
'P. K.,Lotgering, Sol. St. Comm. 2, 55 (1964). 25, 162 (1977) [JETP Lett. 25, 148 (1977)l. 
'5 .  B. Goodenough, Colloque Int. CNRS 157, 72 (1965). 4 ~ .  M. Ballal and C . Mande, Sol. St. Comm. 19, 325 (1976). 
'N. M. Kovtun, V. T. Kalinnikov, A. A. Shemyakov, V. K. Pro- 

kopenko, and A. A. Babitsina, Pis'ma Zh. E h p .  Teor. Fiz. Translated by J .  G .  Adashko 

A new conservation law for the Landau-Lifshitz equations 
V. M. ~ l e o n s k c ,  N. N. Kirova, and N. E. Kulagin 
(Submitted 7 February 1979) 
Zh. Eksp. Teor. Fiz. 77, 409-413 (July 1979) 

An explicit expression for a new conservation law, which arises when allowance is made for the magnetic- 
dipole interactions, is obtained for the case of waves of stationary profile propagating in a uniaxial 
ferromagnet in a direction perpendicular to the anisotropy axis. It is shown that the new first integral 
allows the determination of the dependence of the amplitude of stationary-profile waves of all types on 
the velocity and the characteristic parameter of the magnetic medium. The dependence thus found is in 
complete agreement with previous numerical calculations. 

PACS numbers: 75.30. - m 

The analysis of the self-localized solutions of the 
Landau-Lifshitz equations is of indubitable interest not 
only in connection with the development of the theory of 
moving domain boundaries in magnetically ordered 
media, but also in connection with the search for mag- 
netic solitons. Our previous1 qualitative and numerical 
analysis of the self-localized solutions of the Landau- 
Lifshitz equations allowed us to give an essentially com- 
plete classification of waves of stationary profile. It 
was shown, in particular, that there exist in uniaxial 
ferromagnets, besides the well-known solutions, self- 
localized solutions corresponding to both "slow" and 
"fast" waves of stationary profile. The slow stationary- 
profile wave is a solitary wave with respect to one of 
the angular variables and a wave of the type of a moving 
domain boundary with respect to the other angular 
variable. The fast stationary-profile waves a r e  char- 
acterized by the fact that the magnetic-moment vector 
executes precession about the anisotropy axis and the 
fact that, as the velocity of the stationary-profile wave 
approaches the lower cutoff velocity for spin waves, 
the nutational motion of the magnetic-moment vector 
gets excited. 

Further investigations have shown that the Landau- 
Lifshitz equations for stationary-profile waves propa- 
gating in a direction perpendicular to the anisotropy 
axis admit in the case when the local magnetic fields 
(the magnetic-dipole interactions) a r e  taken into ac- 
count of the existence not only of the well-known con- 
servation law connected with the invariance of the 
Lagrangian under spatial translation, but also of an- 
other distinctive law of conservation (of the first  
integral). 

V. I. Arnold proposed the use of the HBnon-Heiles 
method2 to demonstrate numerically the existence of the 
new first  integral and the analogy with the dynamics of 
the material particle to seek the explicit form of the 
conservation law. The numerical computations con- 

firmed the existence of the new f i rs t  integral, and 
simple transformations of the Landau-Lifshitz equa- 
tions allowed in the case of the simplest form of uni- 
axial-anisotropy energy the derivation of an explicit 
expression for it. Knowing the new f i rs t  integral, we 
can obtain for the dependence of the characteristic 
amplitude of the slow o r  fast magnetic soliton on the 
velocity and parameter of the uniaxial magnetic medium 
explicit expressions that a r e  in complete agreement 
with the results of the numerical analysis.' 

