
spin flip). It is precisely this difference in the sign of 
I A ,  I 2  in the coherence factors which is responsible for  
the different temperature dependences of the kinetic 
coefficients (a monotonic increase of the ultrasound 
absorption with increasing temperature, as against a 
plot with a maximum below the transition point in the 
case of nuclear-spin relaxation). From the terms re- 
sponsible to the interband scattering in (A.4) and (A. 5) 
it is seen that the signs of I A ,  1 10,) are different for the 
solution with pi, = r than for the intraband processes, 
and therefore at giz-gii the temperature dependence of 
the sound absorption has a maximum, just as in the case 
of the spin-lattice relaxation rate. 

We note that i n  the case of the second solution the 
system is more stable to impurity scattering, since the 
intraband scatterings are partially compensated by the 
interband scatterings (because the diagrams for the in- 
terband scattering enter with opposite signs). 

Thus, the relative phase difference of the order pa- 
rameters Aii and A2z, as a result  of interband transi- 
tions, should lead to observable physical phenomena. 
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Possible types of magnetic ordering of S ions in the 
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A model approach is proposed to determine and classify, within the framework of the exchange 
approximation, the types of magnetic ordering that are produced when a crystal goes over into a 
magnetically ordered state. Within the framework of this approach, the possible types of ordering in the 
garnet structure are determined for the case when the magnetic and crystal-chemical cells coincide. It is 
shown that some magnetic structures cause tetragonal or trigonal lattice distortions due to exchange 
striction. All the obtained exchange structures are in correspondence with the exchange classes 
introduced by Andreev and Marchenko. 

PACS numbers: 75.25. + z, 75.30.Et 

The magnetic properties of antiferromagnetic garnets 
are the subject of a rather larger number of studies 
(see the review of Belov and ~okolov'). A theoretical 
analysis of some types of magnetic ordering in such 
structures was carried out by the Bertaut method2 in a 
number of ~ t u d i e s ~ - ~ .  This method is based on an 
analysis of a model quadratic spin Harniltonian. It will 
be shown in this paper, however, that inclusion of only 
the interactions that are quadratic in the spin is in- 
sufficient for a complete determination of all the pos- 
sible magnetic configurations. 

A preferable method that determines all the possible. 
types of magnetic ordering in crystals  with different 
symmetries is the expansion of the spin-density vector 
in irreducible representations of the symmetry group 
of the paramagnetic state of the ~ r y s t a l . ' . ~  It i s  pre- 
cisely by this method that von prandleg obtained and 
classified by symmetry type all the possible types of 
magnetic configurations of the spins in the garnet struc- 
ture.  He took into account to an equal degree both the 
exchange and the relativistic interactions. At the same 
time, for crystals  with magnetic S ions, a much sim- 
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pler treatment is possible on the basis of an analysis 
of the symmetry of only the exchange interactions. 

This approach yields the disposition of the atomic 
spins relative to one another, but does not fix their 
disposition relative to the crystal axes. In addition, 
i t  is possible to construct a classification of the mag- 
netic structure within the framework of this method. 
This classification differs somewhat from that as- 
sumed by Andreev and~archenko ,"  although there is a 
one-to-one correspondence between them. The point 
is that the classification developed by Andreev and 
~ a r c h e n k o "  presupposes knowledge of the symmetry of 
the crystal lattice in the magnetically ordered state, 
while the classification assumed in the present paper 
presupposes only knowledge of the symmetry of the 
crystal lattice in the paramagnetic phase. For each 
magnetic configuration i t  is possible to indicate those 
lattice distortions which will arise in the magnetically 
ordered state. 

In the present paper, a localized-spin model is used 
to obtain and classify by symmetry type all the homo- 
geneous garnet-structure spin configurations in the ' 
that a re  allowed by exchange interaction. 

