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It is shown within the framework of a model with superposed parts of the Fermi surfaces that the 
contribution of the free Frohlich mode to the conductivity near the transition temperature can, in 
principle, cancel out with a high degree of accuracy the decrease that occurs in the conductivity as a 
result of the appearance of a gap in the electron-energy spectrum. Such a behavior has been observed by 
Ong and Monceau [Phys. Rev. B16, 3443 (197711 in NbSe,. 

PACS numbers: 72.10.Bg, 72.80.Ga 

The quasi-one-dimensional conductor NbSe, undergoes provided by the weak pinning of the superlattice [or the 
two structural transitions at the temperatures T,,= 145 charge-density wave (CDW)] on crystal defects. A qual- 
K and T,=59 K into incommensurate phases with wave itative analysis3 attests the point of view of the authors 
vectors q,= (0; 0.243; 0) and q,= (0.5; 0.263; 0.5) re- of Ref. 1. 
spectively (for references, see  Ong and Monceau's pa- 
per'). Both transitions greatly affect the conduction- 
electron subsystem, as evidenced by the presence of 
anomalies in the resistance in the neighborhood of the 
transition temperatures. The latter circumstance, as 
is now generally believed, provides a serious argument 
in favor of the electronic origin of the structural tran- 
sitions themselves. Because of the quasi-unidimension- 
al (ID) nature of the energy spectrum of the conduction 
electrons, i t  is reasonable to ascribe the structural 
transition to a Peierls-type instability caused by the 
approximate coincidence of some sections of the Fermi 
surfaces. 

The lattice distortion, u(r), in the new phase has the 
form 

u=u, cos (qr+cp) . (1) 

The arbitrary phase cp reflects the fact that the vectors 
a and q, are  incommensurable with the original high- 
temperature lattice constant, and, consequently, the 
associated electron and lattice-deformation wave could 
propagate along the direction of the chain, producing a 
new possible conductivity mechanism-the so-called 
Frahlich conductivity. Lee et a t . ,  have shown that such 
a mechanism could prove to be important for the prop- 
erties of quasi-unidimensional materials, but that i ts  
manifestation in the conductivity of rea l  materials is, 
probably, not certain because of the numerous effects 
of wave pinning by the impurities o r  imperfections of 
the crystal. It is, nevertheless, believed that the re- 
cent measurements of the non-Ohmic conductivity of 
NbSe, in the region of very weak electric fields and the 
high sensitivity of the anomalies in the resistance to 
the field frequency (see Ref. 1) were the f i rs t  observa- 
tion of the contribution of the Frahlich mode to the con- 
ductivity of a quasi-unidimensional conductor. 

In the present paper, using a microscopic approach, 
we attempt to describe the anomalies in the resistance 
in the immediate neighborhood of the transition temper- 
ature. In our model description, we assume that the 
electron Fermi surfaces even though they a r e  not plane 
surfaces because of the three-dimensional interchain 
tunneling nevertheless satisfy some "superposition cri- 
terion" that i s  sufficient for a Peierls  instability to 
occur a t  low temperatures. The problem in question 
consists in the fact that, according to the experimental 
data,' in the presence of strong electric fields, o r  for 
conduction a t  "high" frequencies, the anomaly in the re- 
sistance at the transition temperature simply gets 
washed out without giving r ise  to an additional contribu- 
tion with respect to the conductivity of the metal phase. 
We sl~all show that this result i s  indeed reproducible at 
least within the framework of the reasonably plausible 
model, although some increase in the conductivity below 
T, as a result of an additional contribution from the 
traveling charge density wave might have been expected 
here. The "pinning-depinning" mechanisms per s e  will 
not be considered below (see Ref. 3). 