2. The Landau-Lifshitz equations for stationary - 
profile waves propagating in a uniaxial ferromagnet in 
a direction perpendicular to the anisotropy axis can be 
written in terms of the dimensionless variables ob- 
tained by choosing the characteristic dimension of the 
Bloch-Landau domain boundary as the unit of length 
and the reciprocal of the precession frequency in the 
anisotropy field as the unit of time in the form 

p,l+m,my=-u&', pyl- ( l + ~ ) r n . m ~ = - u m ~  

p.~+em.mu--~m,r. (2.1 ) 

Here u is the velocity of the stationary-profile wave, & 

=2aM z/K is the parameter of the magnetic medium 
(M, is the saturation magnetization and K is the uni- 
axial anisotropy constant), and, finally, 

p= [mm'] (2.2) 

is the "angular momentum" of the unit magnetic-mo- 
ment vector. 

The well-known conservation law (first integral) of 
the Landau-Lifshitz equations (2.1) is  the quadratic 
form 

(m.')2+ (m;)2+ (m,')" (I+E) mm.zm:+%, (2.3) 

where 2' i s  the constant of the first  integration. In 
terms of angular variables with the polar axis directed 
along the anisotropy axis, the first  integral (2.3) 
assumes the form1 
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The scheme of the numerical analysis based on the 
Henon-Heiles method2 is a s  follows. Let 

Q.(ef, cp'; 0, cp) =const (2.5) 

be the new f i rs t  integral of the Landau-Lifshitz equa- 
tions. Using the known first  integral (2.4), we arrive 
a t  the relation 

Q(0'. 8; cp) =const. (2.6) 

In the numerical integration of the Landau-Lifshitz 
equations, we determine the points of intersection of 
an arbitrary integral curve with the planes 

Then if the new first  integral (2.5) exists, the above- 
indicated points in the @', 8) plane will, after a suffi- 
ciently long calculation, be arranged on some curve, 
namely, the level curve of the new first  integral (2.6). 
When the initial conditions a r e  changed, the points in 
the ( O ' ,  8) plane will be arranged on a different curve, 
corresponding to the new value of the level constant of 
the first  integral (2.6). Figure 1 shows the character- 
istic level curves of the new first  integral that were 
obtained a s  a result of the numerical calculations. 

3. Let us proceed to the derivation of the explicit 
expression for the new first  integral of the Landau- 
Lifshitz equations. Let us first  consider the case of 
zero stationary-profile-wave velocity. The first  pair 
of the Landau-Lifshitz equations (2.1) can, after 
simple transformations and allowance for the known 
first  integral (2.3), be  written in the form 

e+[ .X-1-e+Z( l+e)  m2+2qZ]m,=0, 
(3.1) 

m,"+[.X-1+2(1+e) m.'+2m~] m,=O. 

The transformation 

m.+iii,=(~+e)"=m.. m,+iii,=m, (3.2) 

reduces the system (3.1) to the form 

iii/+[%-1-&+2(%,"+&') ]f&=o, 

%""+ [a$-1+2 (a2+iil;) 1 iii,=o, 
(3.3) 

o r  (in terms of the original variables) 

Thus, in the language of mechanics, to the new first  
integral (3.5) corresponds the motion in a potential 
field of a material particle with an anisotropic mass. 
The anisotropic mass is connected with the allowance 
for the local magnetic fields. The above-presented 
result can easily be generalized to the case of nonzero 
stationary -profile-wave velocities. 

However, we can propose a simpler derivation of the 
new first  integral. To wit, multiplying the f i rs t  and 
last equations of the system (2.1) respectively by the 
quantities &(cL, +urn,) and (F, +urn,) and adding the re- 
sults, we arr ive  at a different expression for the new 
f i rs t  integral in the form of a quadratic form in the 
variables (F, m): 

The two first  integrals (2.3) and (3.6) allow us to de- 
termine the connection between the maximum ampli- 
tude of the magnetic solitons (the maximum value, Om, 
of the polar angle) and the corresponding magnitude, 
q,, of the azimuthal angle: 

U(l+& COS' cp,)"- ( I + & ) "  
cos 0, = 

I+& cosz cp, 

In particular, for the two types of symmetric solitons 
we find that 

cos e , = ( ~ - i ) / ( i + & ) " ,  cp,=o, 

cos O,=u- (I+&)'", rp,=n/2. 

The obtained relations (3.8) a r e  in complete agreement 
with the results of our ear l ier  numerical computations.' 

