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The cosmological solutions are investigated with allowance made for the dissipative processes by means 
of a viscoelastic description that excludes infinite velocities of propagation of signals. The expansions of 
the thermodynamic functions up to second order in the deviations from the equilibrium quantities are 
used. The Bianchi type-I model is investigated. It is shown that the effect of matter creation near the 
initial singularity is preserved, as in the case of simple viscosity investigated by two of the present 
authors [Sov. Phys. JETP 42, 205 (197511, while the effect of isotropization during the contraction 
disappears. The cosmological singularity necessarily exists at some stage of the evolution, but it may 
pertain to a new type connected with the accumulation of elastic energy. The stability of the Friedmann 
solutions in the vicinity of the singular point is investigated. It is shown that for these solutions to be 
stable, it is necessary to admit the propagation of signals with velocities higher than the velocity of light. 
Since the existence of such signals is impossible, the Friedmann solutions are unstable in the vicinity of 
the singularity. 

PACS numbers: 98.80. - k, 95.30.b 

8 1. INTRODUCTION 

The dissipative processes occurring in the course of 
the cosmological evolution i s  customarily taken into 
consideration with the aid of a viscous s t ress  tensor. 
At the same time, it is known that the equations of 
motion of a viscous fluid a re  parabolic, and therefore 
lead to an infinite velocity of propagation of signals 
(in particular, of explosions). Such a phenomenon con- 
tradicts the causality principle. This contradiction 
arises as  a result of the fact that the hydrodynamic 
theory of a viscous fluid is applicable only under 
conditions when the derivatives of the velocity of the 
matter with respect to time and the coordinates a re  
small. This condition i s  necessarily violated in the 
vicinity of the singularity, and the description of the 
dissipative processes with the aid of two viscosity 
coefficients becomes inapplicable. 

The object of the present paper is to eliminate the 
indicated deficiencies in the investigation of the effect 
of the dissipative processes on cosmological evolution. 
This is attained by altering the s t ress  tensor of matter. 
The relation between strain and s t ress  has the form of 
a relaxation equation similar to the Maxwell equation 
in the theory of viscoelasticity. Such a relation implies 
that matter behaves like a normal viscous fluid if the 
periods of its motion a re  long, and like an elastic solid 
if the periods of the motion a re  short. The charac- 
teristic time is the stress-relaxation time 7. For mat- 
ter  with such a s t ress  tensor (such matter is usually 
called viscoelastic matter) we can formulate the fol- 
lowing causality principle: the velocity of propagation 
of waves is less than c. 

The thermodynamics of viscoelastic matter differs 
from the previously used1e2 thermodynamics of a 
viscous fluid. A consistent relativistic theory of vis- 
coelastic matter is constructed in Ref. 3 .  Below 
we give only a summary of the essential results. A 

systematic exposition of the nonrelativistic theory of 
viscoelasticity can be found in Astarita and Marrucci's4 
o r  Blend'ss book. 

The equations of the hydrodynamics of a viscous 
fluid contain four kinetic coefficients: the dilatational- 
and shear-viscosity coefficients 5 and 77 and the dila- 
tational- and shear-stress relaxation times 7, and 7,. 

In the present paper, a s  in Ref. 1, it i s  assumed that 
the viscosity coefficients a re  functions of the energy 
density, which a r e  approximated by power dependences 
in the regions of small and large values of the argu- 
ment. The energy-density dependences of 7, and 7, 

also turn out under reasonable physical assumptions 
to be power functions a t  large and small values of the 
energy density. 

The arrangement of the material in the paper i s  a s  
follows. In 82 we carry  out an analysis of the cos- 
mological evolution, a s  illustrated by the homogeneous 
type-I model. The most interesting effects ar ise  a t  
those stages of the cosmological evolution when the 
viscoelastic s t resses  become of the same order of 
magnitude a s  the energy density, or  exceeds it in order 
of magnitude. One ef the effects of this sort  is the 
already well-known "matter-creation" effect. l Another 
interesting effect consists in the fact that isotropic 
expansion can s tar t  from a state in which a significant 
portion of the initial energy density is elastic energy. 
On the whole, the behavior of the solutions in the 
neighborhoods of the singularities differ greatly from 
the behavior of the corresponding results of Ref. 1, 
where the type-I model is also investigated. The most 
important difference consists in the result that iso- 
tropic contraction is unstable under certain conditions 
(following, a s  shown in 84, from the causality prin- 
ciple). 

In 83 we investigate the general solutions of the Ein- 
stein equations for  viscoelastic matter. We find the 
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number of physically different arbitrary functions that 
enter into the general solution. 

a re  small. 

