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The conditions of propagation of high-frequency Fermi-liquid modes are determined by taking into 
account both relaxation and collisionless damping. Cherenkov absorption may dominate if the wave 
propagation velocity is close to the Fermi value. It is shown that the propagation of transverse zero 
sound in He3 is possible even if the wave velocity is somewhat smaller than the Fermi velocity. The 
dispersion law for transverse sound is found without resorting to model concepts regarding the type of 
the f function, and all dispersion characteristics are expressed in terms of the propagation velocity of the 
oscillations. Due to collisionless absorption, the observation of spin waves in an He3-He I1 solution is 
possible only at sufficiently low temperatures. In a magnetic field, the transverse spin waves with small 
wave vectors become weakly damped even in the Boltzmann temperature range. 

PACS numbers: 67.50.Fi, 67.60.F~ 

According to the Landau theory of a Fermi liquid,' would generally make the propagation of undamped os- 
weakly damped high-frequency WT>> 1 (w is the frequen- cillations impossible. This also confirms the fact that 
cy of oscillation, T is the characteristic relaxation there exists a region of pressures a t  which the velocity 
time) zero-sound and spin waves can propagate in nor- of transverse sound is close to  the Fermi velocity. It 
ma1 ~e~ and in degenerate solutions of ~e~ in supercon- is in just this region that the role of the collisionless 
ducting He4. The absorption of these modes is usually damping studied in this paper is important. 
determined by collisions of the quasiparticles of the 

The Cherenkov absorption is the basic mechanism of 
Fermi liquid with one another and the absorption falls 
off in proportion to  TZ upon decrease in the temperature dissipation also in the case of spin waves in a weak He3 

T (see, for example, Ref. 2). -He I1 solution, the velocity of propagation in which is 
exponentially close to v, in the expansion in terms of 

There is also a collisionless damping mechanism for 
the high-frequency oscillations, connected with the 
Cherenkov absorption of the wave by the quasiparticles. 
The probability of such processes depends on the num- 
ber of quasiparticles moving in phase with the wave. If 
the velocity of propagation of the high-frequency modes 
significantly exceeds the Fermi velocity uo, then a t  
T << To (To is the degeneracy temperature) the collision- 
less damping is exponentially small. The described 
Landau damping mechanism turns out to be dominant in 
those causes in which the wave velocity is so close to 
the Fermi that the energy of the quasiparticles moving 
with such velocities l ies in the region of thermal smear- 
ing out of the Fermi step. 

Just such a situation exists for transverse zero sound 
in normal He3 and spin waves in weak He3-He4 solu- 
tions. The possibility of propagation of zero sound in 
He3 (high-frequency, nonsymmetric oscillations with 
azimuthal number m = I), observed experimentally by 
Roach and Ketterson? Lea, Butcher and Dobbs? is 
roughly determined by the inequality a t  the first  har- 
monic of the Fermi-liquid function F ,  > 6. It is known 
from thermodynamic measurements (see, for example, 
Ref. 5) that the quantity F ,  - 6 is very small at low 
pressures. The small difference F ,  - 6 determines the 
closeness of the propagation velocity of the transverse 
sound to the Fermi velocity. The experimental difficul- 
ties in the study of transverse sound a r e  to  a significant 
degree associated with this circumstance. There a r e  

the He3 concentration raised to the power.6 There is 
great interest in the study of collisionless damping of 
the high-frequency modes in an He3 -He4 solution in a 
constant magnetic field: the onset of this damping 
changes greatly the dispersion laws and the types of 
possible o ~ c i l l a t i o n s . ~ * ~  In a weak He3-He4 solution, it 
turns out to be possible to determine the velocity of 
propagation and the absorption coefficients of the spin 
waves at arbitrary temperatures, including the Boltz- 
mann region T >> To. 