As is well known (see Refs. 4 and 51, a lattice be- 
comes unstable at a sufficiently low temperature if the 
electron spectrum satisfies the relation 

where q is the instability wave vector. The simplest 
case of a plane Fermi surface (the Peierls instability in 
one-dimensional conductors) is a t  the same time the 
most complicated for a theoretical investigation, which 
is due to the decisive role of the fluctuations in one- 
dimensional  system^.^ Fortunately, in the case of 
NbSe, there are  numerous experimental indications that 
i ts  properties can be understood in a model that does 
not exhibit al l  these specific one-dimensional complica- 

It has already been argued1 that the low electric-field tions. Indeed, x-ray measurements7 have shown that, 
strengths that wash out the anomalies in  the resistance for the two transitions corresponding to the wave vec- 
in the vicinity of the transition at T,, o r  T, can be ex- to r s  q, and q,, the fluctuations a r e  small, and well-de- 
plained only if by chance some large characteristic di- fined Bragg reflections appear in each phase just below 
mension participates in the phenomenon. This observa- the transition temperature. The observation of Shub- 
tion led to ideas, according to which such a scale i s  nikov-de Haas oscillations in the magnetoresistances 
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shows that the Fermi surfaces, being anisotropic and 
quite small in the low-temperature phase, have a well- 
pronounced three-dimensional character. Consequently, 
i t  can be assumed that the Fermi surfaces of the car- 
r i e r s  in NbSe,, while retaining the one-dimensional 
features characteristic of a filamentary conductor, a re  
a t  the same time appreciably deformed by the three- 
dimensional effects of electron tunneling between the 
filaments. Consequently, the Eq. (2) for some vector q 
can be satisfied only approximately. In other words, 
the coincidence of the Fermi surfaces is not complete 
and this leads to  a semimetal picture a t  low tempera- 
tures. Whether o r  not a structural transition occurs 
under such conditions depends on the strength of the 
electron-phonon interaction. For a fixed strength of the 
latter, the transition temperature evidently decreases 
with enhancement of the three-dimensional effects. 

Let &+(p) (&-(p)) be the electron energy on the right 
(left) hand side of the Fermi surface (the electron is 
assumed to have zero energy at the Fermi  level). The 
distortion of the lattice with the wave vector q removes 
the degeneracy (2), giving the well-known form for the 
new electron spectrum: 

Here c =v(p - kF) i s  the distance from one of the two 
Fermi surfaces [say, on the right-hand side of ~,(p, , ,p,)  
= v(p,, - k,) + v+(p1)1, 2 7 ~ ( ~ )  = &+(PI+ ZAP+ q), where q0?) can 
be regarded a s  aquantity that varies only along the Fermi 
surface and ~ ( ~ ) = d , ,  lu, 1 is the "gap", proportional to 
the lattice-distortion amplitude lu,l and the electron- 
phonon deformation potential d,,, in the new electron 
spectrum. 

The properties of ~ ( p )  and d,,(p) depend on the actual 
band structure, and will not be  specified in  this paper. 
As to A(T) [i.e., u,(T)], i t s  temperature dependence is 
usually determined by minimizing the total elastic ener- 
gy. Regardless of the specific model, the value of the 
transition temperature T, is of the order of A ( T  = 0); 
for I T  - T , I  << T, we have A ~ ( T ) ~ T , ( T , -  T) [see Eq. 
(14) below]. 

After these observations of a general character, let  
us proceed to compute the temperature dependence of 
the conductivity (near T,). According to Ong and Mon- 
ceau,' NbSe, is a good conductor with a highly tempera- 
ture-dependent resistance (the residual resistance is 
low in good samples). Consequently, scattering by the 
impurities does not play any significant role in the re- 
laxation processes at T - T,. Above T,, the resistance 
in the metal phase obeys a linear law with a high accu- 
racy [ p a  TOsg8 ( ~ e f .  I)]. This fact speaks in favor of the 
electron-phonon scattering mechanism. As to the static 
defects, they a re  responsible for the nonlinear part  of 
the current-voltage character is ti^.^'^ Below we restrict  
ourselves to only two limiting situations: the superlat- 
tice i s  completely fixed, or,  in i t s  turn, the pinning can 
be  completely neglected. In i t s  general form, the elec- 
tr ic current contains contributions from both the single- 
particle excitations with the new energy (2') and the 
running charge-density wave. 