The f i rs t  criterion of closeness of the state of the 
matter to the equilibrium state has the form In 04 we investigate the evolution of perturbations 

of the isotropic metric, and find the velocities of pro- 
pagation of short-wave perturbations. It is shown that, 
owing to the causality principle, the quasi-isotropic 
solution cannot be stable, and a general solution that 
is close to the quasi-isotropic solution cannot exist. 

For the understanding of the obtained results, it is 
important to remember that, in the vicinity of the 
singularity corresponding to infinite energy density, 
matter behaves with respect to shear like an elastic 
body. 

which implies that the elastic energy is small compared 
to the total energy. 

The second condition for the state of the matter to be 
close to the equilibrium state is that the terms of 
third order in o and a,, in the expansion of SI, = (Sui), , 
should be small compared to the second-order terms 
(Sf is the entropy-flux density). 

The information given below is sufficient for the 
reading of the paper. 

The energy-momentum tensor of viscoelastic matter 
has the form 

52. INVESTIGATION OF THE HOMOGENEOUS MODEL 

The metric of the homogeneous Bianchi type-I model 
has the form 

is the tensor of projection onto the space orthogonal to 
u,; E is  the energy density; P, the pressure; a ,  the 
dilatational-stress density a,, , shear-stress tensor, 
which satisfies the following conditions : 

The reference system is synchronous and comoving . 
From (1.2) we obtain 

o;=o, o,'uk=0, o.*=ou. (1.2) 

The relation between s t ress  and strain has the form2) 
Let us introduce the following notation: 

o +roo= (~n'.,,, U=U,~U', (1.3) 

The Einstein equations can be written in the form 

Here 5 and 7 a r e  the second- and shear-viscosity coef- 
ficients. On the right-hand sides of these equations 
stand the usual expressions for viscous s t resses  .6 

The symbols ro and r, denote the s t ress  relaxation times 
o r  the Maxwell times. where the ua a re  the diagonal components of the three- 

The thermodynamic functions of viscoelastic matter 
can be expanded in series in powers of the s t ress  ten- 
so r ,  just as is done in the theory of elasticity.' The 
entropy density S has the form 

dimensional tensor a:: 

The hydrodynamic equations Ti;, = 0 reduce to the single 
equation: 

b+3(e+p+o) H+C H,oa=O, (2.3) 

while the equations (1.3) and (1.4) assume the form 

Here So is the equilibrium entropy density. This ex- 
pression is a generalization of a formula of elasticity 
t h e ~ r y . ~  As T,, 7, - -, the ratio q/rl goes over into 
the shear modulus, while 5/ro goes over into the bulk 
modulus. 

Adding Eqs. (2.1) and (2.2), we obtain the first  integral 
of these equations: 

The description of a fluid with the aid of the s t ress  
tensor satisfying Eqs . (1.3) and (1.4) is hydrodynamic, 
and not kinetic, and is therefore valid only when the 
state of the matter is close to the equilibrium state, 
i . e . ,  only when those terms in the expansions of the 
thermodynamic functions which depend on the s t ress  

Taking into consideration the obvious inequality 

1 
C H . ' L ~  (ZH.)'=~F, 

we find from (2.5) that 
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3H2>e. (2.6) 

The equality in (2.6) is possible only in the isotropic 
case, when Ha =H for  all a. 

Let us introduce the new variables: 

X=-Haou. Y= (0')'. 

Then all the Eqs. (2.1)-(2.4) reduce to five equations: 

e=X-3(w+o) H, (2.7) 

-H-31P='/,(w+o) -e, (2.8) 

L ~ , ~ l ~ +  Y = Z ~ X ,  (2.9) 

roofa=-35H, (2. 10) 

X 
2+ ( ~ H X  t -) = - % ( a - 3 ~ ' )  -Y. 

Tl 11 
(2.11) 

Here W =  E+p is the enthalpy. We assume the chemical 
potential (ac,'an),, to be equal to zero. In this case all 
the thermodynamic quantities and the kinetic coefficients 
can be expressed in terms of E, and the particle number 
can vary. We set  w =cy, 1 S y 6 2, in the regions of 
small and large & values. In this case the equilibrium 
entropy density So is proportaional to & ' I y ,  and the se- 
cond condition for the state of the matter to be close to 
the equilibrium state can be written in the form 

Concerning T,, and T,, we assume that 

(6 i s  a positive constant) both for small and large c.  
The relation (2.14) is the simplest dimensional relation 
between E, and r0 and q and r l .  Moreover, as will be 
shown in 04, i t  follows from the physically reasonable 
assumption that the velocity of propagation of trans- 
verse waves in matter has a finite (lower than the ve- 
locity of light), nonzero value both in the case of low, 
and in the case of high, matter densities. 