The basic experimental difficulty in the study of high- 
frequency oscillations that propagate with a velocity u 
close to the Fermi velocity lies in the identification of 
the collective mode against the background of the signal 
of free quasiparticles of the Fermi liquid. Time-of- 
flight measurements a re  the most accurate method for 
the determination of the wave velocity. To resolve the 
signals of the wave and of the free fermions it is neces- 
sary that the time difference between the signals 6t-L 
(u - vo)/v~ (L is the distance between the receiver and 
the radiator) be large in comparison with the width of 
the pulse of high-frequency oscillations bt-l/w, i.e., 
L > vgw (u - v,). On the other hand, for the receiver to 
record a pulse it is necessary that the signal not be 
damped over a distance L < v,/w , where wN =Imw is the 
absorption coefficient of the high-frequency mode. It is 
then seen that to separate experimentally a t  the wave 
contribution it is necessary to satisfy the condition 

O"/O< (u-va)/uo<l, (1 
also some grounds4 for assuming that a t  very low pres- which is stronger than the simple condition of weak 
sures the account of the principal harmonics of the f 

damping w" < w. 
function leads to the result that the velocity of the wave 
would turn out to be smaller than the Fermi, which Another method of determination of the signal of the 
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collective mode is possible in principle. It is connected 
with the fact that incoherence in the radiation of f ree  
quasiparticles leads to a decrease in the amplitude of 
their signal in proportion to  1/L2 even upon neglect of 
the r e l a ~ a t i o n s . ~  This circumstance can turn out to  be 
important in the case in which the velocity of transverse 
zero sound in He3 becomes somewhat smaller than the 
Fermi velocity (see below). 

1. TRANSVERSE ZERO SOUND 

In the study of transverse sound in liquid He3 we a re  
usually limited to the first  two harmonics of the Fermi- 
liquid function, while to take account of the damping we 
use the collision integral in the 7 approx imat i~n .~*~- '~  
This limitation is connected with the fact that for trans- 
verse oscillations, in contract to the known case of a 
symmetrical (m =0) mode1 it  has not been possible to 
express the propagation velocities of the wave in terms 
of the f function in explicit form, even with logarithmic 
accuracy under the condition of closeness of the veloci- 
ty of zero sound to the Fermi velocity. This is due to 
the same causes a s  those for which, in an almost ideal 
Fermi gas, allowance for the factor of the exponential 
in the expression for the velocity of the symmetric 
wave is an exaggeration of accuracy. Nevertheless, 
there exists a general method of determining the dis- 
persion of a transverse wave, similar to that proposed 
by the authors earlier: in which all the characteristic 
quantities a r e  expressed in terms of the value of the 
propagation velocity of the oscillations in the absence of 
damping T = 0 and of magnetic field H =O. 

The collisionless kinetic equation, which describes 
the propagation of zero sound in the absence of a mag- 
netic field, reduces to the form 

where k and w a re  the wave vector and the frequency of 
the oscillations, v, p and & a r e  the velocity, momentum 
and energy of the quasiparticles of the Fermi  liquid, 
6n(p) i s  the deviation of the quasiparticle distribution 
function from the equilibrium Fermi function no(&), 
$(p, p') i s  the Fermi-liquid function averaged over the 
spins, and d r  =d~/ (2nE) .~  For an isotropic liquid, the 
function $ depends only on the value of the momenta 
1 p 1 and I p' ( and on the angle between the vectors 
p and p'. Since the quantity 

cos x =eos 0  cos W+ sin 0  sin 0' eos (q-cp') 

(8, cp and 8', cp' a r e  the polar angles of the vectors p 
and p') depends only on the difference cp - cp', the equa- 
tions which determine the laws of propagation of oscil- 
lations with different azimuthal numbers turn out to be 
independent. For transverse zero sound m =1 we have 

x an, dz' 
n, @,x) - - -J$,  ( P ,  p'; x , x l )  n, (PI, d ) d e '  - -. 0 (1.2) X-s ae 2 

Here s =w/kv, x =cosO, x' =cosOf , and the functions n, 
and $, a r e  the first  harmonics of 6n and $: 