SYMMETRY OF EXCHANGE HAMILTONIAN 

The elementary cubic cell of garnet contains eight 
formula units A2D3C3Ol2(A, D, C-metallic ions) and is 
described in the paramagnetic phase by the space group 
1a3d-OLO . The oxygen ions form a body-centered 
cubic lattice, and the metallic ions a r e  located in the 
interstices. There a r e  three types of crystallographi- 
cally nonequivalent intersticesi6: octahedral (a), 24 
tetrahedral 24 (d) , and 24 dodecahedral (c) . The co- 
ordinates of the atoms in positions (a), ( 4 ,  and (c) 
a r e  given in Table I. (Since the cell is body-centered, 
the positions of the remaining atoms in the elementary 
cubic cell a r e  obtained by translation through the vector 
(1/2,1/2,1/2). 

On going from the paramagnetic state to the magnet- 
ically ordered state, the symmetry of the crystal lat- 
tice may change, but the deformations a r e  weak and 
can be taken into account within the framework of 
perturbation theory. In the f i rs t  stage of the calcula- 
tions we can therefore exclude the magnetostriction 
interaction and assume that in the magnetically ordered 
state the lattice is described by the space group 0:' 
of the paramagnetic phase. 

In this paper we a r e  interested only in homogeneous 
states of the system, i .e. ,  states in which the direc- 
tions of the atomic spins in translationally equivalent 
si tes coincide. The symmetry group G of the Hamil- 

TABLE I. Coordinates of magnetic atoms in garnet structure 
(in fractions of the unit cell) 

tonian of such a system is obtained from the space 
group by identifying all the trivial translations with a 
single element (we assume also that the magnetic and 
crystallographic cells coincide). The Hamiltonian of 
the system is a function of the directions of the spin 
vectors of all the magnetic atoms inside the unit cell: 

where the indices v, p ,  and q number respectively the 
atoms inside the sublattices (a), ( 4 ,  and (c) : v 
=1,2  ,... 8; ~ = 1 ~ 2 ~  ..., 12; q = 1 , 2  ,..., 12. 

Any symmetry operation T, from the group G can be 
represented a s  a definite permutation of the atoms P, 
and rotation of the atomic spins" OK, i . e . , 

wherein only atoms from crystallographically equiv- 
alent positions a r e  permuted with one another. 

We now consider the exchange Hamiltonian ge of our 
system. Being a function of scalar products of atomic 
spins, ge is invariant to rotations in spin space. Con- 
sequently the operations T, transform the Hamiltonian 
Xe in the following manner: 

In other words, an analysis of the symmetry of the ex- 
change Hamiltonian reduces to an analysis of the sym- 
metry relative only to permutations of the atoms P, 
(we designate the corresponding group by 9). Since 
each operation T, from the group G corresponds to an 
operation P, from 8 and, as i t  turns out, none of the 
permutations P, (with exception of the unitary one) 
leaves all the atoms in their places, i t  follows that the 
group is isomorphic to the group G, which in turn 
is isomorphic to the point group Oh. Consequently, 
i t  is possible to classify the magnetic structures in 
the present case in accordance with the irreducible 
representations of the group Oh-the crystal class of 
the lattice. 

All the foregoing can be explained also in a some- 
what different manner. We denote by U the group of 
three-dimensional rotations in spin space, and by R 
the operation of time reversal, which is the operation 
of inversion of the spin space. Since the exchange 
Hamiltonian is invariant to the groups G, U, and R ,  
and since the operators 0, form a subgroup of group U, 
i t  is clear that the complete symmetry group of the 
exchange Hamiltonian y c a n  be represented as a direct 
product of the groups 8 ,  U, and R: 

.T=.PXUXR. 

The possible magnetic configurations can be classified 
also with the aid of irreducible representations of the 
groupy,  which in turn a r e  direct products of the i r r e -  
ducible representations of 8 and UxR. It is clear that 
any vector in spin space is transformed in accordance 
with the vector representation Y; of the group of three- 
dimensional rotations, meaning in practice that the 
direction of this vector in space is specified. Thus, to 
determine the symmetry of the magnetic ordering in 
the exchange approximation i t  suffices to indicate only 
the irreducible representation of the group B in ac- 
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cordance with which the coordinates of the magnetic 
atoms a r e  transformed. 