A very important particular case is the Friedmann 
model with a flat three-dimensional space. Only two 
variables* and E, o r  o and H-remain in this case. 
The system can be investigated to the end, and the 
qualitative results will pertain also to the integral curves 
near the Friedmann surface in the phase space. Under 
these assumptions, the system (2.7)-(2.11) deter- 
mines, besides the normal Friedmann evolution from 
the true singluarity E =a, H = + a ,  R, =R, =R,=O, two 
more families of solutions of a type unknown before. 
The corresponding integral curves in the (u,H) plane 
a re  shown in Fig. 1. The family AZ, has singularities 
near the H = O  (G=o) axis. The curves intersect this 

Y a' 3oa(o+3fH) TO 

t= 
axis after a finite time, and the metric coefficients . 

(2. 12) neither vanish, nor become infinite in this case. The 
Y(o+3EH) T, + Cz k(2qX-Y) TO 

-CI criteria (1.6) and (2.12) show that the model is inap- 
511 E'l 

In the region of intermediate & values we make only 
the assumption that the function w(&) is a smooth func- 
tion and that i t  has no zeros. 

Equations (2.7)-(2.11) describe a dynamical system 
in five-dimensional phase space. We shall be interes- 
ted in the integral curves in the physical region, which 
is separated out by the condition & c 3 p .  The singular 
points of the dynamical system (2.7)-(2.11) that cor- 
respond to finite values of all the variables coincide 
with the final singularities of the system of equations 
for the case, investigated in Ref. 1, of matter in the 
form of a viscous fluid. 

These singular points a re  the following: 

1. H=e=o=X=Y-0 (point O), 
(2.13) 

2. X=Y=O, e=3H1, w(e)=g(e)  ( 3 ~ ) ' ~  (points N, and N2). 

As the calculation shows, the pattern of integral 
curves in the neighborhoods of these points is  the 
same a s  the pattern found in Ref. 1. Everything said 
in that paper about the corresponding singular points, 
N,, N,, and 0, a re  applicable with insignificant changes 
in our model. 

To investigate the behavior of the solutions a t  in- 
finity, it is necessary to make assumptions about the 
behavior of 6 ,  77, ro, and T, a t  large c . As in Ref. 1, 
we assume a power dependence of the viscosity coef- 
ficients on E for large values of &: 

FIG. 1. Integral curves of the flat isotropic model in the 
(a, HI plane. Besides the standard solutions EN2 and O F ,  
which correspond to expansion from the singular state with & 
= m , H =  and contraction from the infinitely rarefied state in- 
to the singular state, there are solutions of the type AZi that 
pass through the & = 0 state after a finite time, and nowhere 
have metric singularities. The singular points, Ni, N2, and 
0 [see (2.13)], of the system of equations are completely anal- 
logous to the corresponding singular points in the case of sim- 
ple viscosity. The entire pattern corresponds to the bz <3 
case. The value b 2 = 3  is not admissible on the basis of the 
criteria (1.6) and (2.12). 

21 5 Sw. Phys. JETP 50(2), Aug. 1979 ~elinskiret a/. 215 



plicable in this region. Since it is difficult to attach 
a physical meaning to such singularities, they will, 
apparently, disappear in a more realistic model. 

Solutions of the BO type correspond to expansion 
from the state with H = +m, t =a ,  o >>E. Undoubtedly, 
the model is inapplicable in the neighborhood of such 
a state. But the region of large positive o ,  H, and c 
should be in any model. This region corresponds to a 
large accumulation of elastic energy, which forms a 
significant portion of the total energy. Such an ac- 
cumulation of elastic energy and its subsequent dis- 
sipation a re  entirely probable, and will, possibly, 
occur in more realistic models as well. The qualita- 
tive behavior of the solutions a t  high a and H is as  
follows. The evolution of the Universe begins a t  some 
finite moment of time t = to. In the o > 0, H > 0 region, 
a t  the initial moment the metric coefficients a re  finite 
and nonzero, and the matter is elastically compressed 
to such an extent that the dilatational-stress energy 
density is infinite. A sudden expansion, beginning with 
infinite velocity, occurs. In the o < 0, H < 0 region the 
behavior of the solutions G F  and G Z ,  differs from the 
behavior of the solutions of the BO family in that H is 
replaced by -H and R  by R". At t =  to the matter is 
not compressed, but expanded, and i t  seems unlikely 
that the elastic energy can, under such conditions, 
form a significant portion of the total energy, o r  even 
attain large values. Such an expansion will lead to 
explosions. 

Although it is  difficult to explain why the elastic- 
energy density should become infinite a t  R +0 ,  the BO- 
type solutions should, apparently, remain in more 
realistic models, and should correspond to the real 
physical situation in which a large portion of the 
"initial" energy density is  made up of elastic compres- 
sion energy. 