UI 
d r  . d ~  

$I ( P ,  P'; 8 , 0 ' )  = J ~ $ ( P , ~ ' ;  cos x)- e1w- 
o de 2n' 

Since the propagation velocity of transverse zero 
sound u =w/k in degenerate He3 at  T/T, << 1 is close to 
the Fermi velocity 0 < (u - vo)/vo = o! << 1, the functions 
nl(p, 8) and an,,/a& differ from zero only in a narrow 
range of momenta near the Fermi momentum Po and of 
small angles 9. The accuracy of the further calcula- 
tions corresponds to the neglect of terms of the order 
of a in comparison with the terms ct ha. This allows 
us to se t  p =pf =Po in the argument of the function $,, 
which is a smooth function of the momenta p and 0'. 
Equation (1.2) is then considerably simplified: 

dx' J ae an, 
v ( z )  -z J $ , (x ,  z ' ) v ( x r ) -  -- = 0 ,  v  = n,de.  

2 X-s ae S 
We a r e  interested in the case of small damping (1): 

1s" I << 1 -sf (s" =Ims <0, sf =Res). Only under such 
conditions can the zero sound signal be distinguished 
from the signal of the free particles. Here the propaga- 
tion velocity of the oscillations u changes only insignif- 
icantly as a function of the temperature within the limits 
of accuracy, u(T) = u(0) =uo, i.e., st = udv,. Here a, 
=uo/v, - 1 << 1, Is" 1 <<ao, and the main contribution i s  
made by the region of small angles 19 and 8', while Eq. 
(1.4) can be solved by expanding the function $, in pow- 
e r s  of (1 - x)'" and (1 - %')'". The integral equation 
(1.4) reduces to a system of linear algebraic equations 
for the quantities 

with coefficients containing integrals of the form 
(2 -1 ) .  an, 

I .  = j-- de &, n>O. 
2-s de  

The integrals I, do not enter into the equation since, 
according to (1.3), $,(1.1) =O. Since we a r e  interested 
in terms of the order a lno! in all the equations, we 
have this accuracy, 

while the value of I, is easily calculated with the help of 
the usual rule of passing around the poles: 

In the principal value of the integral, i t  suffices to 
set andas  = - 6(& - &,). Correspondingly, 

After integration by parts and the substitution z = ( 2 ~ , /  
T)[(w/kvx) - 11 the integral in (1.7) reduces to the form 

where a, =s' - 1. 

Since the imaginary parts of both integrals I&> 1) 
a r e  small in comparison with the imaginary part of I,, 
the collisionless damping of the oscillations is deter- 
mined by the equation Im(Il) =O: 
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For the determination of the propagation velocity of the 
oscillations, all the coefficients of (1.6) and (1.8) a r e  
important, and the quantity u, is given with the speci- 
fied accuracy by an equation of the form 

where the constantA is a combination of derivative of 
all orders of the Fermi-liquid function a t  the point x = O  
and the constants I ,  [(1.6), (1.8)] at s = 1. The calcula- 
tion of the combination in general form is impossible. 

The proposed method of determination of the disper- 
sion of transverse sound is He3 for a wave propagation 
velocity close to  the Fermi velocity is formally equiva- 
lent to the solution of the kinetic equation in the single 
harmonic approximation, in which the role of the coef- 
ficient F, of the first  harmonic of the f function is 
played by the quantity 6(1 +3A). The value of A can be 
found with the help of (1.10) from experimental data on 
the velocity of transverse oscillations in He3. 

We note that the collisionless damping (1.9) can turn 
out to be small even in the case in which the velocity of 
wave propagation u, is a little less  than the Fermi ve- 
locity v,, i.e., a t  0 < -a, << 1. This fact, which is con- 
nected with the necessity of satisfaction of the law of 
conservation of the angular momentum in the case of 
absorption of quanta of transverse zero sound by the 
quasiparticles of the Fermi liquid, does not occur in 
the propagation of the symmetrical modes with m =0, 
when at u,<v, the damping is always large. 