Under the action of the operations P,, the vectors (1) 
a re  transformed in the following manner: 

The matrices P form a representation, constructed on 
the vectors (I), of the group f. This representation 
is reducible and can be expanded into irreducible parts, 
an important factor being that i t  is possible to reduce 
separately the representations fo r  the sublattices (a), 
(d), and ( c ) .  We denote the total exchange representa- 
tion by the letter r, and the representations for the 
sublattices by the let ters I?,, r,, and I?,. By virtue of 
the foregoing we have 

It is known that the generating elements of the sym- 
metry group 0:' a re  three mutually perpendicular four- 
fold screw axes, which correspond in our approach to 
three permutation operators PiX),  p iY) ,  P y ) ,  and to an 
inversion operation, which corresponds to the permu- 
tation Pi. The action of these four operators is illus- 
trated in Table 11. The representations r,, r,, and r, 
can be expanded in irreducible representations of Oh. 
Using the data of Table 11, we can show that 

We use here the standard Bethe notation for the irredu- 
cible representations of the point group Oh (Ref. 12) 
and, as usual, I' denotes an even representation and 
r' an odd one. The representations r, and r2 a r e  one- 
dimensional (r1-identif y) , I?, is two-dimensional, and 
r, and r, a r e  three-dimensional (r, is the x ,  y ,  z vec- 
tor representation). 

The reduction (6) is effected in standard fashion by 
changing over from the basis made up of the vectors 
S,,, S,,, S,, to their linear combinations that transform 
in accordance with irreducible representations of the 

T A B U  11. Action of the permutation operators P, on the posi- 
tions of the magnetic atoms 

I Octahedral positions (a) 

1 Tetrahedral positions (d) 

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  
Pit') 9 11 10 12 8  7 3  5  4  6 2 1 
P,c") 11 7  12 8  10 9  5  I  6  2  4  3  
P,(') 10 12 8 7  9  11 4  6 2  1  3 5  
PI I 1 0 1 1 1 2 7 8 9 4 5 6 1 2 3  

I Dodecahedra1 positions (c) 

group Oh. We shall denote these combinations by the 
let ters &D,, C,. To obtain them we must apply the 
projection operator 

to an arbitrary vector of the old basis.I2 Here a! is the 
number of the irreducible representation, D : ) ( ~ )  a re  
the matrices of the irreducible representations of the 
group Oh, and the action of the operator P, is given in 
Table 11. The sum in (7) is taken over all the 48 oper- 
ations of the group Oh. As a result of the action of the 
operator (7) we obtain the following irreducible vec- 
t o r ~ : ~ )  

The expressions for the matrices fi a r e  given in Table 
111, which gives also the classification of the vectors 
A, D, and C in accordance with the irreducible rep- 
resentations. For  convenience we have not normalized 
the irreducible vectors, so  that the matrices fi a r e  not 
unitary. The transformation inverse to (8) is of the 
form 

Using (6) and the data of Table 111, we can find and 
classify by symmetry types of magnetic ordering of 
the ions in different sublattices. We shall say that a 
system is in a pure T', state if only vectors that trans- 
form in accordance with a- th  irreducible representa- 
tion differ from zero. 

TABLE ID. Matrix of transition to the irreducible vectors 

I Octahedral positions (a) 

I Tetrahedral positions (d), 7 = 6 

I Dodecahedra1 positions (c) 

189 Sov. Phys. JETP 50(1), July 1979 D. A. ~ablonsk; 189 



It is seen from (6) that four pure states a r e  possible 
in an octahedral sublattice and six different states each 
a re  possible in a tetrahedral and dodecahedra1 sub- 
lattice. We consider them separately. 