To investigate the behavior of all the solutions of the 
system (2.7)-(2.11) a t  high H, we carry  out a com- 
pactification that simultaneously splits off the region 
where the model is inapplicable (see the Appendix). 
The Kasner and Friedmann singularities go over into 
the final singularities of the transformed system of 
equations. At the same time the points H = +m and 
H = -a stick together. The system cannot be linearized 
in the vicinity of the Kasner singularity. We were 
unable to find the general solution to the system (2.7)- 
(2.11) near this singularity, but we found many 
particular solutions, each of which exists under cer- 
tain special conditions. We can give the following 
reasons. As will be shown later (%4), owing to the 
relativistic-causality conditions, the Friedmann 
singularity is  necessarily unstable. This applies also 
to the other singular points, except the Kasner sing- 
ularity. Therefore, only four-parameter families of 
curves emerge from them. But the complete integral 
of the system should contain five parameters (or 
arbitrary contants), since the phase space i s  five- 
dimensional. Therefore, a f ive-parameter family of 
curves should emanate from the Kasner point, but here, 
in contrast to Ref. 1, t not only can vanish, but can 
also become infinite, a t  t =  0. Formally, the cri teria 

(1.6) and (2.12) a re  therewith violated in the second 
case, and can be violated in the first: instead of "much 
greater than" in (1.6) and (2.12), we have equality in 
order of magnitude. However, i t  is only for this rea- 
son that the solutions cannot be discarded, since it is 
not difficult to show that, during contraction, 

i. e . , the criterion (1.6) is  certainly violated. Thus, 
besides the solutions describing the "creation" of mat- 
t e r ,  there can also be solutions with an infinite initial 
energy density. 

The system can be completely integrated in the vic- 
inity of the isotropic singularity (for details, see  the 
Appendix). In terms of the variables H, Ha, oa , and 
t, the solution has the form 

where A, and A, satisfy the equation 

The criterion (1.6) is always satisfied; the criterion 
(2.12) can be violated. When A / y  = 2, the correspond- 
ing term is replaced by C,lnt. The dependence ~ ( t )  i s  
found directly from the f i rs t  integral, (2.5), of the 
Eqs. (2.1) and (2.2): 

The solutions a re  also valid for t < 0 (tAly i s  replaced 
by 1 tIaIy). Here H <O H, <O. The dependence o(t) 
can be found directly from Eq. (2.10) (we assume that 
b, < 1/2): 

Hence it can be seen that a<< t, and therefore a cannot 
have an effect on the solution (2.15). 

As has already been indicated, relativistic causality 
requires that A, o r  A, should be negative. Owing to 
this, we can elucidate some distinctive features of the 
behavior of the curves a t  finite H and 6.  The Friedmann 
singularity of the compactified system of equations will 
behave like a saddle point in the flat case, i. e.  , i t  will 
attract the curves emanating from the other singular 
points. Therefore, the curves emanating from the 
Kasner singularity will, on approaching the Friedmann 
parabola 3~~ = t, undergo characteristic "bumps. " 
Figure 2 shows the projection of these curves onto the 
(H,E) plane. Similar "bumps" a r e  undergone also by 
the curves that begin at c = 0, H = 0 (infinite rare- 
faction) and terminate in a Kasner contraction. 

Near the Friedmann point, T ~ P > >  Y, and matter be- 
haves like an elastic body with respect to shear.  The 
substitution H-- -H, t- -t does not, in the f i rs t  ap- 
proximation, alter in this region the pattern of be- 
havior of the trajectories, owing to the insignificance 
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FIG. 2. 'LBumps" pro- 
duced on the integral 
curves by the instability of 
the Fr iedmann singularity. 
Shown are the projections 
of the curves onto the 

of the energy dissipation. For  H <O, the integral 
curves in the general case cannot therefore terminate 
in isotropic contraction, just a s  when H > 0 they cannot 
begin with isotropic expansion (the Friedmann point). 
The general pattern of behavior of the integral curves 
is, consequently, as follows. For H > 0, the integral 
curves begin in the general case with a Kasner expan- 
sion from r=O, o r ,  possibly, from &=a. They ter-  
minate in infinite isotropic expansion a t  the nodal point 
N, (see Figs. 1 and 21, o r  a t  the point 0: E = 0, H = 0. 

For H < 0, the curves begin a t  the point 0 and ter-  
minate, in the general case,  in a Kasner contraction, 
but now & should tend to infinity. An integral curve can 
get caught by a Friedmann singular point (the isotropic 
singularity) only if the corresponding solution (2.15) 
in the vicinity of this point does not contain a term 
with < 0. 

The instability of the isotropic contraction in the 
homogeneous model naturally implies the instability of 
the isotropic solution against small perturbations. 