In the case when the velocity of transverse sound is 
greater than the Fermi velocity, ao>O, the condition of 
smallness of the collisionless damping (1) 1 s '' 1 << a, has 
the form 

and the restriction it imposes on the temperature a t  
which observation of the signal of high-frequency oscil- 
lations is possible i s  weaker than the condition T/T, 
<<a,, which is necessary for isolation of the symmetric 
waves propagating with a velocity close to the Fermi 
velocity. At low temperatures T/T, <c a, the collision- 
less  damping (1.9) is exponentially small, a s  noted in 
the Introduction: 

kv nT 2a0T0 
o l r = - - n p ( - T ) .  lna,  2T, 

At higher temperatures, a, ( ha,( >> T/T, >> a,, the 
damping is equal to 

If the velocity of transverse sound turns out to be less  
than the Fermi velocity, a,<O, then, a t  low tempera- 
tures, T/T, << I a, ( , the absorption coefficient 

does not depend on the temperature and is small upon 
approach of the wave velocity to the Fermi velocity 
I In (- a,) 1 >> 1. At higher temperatures, a,ln (a,] 
>> T/T, >> ( a,l , the absorption is still small and the ex- 
pression for o" has a form similar to (1.11). 

The expressions obtained take into consideration in 
implicit form all  the harmonics of the Fermi-liquid 
function, and the measurement of u, can give informa- 
tion on the principal harmonics of the f function. If we 
limit ourselves to the two-harmonic approximation, 
then, with our accuracy, a t  ( ln I a,( I >> 1 [cf. (1.10)]&9 

We emphasize that the propagation of transverse zero 
sound turns out to be possible if the quantity on the right 
side of expression (1.12) is positive, i.e., in fact if F, 
<6. In this case the oscillations a re  weakly damped a t  
low temperature, to the extent of the smallness of the 
quantity I In (1 - ~ , / 6 )  1 ". 

We now consider the role of collisional damping in the 
case of closeness of the wave velocity to the Fermi  ve- 
locity. The coefficient of collisional damping of the 
high-frequency mode, with account of the quantum prop- 
ert ies of the zero-sound excitation, is expressed in 
terms of the relaxation time T in the following manner1: 

fio ' 

For observation of the signal of high-frequency sound, 
satisfaction of the condition (1) is necessary. In the 
case of collisional absorption (1.13), this condition is 
satisfied a t  frequencies 

For the existence of such a range of frequencies, i t  i s  
necessary that the temperature be sufficiently small: 

where i t  is taken into account that T =  T-2 in the normal 
Fermi liquid. By use of experimental data; we can ob- 
tain the numerical estimate 

It is easy to show that in this range of frequencies and 
temperatures, in which the oscillations a r e  weakly 
damped and the condition of the expansion (1) is satis- 
fied, the collisional absorption of zero sound is more 
significant than the Landau damping in the case of a 
wave velocity much greater than the Fermi velocity. 
Collisionless damping can turn out to be important dis- 
sipative mechanism in the case u, < v,, T[K] s ad In la,l. 

Transverse zero sound in a magnetic field 

As a consequence of the closeness of the oscillation 
velocity to  the Fermi velocity, the conditions of prop- 
agation of transverse zero sound turn out to be sensitive 
to the application of even a weak magnetic field H.8 In 
He3 in a magnetic field, the Fermi surfaces of the 
quasiparticles with different spin orientations a r e  two 
Fermi spheres, the radii of which v, in a weak magne- 
tic field 

(0 is the magnetic moment of the He3 nucleus, Z, is the 
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zeroth harmonic of the exchange part of the f function 
and determines the static susceptibility of He3 in weak 
fields) a r e  equal to  

In an isotropic Fermi liquid in the exchange approxima- 
tion, the f function in a weak magnetic field can always 
be represented in the form of the following linear com- 
bination of spin operators o (see, for example, Ref. 7): 

The propagation of high-frequency oscillations is deter- 
mined by the collisionless kinetic equation for the sin- 
gle particle density matrix g. In the given case, we a r e  
interested in two coupled equations, for the scaler dis- 
tribution function n =Sp, A and for the longitudinal mag- 
netization n* =Spa ;aC (cf. Refs. 8 and 9): 

, -, 

( o - k v )  6nZ+kv (%+ $) [ J j6nzr d r  

where n, ( E , )  a r e  the equilibrium Fermi distribution 
functions for particles polarized along and against the 
direction of the field, 62 is the deviation of the single- 
particle density matrix from equilibrium. 

