
gas, the results a r e  obtained from (50) and (51) for 
= a  = O  and agree with Lifshitz's well-known results.' 

Note that for large t the f irst  terms become dominant 
in (50) and (51). Therefore, a certain time after the oc- 
currence of the initial perturbation the asymptotic be- 
haviors for p and h will virtually coincide with the as- 
ymptotic behaviors for t >> 1 obtained in Ref. 1 without 
allowance for the influence of collisionless particles. 

As we see  in (52), the asymptotic behaviors for vector 
perturbations for t >> 1 also consist of sums of two terms. 
The second, oscillating, term in (52) is due to the inter- 

action of the perturbations with the collisionless gas; 
the f i rs t  te rm is due to the interaction with the liquid. 
For  sufficiently large t, after the initial perturbation, 
the f i rs t  term in (52) becomes predominant. 

Thus, allowance for the influence of collisionless par- 
ticles in the universe on the development of gravitation- 
a l  perturbations has shown that the asymptotic behaviors 
of the sca lar  and vector perturbations in the isotropic 
universe obtained in Ref. 1 in the limit nq>> 1 a r e  the 
principal terms of the expansions for nq>> 1 of pertur- 
bations in a universe consisting of a liquid and a colli- 
sionless gas. Allowance for the influence of the colli- 
sionless gas leads to corrections that a r e  damped much 
more rapidly than the principal terms of the expansions. 

A collisionless gas present in the universe has its 
most pronounced influence on long-wavelength (nq << 1) 
perturbations in an isotropic universe. The asymptotic 
behaviors of long-wavelength perturbations in an iso- 
tropic universe a r e  qualitatively different from those of 
Ref. 1 i f  the energy density of the collisionless gas i s  
more than 5/32, i.e., more than 15.60/0, of the total en- 
ergy density. 

A characteristic feature of the obtained long-wave- 
length asymptotic behaviors i s  the presence in them of 
oscillating factors of the form cos[8 ln(q/q)] or  sin[B ln 
(q/qO)], a s  a result of which the long-wavelength pertur- 
bations can pass through one or  two oscillations during 
the ultrarelativistic stage. 

I am grateful to Yu. G. Ignat'ev for  drawing my atten- 
tion to the need for solution of this problem. I am also 
grateful to I. D. Novikov; a discussion with him of the 
results of the earl ier  papers Refs. 2-5 played an  impor- 
tant part in the writing of the present paper. 
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