53. PROPERTIES OF THE GENERAL SOLUTIONS OF 
THE EINSTEIN EQUATIONS 

Two problems a re  of greatest interest in the inves- 
tigation of the general solutions of the Einstein equa- 
tions. The f i rs t  problem consists in deciding which 
solution of the Einstein equations can be considered to 
be the general solution, and the second problem con- 
cerns the behavior of the general solution in the vi- 
cinity of the singularity. 

To determine the number of arbitrary physically 
different functions that enter into the general solution, 
i t  i s  necessary to se t  up the Cauchy problem in some 
definite reference system. The investigation is sim- 
plest when the reference system is synchronous. 

As the unknown variables, let us take a t ,  a:, g, , 
i a B ,  ando. The quantities uacan be expressedin terms 
of them, using relations that follow from (1.2): 

In the process, one of the of components also gets 
expressed in terms of the remaining components. 
Theref ore,  for example, a: can be eliminated from 
the unknowns. Using the equation R: - +R = T i ,  
we can express the quantity & in terms of 

From R: = TO,, we obtain three other relations 
between the unknowns, and we can eliminate three 
gaB components. The quantities 6 ,  6,0, and 6; can be 
expressed in terms of the unknowns from Eqs. (1.3) 
and (1.4), into which the gaB do not enter. The quan- 
tities gd can be expressed in terms of the unknowns 
from the equations R: - 1/2R6,0 = T,O . Thus, we obtain 
18 equations of f i rs t  order with respect to t for 18 un- 
knowns. The initial conditions for  the Cauchy prob- 
lem should be given in the form of 18 functions of the 
space coordinates, i. e .  , 18 values of the unknowns a t  
t = to. The general solution contains 18 arbitrary func - 
tions of the xa,  and can be subjected to a transformation 
containing four arbitrary functions, and not violating 
the synchronism of the system. The number of phy- 
sically different functions of the space coordinates in 
the general solution i s  14. This result can also be ob- 
tained from a simple, but nonrigorous argument: the 
free field i s  specified by four functions; the distribu- 
tion of matter, also by four (& and the ua); the s t ress  
tensor, by s ix  functions (five independent components 
of a: and one for  a). 

Also important for cosmology is the question of the 
character of the general solution of the gravitational 
equations, in particular, of i ts  behavior near the cos- 
mological singularity. An analysis of the homogeneous 
models allows us to conclude that, in the vicinity of 
the initial singularity, the general solution is oscil- . 

latory, and close to the solution constructed in Ref. 7. 

The investigation of the behavior of the general solu- 
tion near the final singularity is more complicated, 
since the dissipative processes lead to the rapid growth 
of the energy density, and could eventually lead to the 
destruction of the Kasner regime and the isotropiza- 
tion of the solution. Indeed, for matter in the form of 
a hydrodynamic viscous fluid and for viscoelastic 
matter (in some region of the parameters q and r l ) ,  
we can formally construct an expansion, containing as 
many arbitrary functions as the general solution, of 
the solution to the gravitational equations around the 
quasi-isotropic solution. However, the analysis 
carried out in $4 shows that signals can propagate with 
a velocity higher than the velocity of light in a universe 
described by this solution. This contradicts the cas- 
uality principle, and therefore there does not exist for 
viscoelastic matter a general solution that is close to 
the quasi-isotropic solution. Nevertheless, the in- 
dicated formal expansion i s  of definite methodological 
interest, and we shall give without derivation i ts  f i rs t  
order. For simplicity, let us se t  o = 0 ,  which does not 
alter the qualitative character of the results. Let us 
assume the equation of state in the form P = t / 3 ,  since 
c i s  high. The expansion pertains to the case when the 
s t ress  tensor satisfies Eqs. (1.3) and (1.41, but we 
can in the case of matter in the form of a hydrodynamic 
viscous fluid construct a similar expansion around the 
quasi-isotropic singularity at the final stage of the 
evolution. 

The reference system i s  synchronous, and the metric 
has the form 
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-dsa=-dt2++rMd9dz8. 
The expansion of the space metric tensor has the form 

raB=taaB+t"+ib~~'+t'.+lb$ +tv.+lbz, (3.1) 

where the a, and bs' a r e  functions of the three-dimen- 
sional coordinates, v, = 1, while v, and v3 satisfy the 
equation 

(v+'l,) (v-2) +Y&=O, (3.2) 

6 being the same constant that appears in the relation 
(2.14). If the expansion (3.1) is constructed around a 
future singularity (corresponding to the moment of 
time t=O), then we should replace t by I ti in (3.1) and 
the subsequent formulas, since in this case t < 0. 
Imposed on the bLibu are  the conditions 

where pi is the curvature tensor, which is constructed 
from the metric a,, just as R: is constructed from 

gik 9 

P=P.', 

The subsequent terms of the expansion of the metric 
a re  proportional to some power of t, with coefficients 
that a r e  time independent, but dependent on the three- 
dimensional coordinates. Figuring in the exponents 
a re  all possible sums of the form n,v, +%v, +n3v, 
+n4(2b,-1)+1, where n,, n,, n,, and n, are  whole 
numbers, 

It follows from the structure of the exact equations that 
all the terms of the subsequent orders will be  expressed 
in terms of the terms of the preceding orders and, in 
the final analysis, in terms of the first-order terms. 