MAGNETIC ORDERING IN OCTAHEDRA 

1. Configuration r,-ferromagnetic ordering, or  
spins directed to the same side. 

2. Configuration rz-collinear antiferromagnetic 
ordering, with 

3. Configuration r,-antiferromagnetic ordering. In 
this case the following relations hold between the spins: 

Ss.=-St., So.=-Sz., S7.--S,., Ss.=-S'., 

S,.+S,.+S3.-I-s,.=o, 
(11) 

i.e., the symmetry admits of a definite leeway in the 
disposition of the spins 1 ,2 ,3 ,4;  the only requirement 
is that their total angular momentum be equal to zero. 
To eliminate the leeway i t  is necessary to resort  to 
some concrete expression for the exchange energy of 
the system. We shall use i t  somewhat later. 

4. Configuration r,-antiferromagnetic ordering. The 
relations between the spins a re  

S,.=S,., S,=S,, S;.=S2,. Sa,=S.., 

SI.+SI.+S,.+SI.=o. 
(12) 

Just  as in the preceding case, the relative disposition 
of the spins 1,2,3,  and 4 is not completely fixed. 

To choose between the different configurations we 
must compare their exchange energy. We consider a 
Heisenberg Hamiltonian of a garnet with magnetic atoms 
in the sublattice (a): 

the index f numbers here the unit cells. Since we a re  
interested in the energy of the homogeneous state, we 
obtain for the energy per unit cell of the crystal, put- 
ting S,,(Rf) =S,(R~,) =S,, in (13), 

where c!,, is the energy of the interaction of the atom v 
with all the atoms v' from all the cells. 

Not all the exchange interactions in (15) a re  indepen- 
dent. It can be shown, by using Table 11, that there a r e  
only four independent parameters: 

]/,;I, 1:) = 1:;) = jp; =d:i, 
]s(O)=]:,;)=](') -I(') 

(16) 
, 7 - 1.8 , 1(~)=1:~; . 

Changing from the vectors S, to the irreducible vec- 
tors A,, with the aid of (9), we get 

where the coefficients Xa are  connected with the ex- 
change integrals (16) by the following relations: 

It is now easy to obtain the energies of the different 
configurations : 

%,(1',) =32h,.Saz, W. (r,) =32h?,S,Z, 
(19) 

X.(r,) =32hi.Sn3, %%(I?,) =32iL,.S2, 

where Sa is the ion spin in the position (a). Thus, in 
the approximation quadratic in the spins, both the 
configuration I?, and the configuration r5 are  degen- 
erate [their energies a r e  independent of the different 
spin-configuration deformations that a re  allowed by 
relations (11) and (12)]. 

To find the relative arrangement of the atoms, bi- 
quadratic exchange must be added to the Hamiltonian 
(14). Terms of fourth order in the vectors A,, appear 
then in (17). We shall not write them out, and present 
only those terms which influence the energy of the pure 
configurations r, and r5 and depend on the relative 
arrangement of the spins: 

For the configuration r4 we obtain, taking (11) into 
account, 

z"(r,)  =?'L..(2S."(s,.S1,)2+(S,.S,.)~ 
+ (S,,S,.)2+ (SZ.S3.)?+ (SJOLsI.)2+(S?.S,.)2}. (21) 

If L4, is negative, then the energy minimum corres- 
ponds to three collinear configurations: 

On the other hand i f  L,, is positive, then the spins a re  
directed along the four different body diagonals of the 
cube, and furthermore in such a way that the condition 
(11) is satisfied. It is easily seen that two nonequiv- 
alent spin arrangements exist here: r j 4 )  and I?:,), with 

In both configurations, the vectors 4, A,, and A8 a re  
equal to one another in magnitude and a re  mutually 
perpendicular. 

For the configuration r5 we obtain an expression 
which is perfectly analogous to (21), with Lla replaced 
by L,,. We then obtain either the three collinear pos- 
sibilities (22) o r  the two three-dimensional ones, but 
with allowance for (12). Only one irreducible vector, 
A, or  A, o r  A,, respectively, differs then from zero 
in the configurations r i u ,  r i2 ) ,  r i3 ) ,  while in configura- 
tions ri4) and ri5) a11 the three vectors A,, A,, and A, 
a re  equal in magnitude and mutually perpendicular. 
But all these structures a re  compatible in symmetry 
with the group 0,. This means that allowance for the 
magnetostriction interaction for such structures leads 
to a distortion of the lattice and to a lowering of its 
symmetry. To obtain these distortions we shall use 
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the ideas of Andreev and ~ a r c h e n k o , "  namely that the 
lattice symmetry in the magnetically ordered state 
should coincide with the symmetry of any spin scalar.  
Consequently, the lattice symmetry will be determined 
by the symmetry of quantities of the type A,,. A,,,, s e t  
up for the given configuration. 