In Ref. 3 Lee and Rice make the assumption that the 

mobility of the charge-density wave is due to the inter- 
action of the electrons largely with the so-called phase 
mode b e . ,  with the acoustic mode that appears simul- 
taneously with the superlattice in the new phase). Such 
a process could be important at very low temperatures, 
but at high temperatures, and particularly in the vicini- 
ty of the transition, all the thermal phonons should be 
taken into account in the study of the friction for the CDW 
(i.e., of the CDW kinetics). By assumption, because 
of the three-dimensionality of the transition, the role 
of the soft phonons amounts to that of small  fluctua- 
tions. Below we shall, for simplicity, consider only 
the vicinity of T,,. The se t  of inequalities used has 
the following form 

where 51 is the characteristic phonon frequency and 1 / ~  
a T i s  the electron-phonon relaxation time. 

The method of kinetic equations ceases to be  simple 
for the system in the new phase; this is particularly 
true for the processes of relaxation of the order pa- 
rameter (the lattice distortion and i t s  phase p). This 
aspect of the problem reminds us of a similar problem 
in the theory of nonequilibrium phenomena for super- 
conductors. We shall follow the method of analytic con- 
tinuation of thermodynamic responses developed in Ref. 
9. For example, in order to find the electric current 
that is linear in the electric field, i t  is necessary to 
write downg the responses to both the applied field and 
the field-induced perturbation of the order parameter. 
In i t s  turn, the change in the order  parameter (1) can 
be found from the balance between the two responses, 
each of which represents a driving force produced by 
the field, and the frictional force. 

The two equations a r e  schematically shown in Fig. 1. 
All the lines a r e  labeled by two indices (*), which rep- 
resent the diagonal and off-diagonal elements of the 
matrix Green function, 

describing the electron subsystem in the presence of 
the deformation (I), which mixes the (*) sides of the 
Fermi surface. The upper line in Fig. 1 carr ies  the 
sum frequency z ;  the lower line, the frequency z - wo, 
where wo is the field frequency. To compute the con- 
ductivity in a constant field, i t  is necessary to retain 
only the f i r s t  nonzero terms in wQ. 

In the method proposed in Ref. 9, we begin by writing 
down the responses in Fig. 1 in the Matsubara repre- 
sentation (z =izn =i(% + 1)nT; wQ= i w n  =i0%nT) and then 
continue all the expressions to the physical-frequency 
axis. The result of the analytic continuation is ex- 
pressed by the relation 

where C? and 2 a r e  the retarded and advanced 
functions (4): 
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FIG. 1. Diagrammatic representation of the responses in the 
expressions for the current and the lattice distortion. 

The perturbation Hamiltonian has the form 

Equation (5) for 6"' preserves the diagram struc- 
tures of Fig. 1 and, consequently, has a form suitable 
for the computation of a number of relaxation process- 
es. Such a procedure was used earl iere only for scat- 
tering on static impurities. Let us formulate without 
detailed derivation the analogous rules for electron- 
phonon scattering in the limiting case T >> 51. Essen- 
tially, in this case the thermal phonons create for the 
electron motion some disordered potential that varies 
slowly compared to the electron-energy scale, T. 
Scattering by this potential gives corrections to the 
electron Green functions (Fig. 2a) o r  the loops (Figs. 
2b and 2c). The principal difference between this pro- 
cedure and the diagram techniqueg for impurity scat- 
tering consists in a change in the factor corresponding 
to a dashed line between two crosses  in Fig. 2: 

cth ( w / 2 T )  Im (DmR-D,*) =2g,,'Two(k) 8 ( w 1 - o O a ( k ) ) ,  (8) 

where g,, i s  the dimensionless electron-phonon interac- 
tion constant. 

In other words, scattering by the phonons is not elas- 
tic, but quasielastic, with energy transfer w,(c)-51 << T. 
Near the transition temperature A, and all the cor- 
rections of the type shown in Fig. 2c can be discarded. 
In the simplest isotropic-scattering variant, the relax- 
ation rate, 1/r = 27rgpT, does not depend on the location 
of the electron momentum on the Fermi surface, and to 
obtain the final results  i t  is sufficient to simply compute 
the diagram of Fig. 1, replacing the G matrices by 
their expressions (6) with z - z *i/27. Near T,, the 
time T does not differ from its value in the metallic 
phase. 