In order for the constructed expansion to converge 
and be a solution of the Einstein equations, the con- 
dit ion 

should be fulfilled. As shown in 04, this condition can- 
not be fulfilled, and the constructed expansion is in- 
admissible. 

The instability of the general solution in the vicinity 
of the quasi-isotropic singularity implies that the sin- 
gularity a t  the final stage of the evolution also has an 
anisotropic, oscillatory character. 

$4. INVESTIGATION OF THE BEHAVIOR OF WEAK 
PERTURBATIONS 

Let us  invsstigate the evolution of weak perturbations 
of the Friedmann metric. As before, E is  large, and 

the equation of state is p = 1/3c. The corresponding 
case of zero viscosity is investigated in Ref. 8. 
Dilatational viscosity does not introduce any qualitative 
changes in the vicinity of the isotropic singularity, and 
therefore let  us, a s  before, se t  u = O .  The investiga- 
tion is simplest in the case when the fundamental me- 
tr ic has a flat three-dimensional space. Moreover, 
such an investigation is quite sufficient fo r  the deter- 
mination of the damping law for  the perturbations. 
Indeed, there a r e  among the arbitrary weak pertur- 
bations of the flat model those that transform the model 
into one of constant negative o r  positive curvature. On 
account of the linearity of the equations for  weak per- 
turbations, they will attenuate in the thus "perturbed" 
background in the same way a s  in the flat background. 
Let us choose the fundamental metric in the form 

Let us label the quantities pertaining to the unper- 
turbed solution by the symbol (0). We can assume with- 
out any loss of generality that the perturbations do not 
perturb the synchronism of the reference system. 
The unperturbed reference system is a comoving frame: 

The unperturbed metric is isotropic; therefore, 

Here of = -u,0s8/uo and o: = u~u,/u,, are  quantities of 
higher order in smallness, and we can neglect them. 
All the operations with the three-dimensional tensors 
a re  performed with the aid of the metric y:;. 

The subsequent computations a r e  completely similar 
to those in Ref. 8. We compute the linearized Einstein 
equations 

in f i rs t  order in ba. The equations for u i  have the 
form 

Below we follow the procedure developed by E. ~ifshitz. '  
Let us expand the perturbations in terms of Q = ein" , 
where n is a normal Cartesian vector. The symmetric 
tensor ha, can be expanded into three types of plane 
waves. To the compression and rarefaction waves 
correspond the tensors 

To the transverse waves-the transverse vibrations 
of the matter-corresponds the tensor 

To the gravitational waves corresponds the tensor 
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The sought expansion can be written in the form f i rs t  orders can be disposed of through a change of 
reference system. The appearance of the constant 
amplitude p = C, is connected with the fact that the 
perturbation pQ; is the same perturbation that alters 
the curvature of the space. More precisely, the dif- 
ference between the metric tensors of a space of con- 
stant nonzero, and a space of zero, curvature can be 
expanded precisely in powers of Q,O. The solutions of 
the remaining equations have exactly the same form: 

The traceless tensor u,O can be written in the form of 
the following expansion: 

Substituting (4.3) into (4.11, we obtain, assuming 
that c'O' = 3/4P: 

Substituting (4.3), (4.41, and (4.5) into (4. I ) ,  we obtain 
5 = C, is a fictitious solutions, 

c+T,C--qv. (4.8) 

The equations for the coefficients of the expansion 
(4.3) have the form (in place of H we have substituted 
1/2t) 

2n2 

3R2 0,- (4.9) 

The constant amplitude Cll in (4.15) is connected with 
the fact that in the general case the quasi-isotropic 
metrics should be related to the fundamental metrics, 
as was done in 53. The fundamental metric (i .e . , the 
f i rs t  order of the expansion of the metric tensor) in 
(3.1 ) has the form 

The nonisotropic par t  of a, can be expanded in powers 
of (3;. 

The perturbations will attenuate if v,, us > 0. In the 
opposite case the isotropic solution is unstable against 
contraction (for large E and small t). The found laws of 
evolution of perturbations a re  valid for  both contrac- 
tion and expansion. 