As already mentioned, the vectors A, play the same 
role as the multipole moments introduced in Ref. 10. 
This means that i f  the transition to the magnetically 
ordered state occurs without a change in the lattice 
symmetry, the following relations should be satisfied 

where a! and p a r e  the numbers of the irreducible rep- 
resentations in accordance with which the vectors A,, 
and 4, transform, and 5 ,  a r e  certain constants. It 
can be directly verified that the configurations 
r l ,  g, r:,15), satisfy relations (23), i. e. , a phase 
transition to these configurations i s  not accompanied 
by lattice distortions. The symmetry of these con- 
figurations is determined by the exchange classes 
A,,,A&, F,,, F,, of the Oh group from Ref. 10. 

In the configurations r:11213) and r:1,213) the spin scal- 
a r s  have the symmetry D,,, meaning that the lattice has 
the same symmetry. These spin configurations belong 
to the exchange classes A,, and Big of the group D4h. 

MAGNETIC ORDERING I N  TETRAHEDRA 

1. Configuration I?,-ferromagnetic ordering. 

2. Configuration r;-collinear antiferromagnetic or-  
dering: 

3. Configuration r3-triangular ordering: 

s t O d = s 7 d = s h d = s t d ,  s , l d = s 8 d = S 5 d = s Z d ,  

S t Z d = s S d = S 6 d = S 3 d ,  S , d + s z d + s , d = o .  
(25) 

4. Configuration I?;--triangular ordering: 

5. Configuration I?,-three antiferromagnetic sub- 
lattices: 

with arbitrary directions of the antiferromagnetism 
axes relative to one another. Jus t  a s  in the configura- 
tions r, and r, from the sublattice (a), the quadratic 
spin Hamiltonian does not fix the relative positions of 
these axes. 

Inclusion of biquadratic exchange leads to the possible 
existence of either the collinear structures 

for which all three vectors D,, D5, D8, a re  collinear o r  
two three-dimensional structures l?i5', l?:"', in which 
all the three antiferromagnetism vectors a r e  perpen- 
dicular to one another: D, 1 D, ID, and a r e  equal in 
magnitude. 

6. Configuration r;-three antiferromagnetic sub- 
lattices: 

S , o d = - S t d = S , d = - S , d ,  D , 2 = 4 S , d ,  

S t , d = - S , d = S $ d = - S d ,  Di ,=@%d,  (29) 
S , 2 d = - S o d = S e d = - S 3 d ,  D,,=4S.w, 

which a r e  subject to everything applicable to configura- 
tion r,. 

The exchange energy per cell for the (d) ions is given 
by 

and there a r e  six different exchange parameters 

Changing over to the irreducible vectors D,, we ob- 
tain 

and the constants X, take the following form 

A , ~ = V , , [ ~ I ~ ~ )  + I : ~ + ~ I P  +lid) +I:@ + I ( ~ J I ,  

It is possible to .obtain the energy of the system in the 
different configurations: 

To lift the degeneracy in configurations in r, and I?; 
i t  is necessary to add to the Hamiltonian (32) a biquad- 
ratic exchange in the form 

We then obtain 

Jus t  a s  for the octahedral sublattice, i t  can be shown 
that the configurations r l ,  r,', r 3 ,  r;, r1516', r1516) do not 
distort the crystal lattice and a r e  described by the ex- 
change classes A,,A,,, E,, E,, F,,, P,, of group Oh, while 
the configurations 2*3* 4, and r:'* 2 1 3 * 4 )  cause trigonal 
distortions of the lattice and a r e  described by exchange 
classes A2, and Alu of the group D,,. 
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MAGNETIC ORDERING I N  DODECAHEDRA 

The possible types of ordering in the dodecahedral 
sublattice a r e  analogous in many respects to the order- 
ing in the tetragonal sublattice, and we present there- 
fore only a very brief description of these structures 
with references to the preceding section. 