As noted above, in the course of the computations we 
retain only the terms linear in the external frequency 
w, thus making the electric field a constant field: 

iwA,/c=E and -lwcp"'=@. 

With allowance for (3), we can significantly simplify the 
evaluation of (5), since the f i rs t  two (regular) terms 
make contributions when z".sWT, whereas the main 
contribution from the integration in the products 
&'R'&U' corresponds to the neighborhoods of the poles 
of Eq. (6). Consequently, this last  term describes the 

FIG. 2 .  Corrections to the diagrams in Fig. 1 as a result of 
the electron-phonon scattering processes. 

kinetics of the carriers,  and normally make the domi- 
nant contributions to all the transport coefficients. 

After obvious, but somewhat tedious computations, 
we obtain the following expression for the longitudinal 
current (j 1 )  1): 

In i t s  turn, for (o = %,u, where u is the velocity of the 
superlattice, we obtain the relation 

The angular brackets in (9) and (10) denote averaging 
of the corresponding expressions over one side of the 
Fermi surface: 

In Eqs. (9) and (10) we have used the following notation: 
R=cha ( q / 2 T )  ; 

$+"=$" ( 1 /2+ iq /2nT) ,  cp-" =$" ( 1 /2 - t q /2nT)  
(1 1) 

( J I  is the derivative of the logarithm of the gamma func- 
tion). We have 

A s  to Eq. (lo), i t  is, to a certain extent, of a symbolic 
nature. Indeed, (10) is applicable only in the limit of a 
completely f ree  (uncoupled) charge-density wave. In 
weaker fields i t  is necessary to consider the significant- 
ly more complex problem of superlattice drift in the 
presence of pinning forces. In the opposite case of very 
weak fields (the charge density wave is fixed), we can 
set  (o = 0 in the expression, (91, for the current. 

Thus, for this last case we obtain directly the follow- 
ing anomaly in the resistance: 

The additional term in the resistance is linear in T, -T 
in the vicinity of T, (AT <<I), but i ts  dependence on tem- 
perature becomes more critical when AT >> 1. 

In principle, it would not be  so  difficult to write down 
a general expression for the conductivity at lower tem- 
peratures. We believe that to do this within the frame- 
work of the present paper would be pointless, since it 
would then be  necessary for us to draw on more detailed 
information about the band structure in NbSe,. Never- 
theless, it is clear that the conductivity has a minimum 
if the new phase is, by assumption, semimetallic in 
character. It can be seen from Eq. (9') that the magni- 
tude of the anomaly in the resistance i s  very sensitive 
to the parameter 17. 

Let us turn to the opposite limiting case of the free 
motion of the superlattice. For q = 0 

i.e., the running mode increases the conductivity, 
which was intuitively assumed. This increase i s  not 
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large if TT >> 1. Denoting the quadratic-in A-correc- 
tions in Eqs. (9') and (12) respectively by 60- and go+, 
we see that 

180- I = (n'/7j (3) ) Tz 16u+l. (12') 

In this sense our result is in accord with the Ong-Mon- 
ceau experiments,' in which the "uncoupled" wave sim- 
ply effaces the anomaly in the resistance at T, by ex-. 
actly compensating for it. 

within the experimental e r r o r  with the reciprocal-lat- 
tice vector,'' indicates that the answer to  this question 
is in the negative. Assuming on the basis of the values 
of the resistance near T, and T,, ( ~ e f .  1) the value n - 10'' cm* for the carrier-number density, we estimate 
that ( 1 / ~ ) , ~ -  (1/~),,- le4 s e c l .  Of course, in this case 
the inequalities (3) a re  violated, and i t  is difficult to 
compare the expression (9) directly with the experi- 
mental curves for the resistance' near Tcl and T,, but 
the main anomalies a r e  undoubtedly accurately de- According to (lo), the result for finite q is qualita- 
scribed, and in this respect our results  a r e  apparently 

tively the same, although the conductivity increases 
not dependent upon the refinement of the calculation. 