Since spin waves cannot propagate in normal He3 in 
the absence of a magnetic field, the effect of the oscil- 
lations of the longitudinal magnetization 6nz on the solu- 
tion of zero sound type in weak fields h << 1 is propor- 
tional to h2, in accord with (1.14). This statement 
would remain valid even if undamped spin modes could 
be propagated in the liquid, under the condition that i ts  
velocities differ greatly from the velocity of zero sound. 
In what follows, we shall limit ourselves in the disper- 
sion equation only to terms of the order h lnh. There- 
fore, the oscillations of the longitudinal magnetization 
can be disregarded: 

In the limits of accuracy, the differences of the momen- 
ta p and p' from Po in the argument of the f function can 
be neglected (cf. Ref. 8). The method of solution of Eq. 
(1.15) is virtually unchanged from that already used for 
the solution of Eq. (1.1), and the dispersion relations in 
the case of small damping (1) take the form 

Here a, =w/kv, - 1 =w/kv, -1 rh/2, and A i s  the same 
constant a s  in the expression (1.10). 

The velocity of propagation of transverse zero sound, 
given by the first  of the relations (1.16), does not de- 
pend on the magnetic field in weak fields a t  the loga- 
rithmic accuracy with which the expressions (1.16) 
themselves a r e  valid: 

The condition of collisionless propagation of zero 
sound (at T =0) v+<u ceases to be satisfieds in a critical 
field h, such that a+(h,) = O  and a-(h,) =he. Correspond- 
ingly, the critical field (at u,> v,) 

turns out to be very small, which allows us to assume a 
weak magnetic field in all  the calculations. In fields 
greater than h,, damping ar ises  even a t  T =O. The wave 
is ever more weakly attenuated a s  h - h, becomes smal- 
ler. 

The determination of the magnitude and temperature 
dependence of the sound absorption coefficient in the 
magnetic field (1.16) with account of (1.17) is carried 
out in similar fashion and leads to similar results as 
for the absorption coefficient in the absence of a field 
(1.9). 

Thus, for example, a t  T = 0 and 1 >> (h - h,)/h, 2 0, the 
absorption coefficient of transverse sound 

vanishes if h =h, and increases with increase in the 
magnetic field. 

All the dispersion characteristics of the transverse 
zero sound in ~e~ given above were expressed in terms 
of an observed quantity -the velocity of propagation of 
the oscillations u,. In a real  experiment, i t  may be 
simpler to determine not u, but the critical magnetic 
field Iz,. The relation (1.18) makes it possible to  ex- 
press the dispersion of the oscillations in terms of h, 
also. With the help of experimental data on He3 and the 
relations (1.12) and (1.18) for the value of the critical 
field at zero pressure we get a value of the order of 
4 kOe.8 

2. SPIN WAVES 

The collisionless kinetic equation which describes the 
propagation of spin waves in a paramagnetic Fermi liq- 
uid in the absence of an external field H = O  can be rep- 
resented in form' 

dn 
( o - k v ) v  ( p )  + k v L j  2E(p, p r ) v  (pf)dr '=O,  

d e (2.1) 

where 5(p, p') i s  the exchange part of the Fermi-liquid 
function. It follows from experimental data on the mag- 
netic susceptibility of normal He3 that the propagation 
in i t  of spin oscillations i s  most probably impossible. 
In the case of degenerate ~ e ~ - ~ e  I1 solutions, there ex- 
ists only the single undamped spin mode-a symmetric 
wave whose propagation velocity u, a t  T = O  proves to be 
exponentially close to the Fermi velocity6: 