Configuration I?,--ferromagnetic ordering. 

Configuration r;-the spin arrangement is described 
by Eq. (24). 

Configuration r3-Eq. (25). 

Configuration I?;--Eq. (26). 

Configuration r5- Eqs. (27) and (28). 

Configuration r;-Eq. (29). 

The exchange energy for the cell for the (c)  ions is 

The symmetry of the exchange interactions 4:;. is 
determined by relations (31). 

Changing over in (37) to irreducible vectors, we get 

The constants A, a re  determined by relations (331, in 
which we must make the substitutions 

Ild-thl., h2d+X,., ?.Jd+hSS, 

X 3 d - C  Xs,, h'd-tASC, X 5 d - f  XIE, I:~)+J~C) . 

The energy of the system in the various configura- 
tions is determined by the expressions 

x(=) (r , )  =7u,.s:, wcC)(r l1 )  =72~ ,s . ' ,  
(r,) =i44~,~s: ,  w ( < ~ ( r ; )  =i441,3:, (40) 

mC)(r5) =2aScs:, a(=) ( r o  =2ascs:. 

That part of the fourth Hamiltonian which stabilizes 
the configurations I?, and I?; is given by 

z:" =L:" 1 (C,C,)'+ (C,C.)2+ (C,C,)21 

We then obtain 

The configurations I?,, r;, r3, I?;, do not 
change the lattice symmetry and a re  described by the 
exchange classes Alg,Al,, Eg, E,, Ft, F,, of the Oh 
group, while the configurations Tii* 2s 3*4b and I?:"* 3*4b  

cause trigonal distortions of the lattice and will be 
described by the exchange classes Ai, and A,, of the 
D,, group. 

CONCLUSION 

We have analyzed in detail and obtained the energy 
for  only pure configurations (i. e. , configurations 
described by one of the irreducible representations 
of the group 9) .  It is possible that mixed configura- 

tions can also exist and can be obtained within the 
framework of the present analysis. We must bear in 
mind here the limitations of the coexistence of differ- 
ent configurations; these limitations were formulated 
by Andreev and ~ a r c h e n k o "  [see also Eq. (23) of the 
present paper]. 

A s  already noted, the configurations r 4 ,  F5, I?;, I?; 
a re  not fully defined within the framework of the quad- 
r ic  Hamiltonian. We have shown that this uncertainty 
can be partially eliminated by taking into account a 
biquadratic exchange interaction. The same uncertain- 
ty can be lifted also by taking into account relativistic 
interactions, but this is outside the scope of the pres- 
ent paper. Using for the irreducible vectors &.D,, C,, 
the expressions obtained in the present paper, we can 
examine the question of the possible types of ordering 
in the case when the magnetic ions occupy two o r  
three nonequivalent positions. It is then again pos- 
sible to s tar t  from the model Hamiltonian, but when 
account is taken of the lattice deformations and when 
the coexistence of various pure configurations is con- 
sidered i t  is necessary to invoke a relation similar to 
(23). The difference is that now some irreducible 
representations a re  encountered several  times in the 
expansion of the complete representation. Let rg) 
be an irreducible vector that transforms in accordance 
with the p-th line of the a- th  irreducible representa- 
tion of the group 9 (q is an arbitrary number that runs 
through as many values as there a r e  encounters of the 
a-th representation in the total exchange representa- 
tion I?). It can then be shown that if the given spin con- 
figuration is compatible with the lattice symmetry, the 
following condition should be satisfied 

where tqq, a r e  certain constants. 

In conclusion, the a u 9 o r  is grateful to V.G. ~ a r ' y a k -  
htar and I. M. Vitebskii for numerous helpful discus- 
sions. 