even more slowly and the sublattice mobility decreases: 
Let us, in conclusion, explain that the found anoma- 

u=- (euEz/k,) { I -  (<I$+ "+$-")/<R-I>) (4(Az)2+1)'hi8z3Tt). (13) lies in the expressions (9) and (10) a re  connected pri- 
A curious property of the last expression is that the marily with those electrons whose energies lie close to 
factor q:+$i' could change i ts  sign at sufficiently large the gap that opens up in the energy spectrum, and 
values of q. There i s  no physical contradiction here, whose density of states consequently have singularities. 
as follows from the form of the equation determining, The relative number of such ca r r i e r s  a t  finite tempera- 
on the one hand, the theoretical dependence of T, on tures (and for A- 1/7) is proportional to  A/T. 
the parameter q and, on the other, the magnitude of the 
"gap" A(T) in the vicinity of the transition curve T,(q): 

ln(T./T,,)  =$(1/2) -<$(1/2+iq/2nTC) 
+$(1/2-iq/2nT,) )+(AY16xzT,1) (I$+" +$-" ). (1 4) 

Evidently, the combination I): +I): also enters into the 
fourth-order term of the phenomenological expression 
of the Landau theory of second-order phase transitions. 
If this coefficient changes i t s  sign at q / 2 r ~  = 0.306, then 
the transition becomes a first-order transition. Our an- 
alysis assumed the change in the quantities at the tran- 
sition point to be  small. In NbSe, the two transitions in- 
to the new phase a re  continu~us.'*~ 

The main result of the paper consists in the fact that, 
in the approximation (3), the decrease in the conduc- 
tivity near T, a s  a result of the decrease in the number 
of ca r r i e r s  upon the formation of a gap in the spectrum 
coincides with a high degree of accuracy [see (12')] 
with the greatest possible contribution that can be made 
to the conductivity by the traveling Frb'lich mode. 
Therefore, comparing this result with the data of Ref. 1, 
we can conclude that the interpretation of these data a s  
proof of the existence of a Friihlich mechanism of con- 
ductivity is probably correct. Nevertheless, i t  would be 
desirable to perform experiments in stronger fields, o r  
at higher frequencies, in order to observe the small ex- 

In Ref. 10, applying a mathematical analog of our 
model (for fixed q) to the problem of the superconduc- 

cess contribution (12), o r  (131, of this conductivity 
mechanism as well. 

tivity of a magnetized metal," Mnatsakanov and one of 
the present authors also show that the wave vector q at 
which overlapping of the Fermi surfaces occurs changes 
at sufficiently low temperatures. It would be tempting 
to ascribe the second transition, at T,,, to this phenom- 
enon. However, following Ref. 7, we believe that anoth- 
e r  explanation is more probable: to wit, that the two 
transitions in NbSe, a r e  connected with different sys- 
tems of niobium filaments. Because of the nature of the 
crystallographic symmetry, the unit cell of NbSe, has, 
as is well two se ts  of nonequivalent filaments. 
The band properties of the electrons of the two se ts  of 
filaments probably do not differ too greatly from each 
other. Nevertheless, this may prove to be sufficient for 
Peierls transitions to occur in the two systems of fila- 
ments separately as a result of interaction with differ- 
ent active phonons. (Apparently, the Coulomb interac- 
tion between the filaments also plays a role in the sec- 
ond transition a t  T = T,, since the corresponding vec- 
tor q, corresponds to a doubling of the lattice constant 
in the transverse direction.'') 

The most important question is whether there a re  
other carr iers  in NbSe, besides the carr iers  on the Nb 
chains, i.e., whether there is overlap with other bands. 
The large magnitude of the anomalies in the resistance, 
as well a s  the fact that the vector 2(q1 + &) coincides to 

 hat is ,  the integral number of carriers per unit cell. 
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