For weak He3-He4 solutions, all the calculations can be 
carried out in explicit fashion, since an exact expres- 
sion is known for the Fermi-liquid function in the form 
of an expansion in a power 5eries in the small param- 
eter A =p,+z/rX<< 1 (a = - 1.5 A is the-scattering length of 
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the He3 quasiparticles by one another), which is pro- 
portional to the concentration raised to the $ power. 
The expression for the velocity of spin waves (2.2) was 
written with logarithmic accuracy. In the calculation and the temperature corrections to the wave propaga- 
of the pre-exponential factor, it is necessary to take tion at =O: 
into account the values of the derivatives of the f func- 

a' tions a t  x =O. The exponential closeness of the propa- U1=-=uo- -  
k v o e x P ( - f  ). 

gation velocity of the oscillations to v, is the cause of 
the importance of the collisionless Landau damping T  i (2.10) 

- < e x p  (-m) a i. 
even a t  very low temperatures. To 

In the Born approximation, m. (2.1) is equivalent to 
the following dispersion equation: 

I+to J 2 ( h / a e ) h  
d r = ~ ( o ,  k )  -0, 

a-kv  (2.3) 

where go =c(po, pol) =-  2uaati2/1CI, 6iM =2.331nS is the ef- 
fective mass of the bare He3 excitation, m3 is the mass  
of the He3 atom. We bypass the pole of the integrand in 
(2.3) in the usual fashion, just a s  in the previous part of 
the work: 

( a n d a e ) h r d r  
J a-kv+iO 

= 'anJae'"dr - inj  EL a(a-mlndr (2.4) 
O-kv ae 

For the determination of the spectrum of weakly damped 
oscillations, we seek a solution of Eq. (2.3) in the form 
w w' - iy, 0 < y << w'. In the case of small damping, it 
follows from the dispersion relation (2.3) that the real  
part of the propagation velocity w '/k and the absorption 
coefficient y of the spin wave a re  determined by the re -  
lations 

Re x (a', k) =0, 
(2.5) 

7 = Irnx(o1, k )  

At low temperatures T/T, <c 1, the derivative an,/a& 
can be represented in the form 

a no nz 8' 
- = - 6 ( & - [ I ) - - T 2 - 6 ( & - p ) ,  
4.? 6 d ~ '  (2.6) 

where IJ. i s  the chemical potential of He3 in the solution. 
The dispersion equation is given here in the following 
form: 

In the expressions (2.7), so =wf/kv0 =u'/vo, n,(s,) is the 
value of the distribution function for the Hehuasiparti-  
cles moving with a velocity equal to the velocity of the 
spin wave, i.e., a t  v =wr/k we have 

d r  
Z.=Z (= ) t = - 2 i v .  

I-P 

s s i l  u' 
u s = - 1 -  1 s=-. 

2  s-1 U 

Since I X I  << 1 in the degenerate He3-He I1 solutions a t  
sufficiently low concentrations of impurity atoms (in 
practice, below 3-4%), then the basic contribution to 
the function w(s) is made by the large logarithm 
ln(s - 1). With account of this fact, we determine the 
collisionless absorption of the symmetric spin mode 
with logarithmic accuracy from the formulas (2.5) and 
(2.7): 

We note that the second t e rm in (2.10) is small in com- 
parison with the difference between the real  value of u, 
and that given by formula (2.2) with logarithmic accu- 
racy. However, this t e rm at  T/TO<<exp(-l/lk1) com- 
pletely determines the temperature dependence of the 
spin wave velocity. 