*)we note that besides the ordinary magnetic ordering, for 
which the order parameter is a vector that transforms in 
spin space in accordance with the representation Yy, the 
symmetry admits also of more complicated types of order- 
ing, whose order parameter transforms in spin space with 
one of the representations Yr of the rotation group. The con- 
sideration of these states, however, is outside the scope of 
the present paper. 

2 ) ~ e  note that in our approach the vectors A, D, and C play 
the same role as the multipole moments in the paper of An- 
dreev and ~ a r c h e n k o ? ~  
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A functional integration method is used to obtain the first two terms of the asymptotic form of the 
Green's functions at (o,k) = p 4  and the principal asymptotic terms of the self-energy parts of three- 
dimensional and two-dimensional superfluid Bose systems at T = 0. It is shown that the anomalous self- 
energy part tends to zero like (lnRp)-' for three-dimensional system and like p for the two-dimensional 
system. 
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I t  was  shown by A. A. and Yu. A. ~ e ~ o m n ~ a s h c h i k h " ~  is the  perturbed Green 's  function, and p is the chemical  
that the anomalous self-energy p a r t  of a three-dimen- potential. 
sional superfluid Bose  s y s t e m  a t  T = O  is exactly equal 

T h e  low-frequency asymptotic f o r m  of the Green 's  
to z e r o  a t  p = (w,  k) =O. This  r e s u l t  is somewhat  unex- 

functions a t  T = O  
pected f rom the point of view of perturbation theory, 
where (for the Bose- gas  model) the f i rs t -  o r d e r  approxi- G ( p )  ---G, (p) =-mp,/pp2, p 2 = k 2 + ~ Z ~ - 2  (3) 
mation for  the anomalous self-energy p a r t  is constant 
and differs  f rom z e r o  a t  s m a l l  p.3 The r e s u l t  of Refs. 1 
and 2 indicates that the approach of Gavoret  and No- 
~ i e r e s , ~  who a s s u m e  a nonzero anomalous self-energy 
par t  a t  p =0,  is incorrect .  

In this paper  we  calculate  the asymptotic f o r m s  of the 
self-energy p a r t s  of three-dimensional and two-dimen- 
sional Bose s y s t e m s  a t  T = O  with the aid of functional 
 method^.^ The  obtained formulas  (28) and (30) yield 
anomalous self-energy par t s  that vanish in  the l imit  as 
p- 0 in accord with Refs. 1 and 2. 

We calculate f i r s t  the asymptotic Green 's  functions, 
and obtain the self-energy p a r t s  f r o m  the Dyson-Bely- 
aev equations: 

I .  \ 

w e r e  f i r s t  obtained by N. N. ~ o g o l ~ u b o v . ~  W e  obtain 
h e r e  fo r  the asymptotic Green ' s  functions the t e r m s  of 
o r d e r  higher  t h a n p m 2 ,  which are needed t o  de te rmine  
t h e  asymptot ic  f o r m s  of the  self-energy parts .  

The normal  and anomalous Green 's  functions of the 
Bose s y s t e m  a r e  determined by the fo rmulas  

where  x=(T,x) ,  y = ( r l , y ) ,  x , y ~  V a r e  the spa t ia l  vari- 
ab les ,  7 ,  T'E [O,P], and P-' = T is the absolute tempera- 
ture. The formulas f o r  T = O  are obtained by taking the 
thermodynamic l imi t  a s  V- m and T - 0. 

The  averaging symbol  (...) in (4) can  b e  understood a s  
the quotient of the continual integrals  

(1 I 
where  S is the functional of the action: 

H e r e  G(p) and G,(p) a r e  the total normal  and anomalous 5- I d4x a.+(x)-G- &ix) ; Y ( x )  +p$ (11 ) 
 ree en's-functions, A ( p )  and B(p)  a r e  the normal  and an- - 
omalous self- energy par t s ,  

Go (p) = (io-k2/2mf p) -' (2) u(x- y)  is the paired interaction potential of the Bose  
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