The energy density changes only in the waves of the f i rs t  
type: 

With the aid of Eqs . (4.6)-(4.121, we can find the 
velocities of propagation of all  the types of waves of 
low amplitude and short wavelength. In the nonrela- 
tivistic case the velocity of propagation of the waves 
increases with f r e q u e n ~ y , ~  and we can expect this to 
happen in the relativistic case also. Therefore, we 
shall retain in the equations only the terms of highest 
order in n.  Such a method yields only the phase of 
the wave, but this is sufficient for  the determination 
of the wave velocity. Let us  go over to  the new varia- 
ble 8: 

The fictitious metric perturbations resulting from a 
change of reference system are ,  naturally, the same as 
those found in Ref. 8 : 

dt 1 I - = - ln t. RoZ=const. 
R2 R,' 

The obtained equations (4.6)-(4.12) split into groups 
of independent equations, which groups can be inves- 
tigated separatly. Let us investigate the behavior of 
A, p,  and A. Let us expand the solution to Eqs. (4.6), 
(4.9), and (4.10) up to the orders that decrease as 
t- 0. 

Rd0=dt. 

The solutions of the equations should have the form 
A ( 8 ) e ~ v ~ ,  where v is the phase velocity. Discarding 
the terms of lowest'order in n (v - I ) ,  we obtain the 
solutions 

A-p-exp [ i (6 f  ' / : )"n0] ,  v,= (6+'/3)", 
f-exp [i(31,8)cn01, v ~ = ( ~ / r 6 ) " ,  

v - e f n e  , &=I. The f i rs t  orders of the expansion a re  simply a fic- 
titious solution for A and p that contains two arbitrary 
constants C, and C,. Assuming t to be small (n2t<< 11, 
we obtain the following orders: 

The last  answer is obvious: the gravitational waves 
propagate with the velocity of light. The obtained for- 
mulas give the velocities of propagation of the waves in 
a flat isotropic space when the equation of state is  p 
=&/3. When the equation of state is p = (y - I )&,  

where v, and v, a re  found from (3.2). If v,, v, > 0, 
then (4.14) gives the f i rs t  orders that tend to zero. 
The complete expansion thus contains five constants, 
and the obtained solution is the general solution. The 

For  large n the waves a re  elastic waves, and their 
velocity is determined by the two parameters: 

E/s=6,  K /e=y -1 ,  
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where E is the shear modulus and K is the bulk modulus. N, and N, of the system (2.7)-(2.111, the singular 
When y - 1 << 1, 6 << 1, we obtain the standard non- points : 
relativistic formulas. 4 h-0, p-'Is, X=Z=Y=O, (A.6) 

Relativistic causality requires the fulfillment of the 
conditions 

v , c l ,  i ,  6 < ' 1 ~ ~  (2-7).  

It follows from (3.2) and ( k 8 )  that 

This means that relativistic causality precludes the 
stability of isotropic collapse. The isotropic singularity 
cannot be the typical initial o r  final state. 

The authors express their gratitude to Professor 
W. Israel, who drew their attention to this problem. 

APPENDIX 

Here we outline a qualitative investigation of the sys- 
tem of equations (2.7)-(2.11) in variables in which the 
system does not have in the region delimited by the 
conditions (1.6 ) and (2.12) singular points a t  infinity, 
with the exception of the singular point corresponding 
to  infinite rarefaction. The investigation of the singular 
points is significantly facilitated in such variables. 

We consider the case of a linear dependence of the 
entropy density, w =E +f i ,  on &. In place of H, t, o, 
X, and Y, we introduce new variables according to the 
relations: 

e 1 h e -  
x - 0'' 3 H ,  5='3 

(3H) 

and in place of t we introduce a new time variable, 7, 

according to the law: 

The system of equations (2.7)-(2.11) now assumes 
the form 

h='l,yphf Jlixh-3(p-1/s) h, (A. 1) 

In order to discard the solutions that clearly do not 
satisfy the cri teria (1.6) and (2.12), let us require that 
x s  1. Since 

X=o/9HZ<o/3e, 

we have, for H.>> 1, u >> t and 7g2/( >>&, which contra- 
dicts the criterion (1.6). 

In the physical region, the system (A. 1)-(A. 5) has, 
besides the singular points corresponding to the points 

h=O, p=O, x=z=y=O. (A.7) 

The singular point (A. 7) corresponds to the Kasner 
solution, since t<< IP near this point, and it follows 
from (2.8) that 

Near a singular point we can discard the terms of higher 
order in smallness in the system (A. 1)-(A. 5). We 
find from (A. 1) that in the neighborhood of the singular 
point (A. 7) 

We assume 

It is impossible to linearize the system (A. 1)-(A.5) 
in the vicinity of the singular point (A .7), since the 
condition (2.12) requires that either h/r, - m , o r  
h/rl - m, depending on which addend in the second- 
order terms in the expression for s;', predominates. 
If a t  t = 0 the quantity &= m , then 

Thus, the criterion (1.6) is violated. 