The condition of the smallness of the damping, which 
was used in the derivation of the equalities (2.5) in the . 
given case, implies, as a consequence of the effect of 
the closeness of the propagation velocity of the spin 
wave to the Fermi velocity, that y << w' - kv, - kv, 
x exp(- 1/ I X I  ). This means that the region of applica- 
bility of the expression for y (2.5) and (2.9) is restrict-  
ed by the condition 

The dispersion characteristics of the symmetric spin 
mode can be expressed in terms of u, with the help of a 
method similar to that used in the previous section of 
the paper. In the corresponding notation, the disper- 
sion equation has the form 

In a- inn(a)  -In aa, (2.12) 

where cu = w/kvo - 1, cu, =exp(- 1/ I XI ). In the case of 
weak damping n(a)  << 1, the absorption coefficient is 
determined by Eq. (2.9). At higher temperatures 
cu,T,,/T << 1, the quantity n(a) - and the condition (1) is 
violated. Thus, the spin waves in the He3-He4 solution 
can be recorded only a t  sufficiently low temperatures 
T << To exp(- 1/ I x I ). This is equivalent to the numerical 
inequality 

T[mK1<4.2. i03x'13 exp(-2.4/s'"), 

where x is the molar concentration of the He3 in the 
solution. 

For collisional absorption (1.13), the resolution con- 
dition (1) is satisfied in the given case in the range of 
frequencies (1.13') 

at temperatures T[K] s a,. This restriction on the 
temperature is weaker than that obtained above for the 
Landau damping. From a comparison of the coefficient 
of Cherenkov absorption (2.9) with w ,n (1.1 3), with ac- 
count of (I), i t  is easy t o  determine the range of fre- 
quencies included in the interval between w, and w,, 
and the condition on the temperature, T[K] < lOcu 
x exp(-2cuoTo/T), a t  which the collisionless damping 
dominates. 
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Spin waves in a magnetic field 

The action of an external magnetic field H leads to a 
change in the spectrum of the spin waves in the degen- 
erate He3-He I1 solution. Two transverse sl i t  modes 
appear here for the oscillations of the magnetic-mo- 
ment components perpendicular to the direction of the 
field H, and a longitudinal mode of coupled high-fre- 
quency spin-sound oscillations.' Since the longitudinal 
spin mode in the solution appears even in an exponen- 
tially weak magnetic field7 and a t  very low tempera- 
tures, we shall in what follows be interested in the con- 
ditions of propagation only of transverse oscillations of 
the magnetization. 

The equation for the circular component of the mag- 
netic moment M ,  + I  M y  can be represented in the follow- 
ing f orm7 : 

where n, a r e  the equilibrium distribution functions of 
the quasiparticles with spin orientations along and 
counter to the direction of the magnetic field H, and en- 
ergies &,, respectively. In Eqs. (2.13) we have used the 
value of the exchange part of the Fermi-liquid function 
5(p, p') in the Born approximation gip, p') =lo =-2?raE2/ 
M. In this case, BH =BH - cO(N+ - N-), N, is the number 
of impurity atoms of He3 with different spin orientations 
per unit volume of solution, and N=N+ +N_ is the total 
number of He3 atoms per unit volume. 

After simple transformations of (2.13) we find the 
dispersion equation for the spectrum of a transverse 
spin wave: 

Here D = w - 2 BH/A. The equation for the conjugate cir-  
cular component can be obtained from (2.14) by the for- 
mal substitution w - - w , k- - k. 

We seek the weakly damped solution of Eq. (2.14) in 
the form w =w'  - iy, 0 < y << w' according to the formulas 
(2.5). After integration in (2.14) we get with the aid of 
(2.6) 

In Eqs. (2.15) and (2.16), the function w(s) is deter- 
mined by the formula (2.8), s, =D/kv,, n,(so) is the val- 
ue of the distribution function n,(&,) a t  e, =Tos:, so =D/ 
kv,. 

In the region of small wave vectors, the magnon 
spectrum is quadratic in k7: 

Here the Cherenkov damping of the spin wave is expo- 
nentially small: 

and the fundamental dissipation mechanism is the col- 
lisional relaxation absorption. 