It should be noted that, on going over to those de- 
generate solutions of the Landau-Lifshitz equations 
which correspond to a fixed-in space-orientation of 
the plane of rotation of the magnetic moment (V 
= const), there ar ises  a dependence of the f i rs t  inte- 
grals (2.3) and (3.6) that reflects the transition to a 
system with one angular degree of freedom. As a con- 
sequence, there ar ises  the well-known relation be- 
tween the velocity and the orientation of the plane of 
rotation of a magnetic moment. When the magnetic- 
dipole interactions a r e  neglected (i.e., for &- 01, the 
new first  integral leads to the conservation of the 
component of the angular momentum p along the 
anisotropy axis. 

which clearly indicates the existence of the first  inte- 
gral  

(~~)"+(ii i , l)~(%-i) (iii;+iiiy2) -&A:+ ( a z + i i i y l ) 2 = Q = ~ ~ n ~ t  (3.4) 

4. In conclusion, let  u s  note that the numerical anal- 
ysis of the Landau-Lifshitz equations for the case of a 
uniaxial anisotropy of a more general form, e.g., 

FIG. 1. Interaction of the level curves of the new first ink- 
gral Q(S', cp' , 9 , cp) with the (X'.X) plane for the case & = 1, 
2F 0; X=ln tg (9/2). 

o r  for the case of a constant external field directed 
along the anisotropy axis, also indicates the existence 
of a new first  integral. However, the attempts to ob- 
tain an explicit expression for the conservation law in 
these cases have not met with success. 

Let us note that, with the aid of the substitution 
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which defines a s  new variables the logarithmic deriva- 
tives of the components of the unit magnetic-moment 
vector, we can write the Landau-Lifshitz equations in 
the above-indicated cases in the form 

ff-ql=-i-6'+q2+R,(m,, m,, m,), 

E'-5'-i+e-g2+t'+Rz(%, m., m.), (4.3) 
ql-E'--8-qz+E'+Ra(%, 4, m*). 

The explicit form of the functions R,(m) is determined 
by the choice of the specific expression for the aniso- 
tropy energy o r  the external fields. What is important 
is the fact that the functions R,(m) satisfy the condition 

Consequently, the system of three first-order equa- 
tions (4.3) and its solutions in the three dimensional 
(5, q, 1;) space a r e  determined up to some two-dimen- 
sional surface 

The obvious relation 

and the known first  integral 

assume, when the substitution (4.2) is  taken into ac- 
count, the form of two mixed forms: 

The relations (4.8) can be solved for the unknown pair 
of magnetic-moment-vector components (e.g., m, and 
my), and, consequently, allow us to express the func- 
tions R ,  in terms of the new variables (5, q, L). How- 
ever, the three new variables (5, q, L) should satisfy 

the equation (4.5) of some surface. 

Thus, we arr ive  at the conclusion that the existence 
of a third mixed form, similar to the forms (4.8), and, 
consequently, of a new f i rs t  integral, is possible. 
Such a situation ar ises  in the above-investigated case 
of stationary-profile waves for ferromagnets with the 
simplest type of uniaxial anisotropy. To wit, the new 
f i rs t  integral (3.6) determines the third missing mixed 
form 

Q(E, q. 5;  m, m,, m.) =const (4.9) 

and, consequently, the surface (4.5) in the ( 5 ,  q, t )  
phase space. 

The authors express their profound gratitude to V. I. 
Arnold, who indicated to us  ways of solving the problem, 
and to I. E. ~ z ~ a l o s h i n s k i i  for a discussion of the work 
and his constant support of our investigations. 

Note added in proof (20 April 1979). As a result of a 
more accurate numerical analysis for an anisotropy 
energy of the form (4.11, we have discovered the decay 
of the level surfaces of the new first  integral, an ef- 
fect which corresponds to the earl ier  studied1 lifting 
of the accidental degeneracy of the separatrix solu- 
tions. This indicates that the Landau-Lifshitz equa- 
tions a r e  not a completely integrable system in the 
case of uniaxial anisotropy of the general type. 
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