The Friedmann singular point (A. 6) is different, in 
that the system can be linearized in its vicinity if we 
are not interested in the dependence ~ ( 7 ) .  We find a t  
once that 

The linearized system has the following eigenvalues: 

- 1 

h = 0 ,  j l 3  = , , [ - - ~ 3 * * )  (A3,4T).  

A3.4 + - v 
27 - A,,, (A. 8) 

In this case the solution for X, is actually the cross 
term of the solutions for A, and A,. The reason for this 
is that the original variables Ha and oa a re  propor- 
tional to Since the variables entering into the 
systems (2.7)-(2.11) and (A. 1)-(A. 5) a re  quadratic 
in oa and Ha, the squaring of them gives rise to terms 
of the form exp[(~, + ~,)7/2]  =exp(X,r). 

After ascertaining the behavior of the solutions near 
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the isotropic singularity and making a change of vari- 
ables to the variables H, &, o, Ha, and aa,  we obtain 
the solution (2.15). It is shown a t  the same time that 
no other solutions exist near the isotropic singularity. 

')we use a system of units in which the velocity of light and the 
gravitational constant are  each equal to unity. The metric is 
written in the form -ds2 =gt&xidxk, where gi, has the signa- 
ture (-+++I. The Latin indices run from 0 to 3; the Greek 
indices, from 1 to 3. 
2b the present paper we neglect the effect of the thermal 

fluxes. Such fluxes do not, in fact, arise in the homogeneous 
models. In the more general cases it  must be assumed that 
we are  considering matter with a sufficiently small coeffi- 
cient of thermal conductivity. Equations that also take 
account of the effects of thermal conduction can be f o d  in 
Ref. 3. 
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Influence of collisionless particles on the growth of 
gravitational perturbations in an isotropic universe 
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It is shown that the kinetics of the interaction of gravitational perturbations with collisionless particles 
(neutrinos) in the ultrarelativistic stage of expansion of the universe leads to a behavior of long- 
wavelength gravitational perturbations which is qualitatively different from that obtained by Lifshitz in 
1946 if the energy density of the collisionless particles is more than 5/32 of the total energy density. An 
important feature of the new long-wavelength asymptotic behaviors is their oscillatory nature. The 
asymptotic behavior is also found of high-frequency perturbations in an isotropic universe when 
allowance is made for the influence on the perturbations of the gas of collisionless particles. 

PACS numbers: 98.80.Dr 

INTRODUCTION 

In 1946, ~ i f s h i t z '  solved the problem of the gravita- 
tional stability of the isotropic relativistic cosmological 
model of the universe. He assumed that the matter of a 
hydrodynamic model with isotropic energy-momentum 
tensor. The results obtained in Ref. 1 concerning the 
ra te  of growth of perturbations were subsequently widely 
used in studies into the theory of the formation of the 
large-scale structure of the universe. 

In Refs. 2-5 the analogous problem was solved under 
the assumption that the matter of the universe can be 
treated in the framework of the model of a collisionless 
gas, i.e., a model described by a collisionless kinetic 
equation. This model of the matter i s  valid in the cases  
when the characteristic frequency w of the investigated 
processes is much higher than the collision frequency u 
of the particles of the matter (w >> v). The hydrodynamic 
model of matter used in Ref. 1 is valid i f  w << v. 

As i s  shown in Refs. 3-5, the model of a collisionless 
gas and the hydrodynamic model of matter lead to very 
different asymptotic behaviors of perturbations in an 

isotropic universe. This example suggests that i f  the 
universe contains not only matter described by the hy- 
drodynamic model but also a gas of collisionless parti- 
cles, then this gas could have a significant influence on 
the ra te  of growth (or damping) of perturbations. 

In a hot universe, a gas of muonic and electronic neu- 
trinos is collisionless.6 The muonic neutrinos become 
collisionless T=O.O~  sec  after the s t a r t  of expansion of 
the universe, while the electronic neutrinos become col- 
lisionless a t  ~ = 0 . 2  s e c  (see Ref. 6). 

Zel'dovich and ~ o v i k o v ~  also give relations for the 
equilibrium energy density of different particles in the 
universe a t  a time close to the time of "switching off" of 
the muonic neutrinos: 

These rat ios remain valid until the electron-positron 
pairs a r e  annihilated. I t  follows from the .ratios (1) that 
the rat io a! of the energy density of the collisionless 
particles to the energy density of the collisional parti- 
cles a t  the times 0.01 < T < 0.2 sec  is 
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