In the shortwave region kv, >> w,,,, the dispersion 
equation (2.13) takes a form similar to (2.3). There- 
fore, all the results  of the previous section of the pa- 
per can be extended directly to  this case. It should be 
noted that the region of existence of the shortwave so- 
lution of Eq. (2.13) i s  limited by the condition of appli- 
cability of the quasi-classical kinetic equation used in 
the derivation of (2.13). 

At higher temperatures of the solution, T 2 To, the 
damping connected with the finite lifetime of the quasi- 
particles of the Fermi liquid is important. However, 
thanks to the low concentration of the solution, the 
damping of the excitation of He3 i s  small  to the extent 
of the smallness of the gas  parameter X.15 In the Born 
approximation, the damping of the quasiparticles i s  
generally absent. This allows us to solve the problem 
in first  order perturbation theory of the propagation of 
waves of magnetization in the weak He3-He4 solution a t  
arbitrary temperatures. 

At T >> To, the impurity atoms of He3 obey Boltzmann 
statistics. In the Boltzmann region T >> To, in the ab- 
sence of a magnetic field H =0, the dispersion equation 
(2.3), which describes the symmetric spin mode is eas- 
ily transformed to the form (compare, for example, 
Ref. 16) 

where pet =to N is the contribution to the chemical po- 
tential of He3 in the solution due to interaction of the 
impurity excitations with one another, V, =(T/M)'~ is 
the thermal velocity of the quasiparticles of ~ e ~ ,  and 
the quantity J ( x )  is determined by the expression 

It is not difficult to convince oneself that, because of 
p /T << 1, the dispersion equation (2.19) has only a 
highly damped solution with I Imw I >> I Rew 1 : 

This agrees with the result obtained above, that the 
symmetric spin oscillations a r e  no longer observed in 
practice at very low temperatures T - To exp(- l/ 1 x I ) 
<< To. 

An entirely different situation ar ises  when an exter- 
nal magnetic field H i s  turned on. After calculation of 
the integrals with the Boltzmann equilibrium distribu- 
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tion functions n+ and n, the dispersion equation (2.14) 
for the transverse oscillations of the magnetization 
takes the form 

where $2 =w - 2 BH/A +ow and the f~nct ions w, and 
J(x) a re  determined by the expressions (2.18) and 
(2.20), respectively. 

We seek a long-wave weakly damped solution of Eq. 
(2.21) in the form of an expansion in powers of k v d w ,  . 
In the zeroth approximation N+ - N, =Ntanh(&H/T) cor- 
responds to a uniform free precession of the nuclear 
spins of He3. With the help of the asympototic repre- 
sentation (2.20) of the function J(x), for homogeneous 
solution w' =w, corrections that a re  quadratic in k v d  

W h t  : 

mint 2pm k' 
@'=ao + 7h?"T'-oa + -- 

a* tr Moo (2.22) 

It was taken into account in (2.22) the fact that in the 
Born approximation, it is necessary to use for the dif- 
ference in populations N+ - N-, which enters into w, , 
its value in the ideal Boltzmann gas with neglect of the 
Fermi-liquid interaction: N, - N_ = N tanh(BH/T). The 
absorption coefficient y of the wave is equal to 

At not too small vectors k  the Cherenkov damping (2.23) 
can turn out to be greater than the collisional damping 
yoou - Na2v, 

In the short-wave region, when the presence of a gap 
in the dispersion law becomes unimportant and the os- 
cillations of the magnetization a re  described by an 
equation of the form (2.19), strong collisionless damp- 
ing makes propagation of the spin wave impossible. 

Thus, the observation of spin waves in the HeS-He I1 
solution in the absence of a magnetic field required the 

obtaining of very low temperatures. The turning on of 
the magnetic field makes possible the propagation of 
weakly damped spin modes over a wide range of tem- 
peratures. The increase in the temperature decreases 
the width of the region of wave vectors in which un- 
damped magnons exist. 

We express our gratitude to A. F. Andreev, M. I. 
Kaganov and I. A. Fomin for useful discussions. 
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